Novel Approaches to Allergen Immunotherapy for Respiratory Allergies
Abstract
:1. Introduction
2. Mechanisms of AIT (Table 1)
Mechanism of AIT |
---|
|
Proven clinical benefits of AIT in allergic rhinoconjunctivitis +/− asthma |
|
3. Conventional AIT: SCIT and SLIT
4. Alternative Routes (Table 2)
4.1. Intralymphatic Immunotherapy
Routes of AIT | Advantages | Drawbacks |
---|---|---|
Subcutaneous (SCIT) |
|
|
Sublingual (SLIT) |
|
|
Intralymphatic (ILIT) |
|
|
Epicutaneous (EPIT) |
|
|
Intradermal (IDIT) |
|
|
4.2. Epicutaneous Immunotherapy
4.3. Intradermal Immunotherapy
5. Adjuvants (Table 3)
Adjuvants | Approved for Clinical Use [18] | Mechanism of Action |
---|---|---|
Aluminum hydroxide (alum) | EU (1937) |
|
Calcium Phosphate (CaP) | EU (1980) |
|
Microcrystalline tyrosine (MCT) | EU (1970) |
|
Monophosphoryl Lipid A (MPLA) | EU (1999) |
|
CpG-Oligodesoxy- nucleotides | No |
|
Nanoparticles: lipophilic liposomes, virus-like particles (VLPs) and other particles from synthetic and natural polymers | No |
|
5.1. Alum and Calcium Phosphate
5.2. Microcrystalline Tyrosine (MCT)
5.3. Toll-like Receptors (TLRs)
5.4. Liposomes and Virus-like Particles (VLPs)
6. Modified Allergens (Table 4)
Modified Allergens | Advantages | Drawbacks |
---|---|---|
| Reduced allergenicity, improved safety profiles, shorter up-dosing phase | Limited efficacy data compared to conventional allergen extracts |
| Personalized AIT, almost unlimited supply, may improve safety and efficacy | Limited efficacy and safety advantages compared to conventional extracts, reported late-phase adverse allergic reactions |
| Retained T-cell epitope stimulation, reduced IgE binding, may improve safety and efficacy | Potential for late-phase adverse responses, similar side effects to SCIT, failure to demonstrate clinical efficacy in phase 3 trials |
| Induce protective humoral antibody responses without stimulating IgE production, demonstrated increases in blocking IgG1 and IgG4 antibodies in phase 2 trial | Limited clinical data, did not reach statistical significance in primary analysis of combined seasonal symptom medication scores |
| Induce TH1 and Treg cell responses while downregulating TH2 cell responses in preclinical studies | Concern of theoretical risks of plasmid DNA integration into the human genome and development of anti-DNA antibodies, failure to demonstrate clinical efficacy in phase 3 trials |
Passive immunotherapy (monoclonal antibodies) | Protection against nasal allergen challenge for almost 3 months after 1 dose injection | No long-term clinical efficacy shown |
AIT combined with biologics | Enhanced efficacy and safety, potential for long-term allergen tolerance | High cost, further research needed to evaluate long-term benefits |
6.1. Allergoids
6.2. Recombinant Allergens
6.3. T-Cell Peptides
6.4. B-Cell Peptides
6.5. DNA-Based Vaccine
7. Passive Immunotherapy
8. AIT Combination with Biologics
9. Conclusions
- ♦
- Traditional AIT: SCIT and SLIT continue to be the primary options for AIT, offering long-term symptom relief and the potential to prevent progression to asthma;
- ♦
- Novel Approaches: While modified allergens combined with novel adjuvants have shown promise in preclinical and early phase clinical trials, their superiority over traditional AIT has not been definitively established;
- ♦
- Personalized Immunotherapy: The development of personalized allergen immunotherapy based on individual sensitization profiles and the identification of specific epitopes, recombinant allergen, offers potential for improved efficacy and safety;
- ♦
- Combination Therapies: Combining AIT with biologics may enhance safety, treatment outcomes and address specific challenges associated with AIT;
- ♦
- Passive Immunotherapy: Recent studies suggest that passive immunotherapy using monoclonal antibodies may offer a viable option for short-term protection against allergic symptoms.
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AIT | allergen immunotherapy |
APC | antigen-presenting cell |
AR | allergic rhinitis |
Breg | B regulatory cell |
CpG | Cytosine-phosphodiester-guanine |
DC | dendritic cell |
DCreg | dendritic cell-derived regulatory cell |
EPIT | epicutaneous immunotherapy |
HCP | health care personnel |
HDM | house dust mite |
Ig | Immunoglobulin |
IDIT | Intradermal Immunotherapy |
IL | interleukin |
ILC2 | type 2 innate lymphoid cell |
ILCreg | innate lymphoid cell-derived regulatory cell |
ILIT | Intralymphatic immunotherapy |
LAMP1 | lysosomal-associated membrane protein 1 |
MCT | microcrystalline tyrosine |
MPLA | Monophosphoryl lipid A |
ODN | oligodeoxynucleotide |
pDC | plasmacytoid dendritic cell |
SCIT | subcutaneous immunotherapy |
SLIT | sublingual immunotherapy |
Tfh | T-helper cell |
Tfr | T follicular regulatory cell |
TGF | transforming growth factor |
TH1 | T-helper 1 cell |
TH2 | T-helper 2 cell |
TLR | Toll-like receptor |
Treg | T regulatory cells |
TSLP | thymic stromal lymphopoietin |
VLP | virus-like particle |
References
- Gutermuth, J.; Grosber, M.; Pfaar, O.; Bergmann, K.C.; Ring, J. 111 years of allergen-immunotherapy: A long and successful history of the only available disease-modifier in allergic diseases. Allergol. Select 2022, 6, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.R.; Shamji, M.H. Allergen immunotherapy: Past, present and future. Nat. Rev. Immunol. 2023, 23, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Noon, L. Prophylactic inoculation against hay fever (historical document). Ann. Allergy 1955, 13, 713–716. [Google Scholar] [PubMed]
