Innovative Epicardial Bigels Containing Amiodarone Hydrochloride: Pharmacotechnical and Analytical Characterization
Abstract
:1. Introduction
- The development and optimization of patches are time-consuming in comparison to the selected semisolid preparations.
- In the case of bigels, both hydrophilic and lipophilic active ingredients can be incorporated (a broader spectrum of ingredients can be incorporated).
- Bigels are easier to manipulate in comparison to patches, which in some cases are visible and occupy a large volume.
2. Results and Discussion
2.1. Preformulation
2.2. Macroscopic Evaluation and Stability
2.3. Spreadability Capacity
2.4. Rheology Evaluation
2.5. Drug Content Evaluation
2.6. Texture Profile Analysis
2.7. Microbiological Assessment
2.8. The In Vitro AMDR Permeation/Diffusion Test
- The membrane size must be large enough to facilitate the permeation of amiodarone hydrochloride and small enough to not allow for the passing of ingredients that are not of interest.
- The membrane composition (to simulate in vivo conditions).
2.9. Future Directions of This Study
3. Materials and Methods
3.1. Materials
3.2. Preparation Process
3.2.1. Hydrogel Preparation
3.2.2. Oleogel Preparation
3.2.3. Bigel Preparation
3.3. Bigel Quality Evaluation
3.3.1. Macroscopic Examination and Stability
3.3.2. Spreadability
3.3.3. Rheology Study
3.3.4. Drug Assay
3.3.5. Textural Analysis
3.3.6. Microbiological Evaluation
3.3.7. AMDR In Vitro Diffusion Evaluation Through a Synthetic Membrane
- AMDR flux (J): the quantity that permeated through the membrane divided by the membrane surface multiplied by the time duration (µg/cm2 × h) (A = 0.9993 cm2).
- Steady state flux: Jss (slope) calculated by utilizing two different methods that produced the same result. The first one consisted of calculating the slope in 180–240 min intervals, and the second employed the LINEST function from Microsoft Excel in the same time frame.
- The permeability coefficient (Kp (cm2/h)) determined from J and the drug concentration in the donor phase (Cd (15,000 µg)) is as follows:
- Diffusion coefficient (D)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, B.N. Amiodarone: Historical Development and Pharmacologic Profile. Am. Heart J. 1983, 106, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Meyer, B.J.; Amann, F.W. Additional Antianginal Efficacy of Amiodarone in Patients with Limiting Angina Pectoris. Am. Heart J. 1993, 125, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Chow, M.S. Intravenous amiodarone: Pharmacology, Pharmacokinetics, and Clinical use. Ann. Pharmacother. 1996, 30, 637–643. [Google Scholar] [CrossRef]
- Sodeifian, G.; Sajadian, S.A.; Razmimanesh, F. Solubility of an Antiarrhythmic Drug (Amiodarone Hydrochloride) in Supercritical Carbon Dioxide: Experimental and Modeling. Fluid Phase Equilibria 2017, 450, 149–159. [Google Scholar] [CrossRef]
- Samineni, R.; Chimakurthy, J.; Konidala, S. Emerging Role of Biopharmaceutical Classification and Biopharmaceutical Drug Disposition System in Dosage Form Development: A Systematic Review. Turk. J. Pharm. Sci. 2022, 19, 706–713. [Google Scholar] [CrossRef]
- Marraffa, J.M. Amiodarone. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 197–199. [Google Scholar]
- McDonald, M.G.; Au, N.T.; Rettie, A.E. P450-Based Drug-Drug Interactions of Amiodarone and its Metabolites: Diversity of Inhibitory Mechanisms. Drug Metab. Dispos. 2015, 43, 1661–1669. [Google Scholar] [CrossRef]
- Siddoway, L.A. Amiodarone: Guidelines for use and monitoring. Am. Fam. Physician 2003, 68, 2189–2196. [Google Scholar]
- Suero, O.R.; Ali, A.K.; Barron, L.R.; Segar, M.W.; Moon, M.R.; Chatterjee, S. Postoperative Atrial