- Frankland, A.W.; Augustin, R. Prophylaxis of summer hay-fever and asthma: A controlled trial comparing crude grass-pollen extracts with the isolated main protein component. Lancet 1954, 266, 1055–1057. [Google Scholar] [CrossRef] [PubMed]
- Lowell, F.C.; Franklin, W. A double-blind study of the effectiveness and specificity of injection therapy in ragweed hay fever. N. Engl. J. Med. 1965, 273, 675–679. [Google Scholar] [CrossRef]
- Norman, P.S.; Lichtenstein, L.M. The clinical and immunologic specificity of immunotherapy. J. Allergy Clin. Immunol. 1978, 61, 370–377. [Google Scholar] [CrossRef]
- Hunt, K.J.; Valentine, M.D.; Sobotka, A.K.; Benton, A.W.; Amodio, F.J.; Lichtenstein, L.M. A controlled trial of immunotherapy in insect hypersensitivity. N. Engl. J. Med. 1978, 299, 157–161. [Google Scholar] [CrossRef]
- Cox, L.; Nelson, H.; Lockey, R.; Calabria, C.; Chacko, T.; Finegold, I.; Nelson, M.; Weber, R.; Bernstein, D.I.; Blessing-Moore, J.; et al. Allergen immunotherapy: A practice parameter third update. J. Allergy Clin. Immunol. 2011, 127, S1–S55. [Google Scholar] [CrossRef]
- Agache, I.; Lau, S.; Akdis, C.A.; Smolinska, S.; Bonini, M.; Cavkaytar, O.; Flood, B.; Gajdanowicz, P.; Izuhara, K.; Kalayci, O.; et al. EAACI Guidelines on Allergen Immunotherapy: House dust mite-driven allergic asthma. Allergy 2019, 74, 855–873. [Google Scholar] [CrossRef]
- Roberts, G.; Pfaar, O.; Akdis, C.A.; Ansotegui, I.J.; Durham, S.R.; Gerth van Wijk, R.; Halken, S.; Larenas-Linnemann, D.; Pawankar, R.; Pitsios, C.; et al. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinoconjunctivitis. Allergy 2018, 73, 765–798. [Google Scholar] [CrossRef]
- Arshad, H.; Lack, G.; Durham, S.R.; Penagos, M.; Larenas-Linnemann, D.; Halken, S. Prevention Is Better than Cure: Impact of Allergen Immunotherapy on the Progression of Airway Disease. J. Allergy Clin. Immunol. Pract. 2024, 12, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Larenas-Linnemann, D. Long-term adherence strategies for allergen immunotherapy. Allergy Asthma Proc. 2022, 43, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Bonertz, A.; Roberts, G.C.; Hoefnagel, M.; Timon, M.; Slater, J.E.; Rabin, R.L.; Bridgewater, J.; Pini, C.; Pfaar, O.; Akdis, C.; et al. Challenges in the implementation of EAACI guidelines on allergen immunotherapy: A global perspective on the regulation of allergen products. Allergy 2018, 73, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Pavon-Romero, G.F.; Parra-Vargas, M.I.; Ramirez-Jimenez, F.; Melgoza-Ruiz, E.; Serrano-Perez, N.H.; Teran, L.M. Allergen Immunotherapy: Current and Future Trends. Cells 2022, 11, 212. [Google Scholar] [CrossRef] [PubMed]
- Zemelka-Wiacek, M.; Agache, I.; Akdis, C.A.; Akdis, M.; Casale, T.B.; Dramburg, S.; Jahnz-Rozyk, K.; Kosowska, A.; Matricardi, P.M.; Pfaar, O.; et al. Hot topics in allergen immunotherapy, 2023: Current status and future perspective. Allergy 2024, 79, 823–842. [Google Scholar] [CrossRef]
- Pfaar, O.; Portnoy, J.; Nolte, H.; Chaker, A.M.; Luna-Pech, J.A.; Patterson, A.; Pandya, A.; Larenas-Linnemann, D. Future Directions of Allergen Immunotherapy for Allergic Rhinitis: Experts’ Perspective. J. Allergy Clin. Immunol. Pract. 2024, 12, 32–44. [Google Scholar] [CrossRef]
- Gunawardana, N.C.; Durham, S.R. New approaches to allergen immunotherapy. Ann. Allergy Asthma Immunol. 2018, 121, 293–305. [Google Scholar] [CrossRef]
- Sosic, L.; Paolucci, M.; Flory, S.; Jebbawi, F.; Kundig, T.M.; Johansen, P. Allergen immunotherapy: Progress and future outlook. Expert. Rev. Clin. Immunol. 2023, 19, 745–769. [Google Scholar] [CrossRef]
- Licona-Limon, P.; Kim, L.K.; Palm, N.W.; Flavell, R.A. TH2, allergy and group 2 innate lymphoid cells. Nat. Immunol. 2013, 14, 536–542. [Google Scholar] [CrossRef]
- Rondon, C.; Campo, P.; Togias, A.; Fokkens, W.J.; Durham, S.R.; Powe, D.G.; Mullol, J.; Blanca, M. Local allergic rhinitis: Concept, pathophysiology, and management. J. Allergy Clin. Immunol. 2012, 129, 1460–1467. [Google Scholar] [CrossRef]
- Rosenwasser, L.J. Current understanding of the pathophysiology of allergic rhinitis. Immunol. Allergy Clin. N. Am. 2011, 31, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Durham, S.R. Mechanisms of allergen immunotherapy for inhaled allergens and predictive biomarkers. J. Allergy Clin. Immunol. 2017, 140, 1485–1498. [Google Scholar] [CrossRef] [PubMed]
- Layhadi, J.A.; Lalioti, A.; Palmer, E.; van Zelm, M.C.; Wambre, E.; Shamji, M.H. Mechanisms and Predictive Biomarkers of Allergen Immunotherapy in the Clinic. J. Allergy Clin. Immunol. Pract. 2024, 12, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Ling, E.M.; Smith, T.; Nguyen, X.D.; Pridgeon, C.; Dallman, M.; Arbery, J.; Carr, V.A.; Robinson, D.S. Relation of CD4+CD25+ regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 2004, 363, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Boonpiyathad, T.; Sozener, Z.C.; Akdis, M.; Akdis, C.A. The role of Treg cell subsets in allergic disease. Asian Pac. J. Allergy Immunol. 2020, 38, 139–149. [Google Scholar] [CrossRef]
- Sharif, H.; Acharya, S.; Dhondalay, G.K.R.; Varricchi, G.; Krasner-Macleod, S.; Laisuan, W.; Switzer, A.; Lenormand, M.; Kashe, E.; Parkin, R.V.; et al. Altered chromatin landscape in circulating T follicular helper and regulatory cells following grass pollen subcutaneous and sublingual immunotherapy. J. Allergy Clin. Immunol. 2021, 147, 663–676. [Google Scholar] [CrossRef]
- Zimmer, A.; Bouley, J.; Le Mignon, M.; Pliquet, E.; Horiot, S.; Turfkruyer, M.; Baron-Bodo, V.; Horak, F.; Nony, E.; Louise, A.; et al. A regulatory dendritic cell signature correlates with the clinical efficacy of allergen-specific sublingual immunotherapy. J. Allergy Clin. Immunol. 2012, 129, 1020–1030. [Google Scholar] [CrossRef]
- Golebski, K.; Layhadi, J.A.; Sahiner, U.; Steveling-Klein, E.H.; Lenormand, M.M.; Li, R.C.Y.; Bal, S.M.; Heesters, B.A.; Vila-Nadal, G.; Hunewald, O.; et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 2021, 54, 291–307.e7. [Google Scholar] [CrossRef]
- Lao-Araya, M.; Steveling, E.; Scadding, G.W.; Durham, S.R.; Shamji, M.H. Seasonal increases in peripheral innate lymphoid type 2 cells are inhibited by subcutaneous grass pollen immunotherapy. J. Allergy Clin. Immunol. 2014, 134, 1193–1195.e4. [Google Scholar] [CrossRef]
- Boonpiyathad, T.; Tantilipikorn, P.; Ruxrungtham, K.; Pradubpongsa, P.; Mitthamsiri, W.; Piedvache, A.; Thantiworasit, P.; Sirivichayakul, S.; Jacquet, A.; Suratannon, N.; et al. IL-10-producing innate lymphoid cells increased in patients with house dust mite allergic rhinitis following immunotherapy. J. Allergy Clin. Immunol. 2021, 147, 1507–1510.e8. [Google Scholar] [CrossRef]
- Bohle, B.; Kinaciyan, T.; Gerstmayr, M.; Radakovics, A.; Jahn-Schmid, B.; Ebner, C. Sublingual immunotherapy induces IL-10-producing T regulatory cells, allergen-specific T-cell tolerance, and immune deviation. J. Allergy Clin. Immunol. 2007, 120, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Gueguen, C.; Bouley, J.; Moussu, H.; Luce, S.; Duchateau, M.; Chamot-Rooke, J.; Pallardy, M.; Lombardi, V.; Nony, E.; Baron-Bodo, V.; et al. Changes in markers associated with dendritic cells driving the differentiation of either TH2 cells or regulatory T cells correlate with clinical benefit during allergen immunotherapy. J. Allergy Clin. Immunol. 2016, 137, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Boonpiyathad, T.; van de Veen, W.; Wirz, O.; Sokolowska, M.; Ruckert, B.; Tan, G.; Sangasapaviliya, A.; Pradubpongsa, P.; Fuengthong, R.; Thantiworasit, P.; et al. Role of Der p 1-specific B cells in immune tolerance during 2 years of house dust mite-specific immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 1077–1086.e10. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Larson, D.; Eifan, A.; Scadding, G.W.; Qin, T.; Lawson, K.; Sever, M.L.; Macfarlane, E.; Layhadi, J.A.; Wurtzen, P.A.; et al. Differential induction of allergen-specific IgA responses following timothy grass subcutaneous and sublingual immunotherapy. J. Allergy Clin. Immunol. 2021, 148, 1061–1071.e11. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Kappen, J.; Abubakar-Waziri, H.; Zhang, J.; Steveling, E.; Watchman, S.; Kouser, L.; Eifan, A.; Switzer, A.; Varricchi, G.; et al. Nasal allergen-neutralizing IgG(4) antibodies block IgE-mediated responses: Novel biomarker of subcutaneous grass pollen immunotherapy. J. Allergy Clin. Immunol. 2019, 143, 1067–1076. [Google Scholar] [CrossRef]
- Scadding, G.W.; Calderon, M.A.; Shamji, M.H.; Eifan, A.O.; Penagos, M.; Dumitru, F.; Sever, M.L.; Bahnson, H.T.; Lawson, K.; Harris, K.M.; et al. Effect of 2 Years of Treatment With Sublingual Grass Pollen Immunotherapy on Nasal Response to Allergen Challenge at 3 Years Among Patients With Moderate to Severe Seasonal Allergic Rhinitis: The GRASS Randomized Clinical Trial. JAMA 2017, 317, 615–625. [Google Scholar] [CrossRef]
- Boonpiyathad, T.; Lao-Araya, M.; Chiewchalermsri, C.; Sangkanjanavanich, S.; Morita, H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? Front. Allergy 2021, 2, 747323. [Google Scholar] [CrossRef]
- Calderon, M.A.; Vidal, C.; Rodriguez Del Rio, P.; Just, J.; Pfaar, O.; Tabar, A.I.; Sanchez-Machin, I.; Bubel, P.; Borja, J.; Eberle, P.; et al. European Survey on Adverse Systemic Reactions in Allergen Immunotherapy (EASSI): A real-life clinical assessment. Allergy 2017, 72, 462–472. [Google Scholar] [CrossRef]
- Asllani, J.; Mitsias, D.; Konstantinou, G.; Priftanji, A.; Hoxha, M.; Sinani, G.; Christoff, G.; Zlatko, D.; Makris, M.; Aggelidis, X.; et al. The Allergen Immunotherapy Adverse Events Registry: Setup & methodology of a European Academy of Allergy and Clinical Immunology taskforce project. Clin. Transl. Allergy 2023, 13, e12266. [Google Scholar] [CrossRef]
- Bernstein, D.I.; Epstein, T.E.G. Safety of allergen immunotherapy in North America from 2008-2017: Lessons learned from the ACAAI/AAAAI National Surveillance Study of adverse reactions to allergen immunotherapy. Allergy Asthma Proc. 2020, 41, 108–111. [Google Scholar] [CrossRef]
- Dhami, S.; Nurmatov, U.; Arasi, S.; Khan, T.; Asaria, M.; Zaman, H.; Agarwal, A.; Netuveli, G.; Roberts, G.; Pfaar, O.; et al. Allergen immunotherapy for allergic rhinoconjunctivitis: A systematic review and meta-analysis. Allergy 2017, 72, 1597–1631. [Google Scholar] [CrossRef] [PubMed]
- Canonica, G.W.; Baena-Cagnani, C.E.; Bousquet, J.; Bousquet, P.J.; Lockey, R.F.; Malling, H.J.; Passalacqua, G.; Potter, P.; Valovirta, E. Recommendations for standardization of clinical trials with Allergen Specific Immunotherapy for respiratory allergy. A statement of a World Allergy Organization (WAO) taskforce. Allergy 2007, 62, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Durham, S.R.; Penagos, M. Sublingual or subcutaneous immunotherapy for allergic rhinitis? J. Allergy Clin. Immunol. 2016, 137, 339–349.e0. [Google Scholar] [CrossRef] [PubMed]
- Penagos, M.; Durham, S.R. Allergen immunotherapy for long-term tolerance and prevention. J. Allergy Clin. Immunol. 2022, 149, 802–811. [Google Scholar] [CrossRef]
- Conroy, E.R.; Banzon, T.M.; Simoneau, T.; Phipatanakul, W.; van Boven, J.F.M.; Larenas-Linnemann, D. An Overview of Adherence-What It Is and Why It Is Important. J. Allergy Clin. Immunol. Pract. 2024; in press. [Google Scholar] [CrossRef]
- Kulalert, P.; Phinyo, P.; Lao-Araya, M. Efficacy and safety of house dust mite sublingual immunotherapy tablets in allergic rhinitis: A systematic review and meta-analysis. World Allergy Organ. J. 2022, 15, 100691. [Google Scholar] [CrossRef]
- Bergmann, K.C.; Demoly, P.; Worm, M.; Fokkens, W.J.; Carrillo, T.; Tabar, A.I.; Nguyen, H.; Montagut, A.; Zeldin, R.K. Efficacy and safety of sublingual tablets of house dust mite allergen extracts in adults with allergic rhinitis. J. Allergy Clin. Immunol. 2014, 133, 1608–1614.e6. [Google Scholar] [CrossRef]
- Demoly, P.; Corren, J.; Creticos, P.; De Blay, F.; Gevaert, P.; Hellings, P.; Kowal, K.; Le Gall, M.; Nenasheva, N.; Passalacqua, G.; et al. A 300 IR sublingual tablet is an effective, safe treatment for house dust mite-induced allergic rhinitis: An international, double-blind, placebo-controlled, randomized phase III clinical trial. J. Allergy Clin. Immunol. 2021, 147, 1020–1030.e10. [Google Scholar] [CrossRef]
- Durham, S.R.; Emminger, W.; Kapp, A.; de Monchy, J.G.; Rak, S.; Scadding, G.K.; Wurtzen, P.A.; Andersen, J.S.; Tholstrup, B.; Riis, B.; et al. SQ-standardized sublingual grass immunotherapy: Confirmation of disease modification 2 years after 3 years of treatment in a randomized trial. J. Allergy Clin. Immunol. 2012, 129, 717–725.e5. [Google Scholar] [CrossRef]
- Creticos, P.S.; Maloney, J.; Bernstein, D.I.; Casale, T.; Kaur, A.; Fisher, R.; Liu, N.; Murphy, K.; Nekam, K.; Nolte, H. Randomized controlled trial of a ragweed allergy immunotherapy tablet in North American and European adults. J. Allergy Clin. Immunol. 2013, 131, 1342–1349e6. [Google Scholar] [CrossRef]
- Yonekura, S.; Gotoh, M.; Kaneko, S.; Maekawa, Y.; Okubo, K.; Okamoto, Y. Disease-Modifying Effect of Japanese Cedar Pollen Sublingual Immunotherapy Tablets. J. Allergy Clin. Immunol. Pract. 2021, 9, 4103–4116.e4. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Okubo, K.; Yonekura, S.; Hashiguchi, K.; Goto, M.; Otsuka, T.; Murata, T.; Nakao, Y.; Kanazawa, C.; Nagakura, H.; et al. Efficacy and safety of sublingual immunotherapy for two seasons in patients with Japanese cedar pollinosis. Int. Arch. Allergy Immunol. 2015, 166, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Virchow, J.C.; Backer, V.; Kuna, P.; Prieto, L.; Nolte, H.; Villesen, H.H.; Ljorring, C.; Riis, B.; de Blay, F. Efficacy of a House Dust Mite Sublingual Allergen Immunotherapy Tablet in Adults With Allergic Asthma: A Randomized Clinical Trial. JAMA 2016, 315, 1715–1725. [Google Scholar] [CrossRef] [PubMed]
- Mosbech, H.; Deckelmann, R.; de Blay, F.; Pastorello, E.A.; Trebas-Pietras, E.; Andres, L.P.; Malcus, I.; Ljorring, C.; Canonica, G.W. Standardized quality (SQ) house dust mite sublingual immunotherapy tablet (ALK) reduces inhaled corticosteroid use while maintaining asthma control: A randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2014, 134, 568–575.e7. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.; Jaeger, S.; Worm, M.; Melac, M.; Didier, A. Implementation of pre-seasonal sublingual immunotherapy with a five-grass pollen tablet during optimal dosage assessment. Clin. Exp. Allergy 2009, 39, 394–400. [Google Scholar] [CrossRef]
- Greenhawt, M.; Oppenheimer, J.; Nelson, M.; Nelson, H.; Lockey, R.; Lieberman, P.; Nowak-Wegrzyn, A.; Peters, A.; Collins, C.; Bernstein, D.I.; et al. Sublingual immunotherapy: A focused allergen immunotherapy practice parameter update. Ann. Allergy Asthma Immunol. 2017, 118, 276–282.e2. [Google Scholar] [CrossRef]
- Lao-Araya, M.; Sompornrattanaphan, M.; Kanjanawasee, D.; Tantilipikorn, P.; Allergy Asthma and Immunology Association of Thailand (AAIAT) interesting group on immunotherapy. Allergen immunotherapy for respiratory allergies in clinical practice: A comprehensive review. Asian Pac. J. Allergy Immunol. 2022, 40, 283–294. [Google Scholar] [CrossRef]
- Durham, S.R.; Creticos, P.S.; Nelson, H.S.; Li, Z.; Kaur, A.; Meltzer, E.O.; Nolte, H. Treatment effect of sublingual immunotherapy tablets and pharmacotherapies for seasonal and perennial allergic rhinitis: Pooled analyses. J. Allergy Clin. Immunol. 2016, 138, 1081–1088.e4. [Google Scholar] [CrossRef]
- Kennedy, J.L.; Robinson, D.; Christophel, J.; Borish, L.; Payne, S. Decision-making analysis for allergen immunotherapy versus nasal steroids in the treatment of nasal steroid-responsive allergic rhinitis. Am. J. Rhinol. Allergy 2014, 28, 59–64. [Google Scholar] [CrossRef]
- Settipane, R.A.; Bukstein, D.A. Allergen immunotherapy and shared decision-making. Allergy Asthma Proc. 2022, 43, 350–355. [Google Scholar] [CrossRef]
- Senti, G.; Prinz Vavricka, B.M.; Erdmann, I.; Diaz, M.I.; Markus, R.; McCormack, S.J.; Simard, J.J.; Wuthrich, B.; Crameri, R.; Graf, N.; et al. Intralymphatic allergen administration renders specific immunotherapy faster and safer: A randomized controlled trial. Proc. Natl. Acad. Sci. USA 2008, 105, 17908–17912. [Google Scholar] [CrossRef]
- Senti, G.; Crameri, R.; Kuster, D.; Johansen, P.; Martinez-Gomez, J.M.; Graf, N.; Steiner, M.; Hothorn, L.A.; Gronlund, H.; Tivig, C.; et al. Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. J. Allergy Clin. Immunol. 2012, 129, 1290–1296. [Google Scholar] [CrossRef] [PubMed]
- Chabot, A.; Senti, G.; Erdmann, I.; Prinz, B.M.; Wuthrich, B.; Sosic, L.; Kundig, T.M.; Johansen, P. Intralymphatic Immunotherapy (ILIT) With Bee Venom Allergens: A Clinical Proof-of-Concept Study and the Very First ILIT in Humans. Front. Allergy 2022, 3, 832010. [Google Scholar] [CrossRef] [PubMed]
- Senti, G.; Freiburghaus, A.U.; Larenas-Linnemann, D.; Hoffmann, H.J.; Patterson, A.M.; Klimek, L.; Di Bona, D.; Pfaar, O.; Ahlbeck, L.; Akdis, M.; et al. Intralymphatic Immunotherapy: Update and Unmet Needs. Int. Arch. Allergy Immunol. 2019, 178, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Konradsen, J.R.; Grundstrom, J.; Hellkvist, L.; Tran, T.A.T.; Andersson, N.; Gafvelin, G.; Kiewiet, M.B.G.; Hamsten, C.; Tang, J.; Parkin, R.V.; et al. Intralymphatic immunotherapy in pollen-allergic young adults with rhinoconjunctivitis and mild asthma: A randomized trial. J. Allergy Clin. Immunol. 2020, 145, 1005–1007.e7. [Google Scholar] [CrossRef] [PubMed]
- Skaarup, S.H.; Schmid, J.M.; Skjold, T.; Graumann, O.; Hoffmann, H.J. Intralymphatic immunotherapy improves grass pollen allergic rhinoconjunctivitis: A 3-year randomized placebo-controlled trial. J. Allergy Clin. Immunol. 2021, 147, 1011–1019. [Google Scholar] [CrossRef]
- Hoang, M.P.; Seresirikachorn, K.; Chitsuthipakorn, W.; Snidvongs, K. Intralymphatic immunotherapy for allergic rhinoconjunctivitis: A systematic review and meta-analysis. Rhinology 2021, 59, 236–244. [Google Scholar] [CrossRef]
- Senti, G.; von Moos, S.; Kundig, T.M. Epicutaneous allergen administration: Is this the future of allergen-specific immunotherapy? Allergy 2011, 66, 798–809. [Google Scholar] [CrossRef]
- Senti, G.; Graf, N.; Haug, S.; Ruedi, N.; von Moos, S.; Sonderegger, T.; Johansen, P.; Kundig, T.M. Epicutaneous allergen administration as a novel method of allergen-specific immunotherapy. J. Allergy Clin. Immunol. 2009, 124, 997–1002. [Google Scholar] [CrossRef]
- Senti, G.; von Moos, S.; Tay, F.; Graf, N.; Johansen, P.; Kundig, T.M. Determinants of efficacy and safety in epicutaneous allergen immunotherapy: Summary of three clinical trials. Allergy 2015, 70, 707–710. [Google Scholar] [CrossRef]
- Senti, G.; Kundig, T.M. Novel Delivery Routes for Allergy Immunotherapy: Intralymphatic, Epicutaneous, and Intradermal. Immunol. Allergy Clin. N. Am. 2016, 36, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Rotiroti, G.; Shamji, M.; Durham, S.R.; Till, S.J. Repeated low-dose intradermal allergen injection suppresses allergen-induced cutaneous late responses. J. Allergy Clin. Immunol. 2012, 130, 918–924.e1. [Google Scholar] [CrossRef] [PubMed]
- Slovick, A.; Douiri, A.; Muir, R.; Guerra, A.; Tsioulos, K.; Hay, E.; Lam, E.P.S.; Kelly, J.; Peacock, J.L.; Ying, S.; et al. Intradermal grass pollen immunotherapy increases T(H)2 and IgE responses and worsens respiratory allergic symptoms. J. Allergy Clin. Immunol. 2017, 139, 1830–1839.e13. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Zimmermann, J.; Schulke, S. Novel adjuvants in allergen-specific immunotherapy: Where do we stand? Front. Immunol. 2024, 15, 1348305. [Google Scholar] [CrossRef] [PubMed]
- Norman, P.S.; Lichtenstein, L.M. Comparisons of alum-precipitated and unprecipitated aqueous ragweed pollen extracts in the treatment of hay fever. J. Allergy Clin. Immunol. 1978, 61, 384–389. [Google Scholar] [CrossRef]
- Principi, N.; Esposito, S. Aluminum in vaccines: Does it create a safety problem? Vaccine 2018, 36, 5825–5831. [Google Scholar] [CrossRef]
- Baldrick, P.; Richardson, D.; Wheeler, A.W. Review of L-tyrosine confirming its safe human use as an adjuvant. J. Appl. Toxicol. 2002, 22, 333–344. [Google Scholar] [CrossRef]
- Wheeler, A.W.; Moran, D.M.; Robins, B.E.; Driscoll, A. l-Tyrosine as an immunological adjuvant. Int. Arch. Allergy Appl. Immunol. 1982, 69, 113–119. [Google Scholar] [CrossRef]
- Becker, S.; Zieglmayer, P.; Canto, G.; Fassio, F.; Yong, P.; Acikel, C.; Raskopf, E.; Steveling-Klein, E.H.; Allekotte, S.; Mosges, R. A meta-analysis on allergen-specific immunotherapy using MCT((R)) (MicroCrystalline Tyrosine)-adsorbed allergoids in pollen allergic patients suffering from allergic rhinoconjunctivitis. Clin. Transl. Allergy 2021, 11, e12037. [Google Scholar] [CrossRef]
- Mothes, N.; Heinzkill, M.; Drachenberg, K.J.; Sperr, W.R.; Krauth, M.T.; Majlesi, Y.; Semper, H.; Valent, P.; Niederberger, V.; Kraft, D.; et al. Allergen-specific immunotherapy with a monophosphoryl lipid A-adjuvanted vaccine: Reduced seasonally boosted immunoglobulin E production and inhibition of basophil histamine release by therapy-induced blocking antibodies. Clin. Exp. Allergy 2003, 33, 1198–1208. [Google Scholar] [CrossRef]
- Drachenberg, K.J.; Wheeler, A.W.; Stuebner, P.; Horak, F. A well-tolerated grass pollen-specific allergy vaccine containing a novel adjuvant, monophosphoryl lipid A, reduces allergic symptoms after only four preseasonal injections. Allergy 2001, 56, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.J.; Heath, M.D.; Hewings, S.J.; Skinner, M.A. The adsorption of allergoids and 3-O-desacyl-4′-monophosphoryl lipid A (MPL(R)) to microcrystalline tyrosine (MCT) in formulations for use in allergy immunotherapy. J. Inorg. Biochem. 2015, 152, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Jutek, M.; Bachert, C. Ultra-short-course seasonal allergy vaccine (Pollinex Quattro): Viewpoints. Drugs 2006, 66, 939–940. [Google Scholar] [CrossRef] [PubMed]
- Rosewich, M.; Lee, D.; Zielen, S. Pollinex Quattro: An innovative four injections immunotherapy in allergic rhinitis. Hum. Vaccin. Immunother. 2013, 9, 1523–1531. [Google Scholar] [CrossRef]
- Worm, M.; Higenbottam, T.; Pfaar, O.; Mosges, R.; Aberer, W.; Gunawardena, K.; Wessiepe, D.; Lee, D.; Kramer, M.F.; Skinner, M.; et al. Randomized controlled trials define shape of dose response for Pollinex Quattro Birch allergoid immunotherapy. Allergy 2018, 73, 1812–1822. [Google Scholar] [CrossRef]
- Creticos, P.S.; Schroeder, J.T.; Hamilton, R.G.; Balcer-Whaley, S.L.; Khattignavong, A.P.; Lindblad, R.; Li, H.; Coffman, R.; Seyfert, V.; Eiden, J.J.; et al. Immunotherapy with a ragweed-toll-like receptor 9 agonist vaccine for allergic rhinitis. N. Engl. J. Med. 2006, 355, 1445–1455. [Google Scholar] [CrossRef]
- Kawakita, A.; Shirasaki, H.; Yasutomi, M.; Tokuriki, S.; Mayumi, M.; Naiki, H.; Ohshima, Y. Immunotherapy with oligomannose-coated liposomes ameliorates allergic symptoms in a murine food allergy model. Allergy 2012, 67, 371–379. [Google Scholar] [CrossRef]
- Beeh, K.M.; Kanniess, F.; Wagner, F.; Schilder, C.; Naudts, I.; Hammann-Haenni, A.; Willers, J.; Stocker, H.; Mueller, P.; Bachmann, M.F.; et al. The novel TLR-9 agonist QbG10 shows clinical efficacy in persistent allergic asthma. J. Allergy Clin. Immunol. 2013, 131, 866–874. [Google Scholar] [CrossRef]
- Senti, G.; Johansen, P.; Haug, S.; Bull, C.; Gottschaller, C.; Muller, P.; Pfister, T.; Maurer, P.; Bachmann, M.F.; Graf, N.; et al. Use of A-type CpG oligodeoxynucleotides as an adjuvant in allergen-specific immunotherapy in humans: A phase I/IIa clinical trial. Clin. Exp. Allergy 2009, 39, 562–570. [Google Scholar] [CrossRef]
- Klimek, L.; Willers, J.; Hammann-Haenni, A.; Pfaar, O.; Stocker, H.; Mueller, P.; Renner, W.A.; Bachmann, M.F. Assessment of clinical efficacy of CYT003-QbG10 in patients with allergic rhinoconjunctivitis: A phase IIb study. Clin. Exp. Allergy 2011, 41, 1305–1312. [Google Scholar] [CrossRef]
- Casale, T.B.; Cole, J.; Beck, E.; Vogelmeier, C.F.; Willers, J.; Lassen, C.; Hammann-Haenni, A.; Trokan, L.; Saudan, P.; Wechsler, M.E. CYT003, a TLR9 agonist, in persistent allergic asthma—a randomized placebo-controlled Phase 2b study. Allergy 2015, 70, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Marsh, D.G.; Lichtenstein, L.M.; Campbell, D.H. Studies on ”allergoids” prepared from naturally occurring allergens. I. Assay of allergenicity and antigenicity of formalinized rye group I component. Immunology 1970, 18, 705–722. [Google Scholar] [PubMed]
- Norman, P.S.; Lichtenstein, L.M.; Kagey-Sobotka, A.; Marsh, D.G. Controlled evaluation of allergoid in the immunotherapy of ragweed hay fever. J. Allergy Clin. Immunol. 1982, 70, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Braquemond, P.; Feinberg, J.; Guerin, B.; Maasch, H.; Michel, F.B. Specific IgE response before and after rush immunotherapy with a standardized allergen or allergoid in grass pollen allergy. Ann. Allergy 1986, 56, 456–459. [Google Scholar]
- Bozek, A.; Cudak, A.; Walter Canonica, G. Long-term efficacy of injected allergen immunotherapy for treatment of grass pollen allergy in elderly patients with allergic rhinitis. Allergy Asthma Proc. 2020, 41, 271–277. [Google Scholar] [CrossRef]
- Bousquet, J.; Hejjaoui, A.; Soussana, M.; Michel, F.B. Double-blind, placebo-controlled immunotherapy with mixed grass-pollen allergoids. IV. Comparison of the safety and efficacy of two dosages of a high-molecular-weight allergoid. J. Allergy Clin. Immunol. 1990, 85, 490–497. [Google Scholar] [CrossRef]
- Worm, M.; Rak, S.; Samolinski, B.; Antila, J.; Hoiby, A.S.; Kruse, B.; Lipiec, A.; Rudert, M.; Valovirta, E. Efficacy and safety of birch pollen allergoid subcutaneous immunotherapy: A 2-year double-blind, placebo-controlled, randomized trial plus 1-year open-label extension. Clin. Exp. Allergy 2019, 49, 516–525. [Google Scholar] [CrossRef]
- Lund, L.; Henmar, H.; Wurtzen, P.A.; Lund, G.; Hjortskov, N.; Larsen, J.N. Comparison of allergenicity and immunogenicity of an intact allergen vaccine and commercially available allergoid products for birch pollen immunotherapy. Clin. Exp. Allergy 2007, 37, 564–571. [Google Scholar] [CrossRef]
- Klimek, L.; Dormann, D.; Jarman, E.R.; Cromwell, O.; Riechelmann, H.; Reske-Kunz, A.B. Short-term preseasonal birch pollen allergoid immunotherapy influences symptoms, specific nasal provocation and cytokine levels in nasal secretions, but not peripheral T-cell responses, in patients with allergic rhinitis. Clin. Exp. Allergy 1999, 29, 1326–1335. [Google Scholar] [CrossRef]
- Klimek, L.; Fox, G.C.; Thum-Oltmer, S. SCIT with a high-dose house dust mite allergoid is well tolerated: Safety data from pooled clinical trials and more than 10 years of daily practice analyzed in different subgroups. Allergo J. Int. 2018, 27, 131–139. [Google Scholar] [CrossRef]
- Jutel, M.; Bruggenjurgen, B.; Richter, H.; Vogelberg, C. Real-world evidence of subcutaneous allergoid immunotherapy in house dust mite-induced allergic rhinitis and asthma. Allergy 2020, 75, 2050–2058. [Google Scholar] [CrossRef] [PubMed]
- Passalacqua, G.; Albano, M.; Fregonese, L.; Riccio, A.; Pronzato, C.; Mela, G.S.; Canonica, G.W. Randomised controlled trial of local allergoid immunotherapy on allergic inflammation in mite-induced rhinoconjunctivitis. Lancet 1998, 351, 629–632. [Google Scholar] [CrossRef] [PubMed]
- Gallego, M.T.; Iraola, V.; Himly, M.; Robinson, D.S.; Badiola, C.; Garcia-Robaina, J.C.; Briza, P.; Carnes, J. Depigmented and polymerised house dust mite allergoid: Allergen content, induction of IgG4 and clinical response. Int. Arch. Allergy Immunol. 2010, 153, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Di Gioacchino, M.; Cavallucci, E.; Ballone, E.; Cervone, M.; Di Rocco, P.; Piunti, E.; Filardo, G.S.; Turi, M.C.; Mangifesta, R.; Quecchia, C.; et al. Dose-dependent clinical and immunological efficacy of sublingual immunotherapy with mite monomeric allergoid. Int. J. Immunopathol. Pharmacol. 2012, 25, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, C.J.; Kettner, J.; Doemer, C.; Cromwell, O.; Narkus, A.; Study, G. Efficacy and safety of preseasonal-specific immunotherapy with an aluminium-adsorbed six-grass pollen allergoid. Allergy 2005, 60, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, F.; Foglia, C.; Bruno, M.E.; Falagiani, P. Efficacy, safety and tolerability of sublingual monomeric allergoid in tablets given without up-dosing to pediatric patients with allergic rhinitis and/or asthma due to grass pollen. Eur. Ann. Allergy Clin. Immunol. 2009, 41, 177–180. [Google Scholar]
- Mosges, R.; Ritter, B.; Kayoko, G.; Allekotte, S. Carbamylated monomeric allergoids as a therapeutic option for sublingual immunotherapy of dust mite- and grass pollen-induced allergic rhinoconjunctivitis: A systematic review of published trials with a meta-analysis of treatment using Lais(R) tablets. Acta Dermatovenerol. Alp. Pannonica Adriat. 2010, 19, 3–10. [Google Scholar]
- Klimek, L.; Pfaar, O.; Bousquet, J.; Senti, G.; Kundig, T. Allergen immunotherapy in allergic rhinitis: Current use and future trends. Expert. Rev. Clin. Immunol. 2017, 13, 897–906. [Google Scholar] [CrossRef]
- Barber, D.; Diaz-Perales, A.; Escribese, M.M.; Kleine-Tebbe, J.; Matricardi, P.M.; Ollert, M.; Santos, A.F.; Sastre, J. Molecular allergology and its impact in specific allergy diagnosis and therapy. Allergy 2021, 76, 3642–3658. [Google Scholar] [CrossRef]
- Dramburg, S.; Hilger, C.; Santos, A.F.; de Las Vecillas, L.; Aalberse, R.C.; Acevedo, N.; Aglas, L.; Altmann, F.; Arruda, K.L.; Asero, R.; et al. EAACI Molecular Allergology User’s Guide 2.0. Pediatr. Allergy Immunol. 2023, 34 (Suppl. S28), e13854. [Google Scholar] [CrossRef]
- Gonzalez-Perez, R.; Poza-Guedes, P.; Pineda, F.; Sanchez-Machin, I. Advocacy of Precision Allergy Molecular Diagnosis in Decision Making for the Eligibility of Customized Allergen Immunotherapy. Curr. Issues Mol. Biol. 2023, 45, 9976–9984. [Google Scholar] [CrossRef] [PubMed]
- Valenta, R.; Campana, R.; Focke-Tejkl, M.; Niederberger, V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. J. Allergy Clin. Immunol. 2016, 137, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Valenta, R.; Linhart, B.; Swoboda, I.; Niederberger, V. Recombinant allergens for allergen-specific immunotherapy: 10 years anniversary of immunotherapy with recombinant allergens. Allergy 2011, 66, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Jaeger, L.; Suck, R.; Meyer, H.; Fiebig, H.; Cromwell, O. Allergen-specific immunotherapy with recombinant grass pollen allergens. J. Allergy Clin. Immunol. 2005, 116, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Pauli, G.; Larsen, T.H.; Rak, S.; Horak, F.; Pastorello, E.; Valenta, R.; Purohit, A.; Arvidsson, M.; Kavina, A.; Schroeder, J.W.; et al. Efficacy of recombinant birch pollen vaccine for the treatment of birch-allergic rhinoconjunctivitis. J. Allergy Clin. Immunol. 2008, 122, 951–960. [Google Scholar] [CrossRef]
- Larche, M. Immunotherapy with allergen peptides. Allergy Asthma Clin. Immunol. 2007, 3, 53–59. [Google Scholar] [CrossRef]
- Moldaver, D.; Larche, M. Immunotherapy with peptides. Allergy 2011, 66, 784–791. [Google Scholar] [CrossRef]
- Wraith, D.C.; Krishna, M.T. Peptide allergen-specific immunotherapy for allergic airway diseases-State of the art. Clin. Exp. Allergy 2021, 51, 751–769. [Google Scholar] [CrossRef]
- Patel, D.; Couroux, P.; Hickey, P.; Salapatek, A.M.; Laidler, P.; Larche, M.; Hafner, R.P. Fel d 1-derived peptide antigen desensitization shows a persistent treatment effect 1 year after the start of dosing: A randomized, placebo-controlled study. J. Allergy Clin. Immunol. 2013, 131, 103–109.e7. [Google Scholar] [CrossRef]
- Oldfield, W.L.; Larche, M.; Kay, A.B. Effect of T-cell peptides derived from Fel d 1 on allergic reactions and cytokine production in patients sensitive to cats: A randomised controlled trial. Lancet 2002, 360, 47–53. [Google Scholar] [CrossRef]
- Kettner, A.; DellaCorte, G.; de Blay, F.; Jacobsen, L.; Jutel, M.; Worm, M.; Charlon, V.; Simonsen, K.; Reymond, C.; Spertini, F. Benefit of Bet v 1 contiguous overlapping peptide immunotherapy persists during first follow-up season. J. Allergy Clin. Immunol. 2018, 142, 678–680.e7. [Google Scholar] [CrossRef] [PubMed]
- Sharif, H.; Singh, I.; Kouser, L.; Mosges, R.; Bonny, M.A.; Karamani, A.; Parkin, R.V.; Bovy, N.; Kishore, U.; Robb, A.; et al. Immunologic mechanisms of a short-course of Lolium perenne peptide immunotherapy: A randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 2019, 144, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Mosges, R.; Kasche, E.M.; Raskopf, E.; Singh, J.; Sohlich, L.; Astvatsatourov, A.; Shah-Hosseini, K.; Pirotton, S.; Haazen, L.; Durham, S.R.; et al. A randomized, double-blind, placebo-controlled, dose-finding trial with Lolium perenne peptide immunotherapy. Allergy 2018, 73, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, M.; Freidl, R.; Focke-Tejkl, M.; Baranyi, U.; Wekerle, T.; Valenta, R.; Linhart, B. A B Cell Epitope Peptide Derived from the Major Grass Pollen Allergen Phl p 1 Boosts Allergen-Specific Secondary Antibody Responses without Allergen-Specific T Cell Help. J. Immunol. 2017, 198, 1685–1695. [Google Scholar] [CrossRef]
- Niederberger, V.; Neubauer, A.; Gevaert, P.; Zidarn, M.; Worm, M.; Aberer, W.; Malling, H.J.; Pfaar, O.; Klimek, L.; Pfutzner, W.; et al. Safety and efficacy of immunotherapy with the recombinant B-cell epitope-based grass pollen vaccine BM32. J. Allergy Clin. Immunol. 2018, 142, 497–509.e9. [Google Scholar] [CrossRef]
- Rauber, M.M.; Mobs, C.; Campana, R.; Henning, R.; Schulze-Dasbeck, M.; Greene, B.; Focke-Tejkl, M.; Weber, M.; Valenta, R.; Pfutzner, W. Allergen immunotherapy with the hypoallergenic B-cell epitope-based vaccine BM32 modifies IL-10- and IL-5-secreting T cells. Allergy 2020, 75, 450–453. [Google Scholar] [CrossRef]
- Eckl-Dorna, J.; Weber, M.; Stanek, V.; Linhart, B.; Ristl, R.; Waltl, E.E.; Villazala-Merino, S.; Hummel, A.; Focke-Tejkl, M.; Froeschel, R.; et al. Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG(4) response. EBioMedicine 2019, 50, 421–432. [Google Scholar] [CrossRef]
- Su, Y.; Romeu-Bonilla, E.; Anagnostou, A.; Fitz-Patrick, D.; Hearl, W.; Heiland, T. Safety and long-term immunological effects of CryJ2-LAMP plasmid vaccine in Japanese red cedar atopic subjects: A phase I study. Hum. Vaccin. Immunother. 2017, 13, 2804–2813. [Google Scholar] [CrossRef]
- Roesler, E.; Weiss, R.; Weinberger, E.E.; Fruehwirth, A.; Stoecklinger, A.; Mostbock, S.; Ferreira, F.; Thalhamer, J.; Scheiblhofer, S. Immunize and disappear-safety-optimized mRNA vaccination with a panel of 29 allergens. J. Allergy Clin. Immunol. 2009, 124, 1070–1077.e11. [Google Scholar] [CrossRef]
- Cooke, R.A.; Barnard, J.H.; Hebald, S.; Stull, A. Serological Evidence of Immunity with Coexisting Sensitization in a Type of Human Allergy (Hay Fever). J. Exp. Med. 1935, 62, 733–750. [Google Scholar] [CrossRef]
- Orengo, J.M.; Radin, A.R.; Kamat, V.; Badithe, A.; Ben, L.H.; Bennett, B.L.; Zhong, S.; Birchard, D.; Limnander, A.; Rafique, A.; et al. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat. Commun. 2018, 9, 1421. [Google Scholar] [CrossRef] [PubMed]
- Shamji, M.H.; Singh, I.; Layhadi, J.A.; Ito, C.; Karamani, A.; Kouser, L.; Sharif, H.; Tang, J.; Handijiev, S.; Parkin, R.V.; et al. Passive Prophylactic Administration with a Single Dose of Anti-Fel d 1 Monoclonal Antibodies REGN1908-1909 in Cat Allergen-induced Allergic Rhinitis: A Randomized, Double-Blind, Placebo-controlled Clinical Trial. Am. J. Respir. Crit. Care Med. 2021, 204, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Gevaert, P.; De Craemer, J.; De Ruyck, N.; Rottey, S.; de Hoon, J.; Hellings, P.W.; Volckaert, B.; Lesneuck, K.; Orengo, J.M.; Atanasio, A.; et al. Novel antibody cocktail targeting Bet v 1 rapidly and sustainably treats birch allergy symptoms in a phase 1 study. J. Allergy Clin. Immunol. 2022, 149, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, B.; Gunaydin, F.E.; Corren, J.; Senna, G.; Durham, S.R. The combination of allergen immunotherapy and biologics for inhalant allergies: Exploring the synergy. Ann. Allergy Asthma Immunol. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Casale, T.B.; Busse, W.W.; Kline, J.N.; Ballas, Z.K.; Moss, M.H.; Townley, R.G.; Mokhtarani, M.; Seyfert-Margolis, V.; Asare, A.; Bateman, K.; et al. Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J. Allergy Clin. Immunol. 2006, 117, 134–140. [Google Scholar] [CrossRef]
- Dantzer, J.A.; Wood, R.A. The use of omalizumab in allergen immunotherapy. Clin. Exp. Allergy 2018, 48, 232–240. [Google Scholar] [CrossRef]
- De Filippo, M.; Votto, M.; Caminiti, L.; Carella, F.; Castro, G.; Landi, M.; Olcese, R.; Panasiti, I.; Vernich, M.; Barberi, S.; et al. Omalizumab and allergen immunotherapy for respiratory allergies: A mini-review from the Allergen-Immunotherapy Committee of the Italian Society of Pediatric Allergy and Immunology (SIAIP). Allergol. Immunopathol. 2022, 50, 47–52. [Google Scholar] [CrossRef]
- Corren, J.; Saini, S.S.; Gagnon, R.; Moss, M.H.; Sussman, G.; Jacobs, J.; Laws, E.; Chung, E.S.; Constant, T.; Sun, Y.; et al. Short-Term Subcutaneous Allergy Immunotherapy and Dupilumab are Well Tolerated in Allergic Rhinitis: A Randomized Trial. J. Asthma Allergy 2021, 14, 1045–1063. [Google Scholar] [CrossRef]
- Corren, J.; Larson, D.; Altman, M.C.; Segnitz, R.M.; Avila, P.C.; Greenberger, P.A.; Baroody, F.; Moss, M.H.; Nelson, H.; Burbank, A.J.; et al. Effects of combination treatment with tezepelumab and allergen immunotherapy on nasal responses to allergen: A randomized controlled trial. J. Allergy Clin. Immunol. 2023, 151, 192–201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lao-Araya, M. Novel Approaches to Allergen Immunotherapy for Respiratory Allergies. Pharmaceuticals 2024, 17, 1510. https://doi.org/10.3390/ph17111510
Lao-Araya M. Novel Approaches to Allergen Immunotherapy for Respiratory Allergies. Pharmaceuticals. 2024; 17(11):1510. https://doi.org/10.3390/ph17111510
Chicago/Turabian StyleLao-Araya, Mongkol. 2024. "Novel Approaches to Allergen Immunotherapy for Respiratory Allergies" Pharmaceuticals 17, no. 11: 1510. https://doi.org/10.3390/ph17111510
APA StyleLao-Araya, M. (2024). Novel Approaches to Allergen Immunotherapy for Respiratory Allergies. Pharmaceuticals, 17(11), 1510. https://doi.org/10.3390/ph17111510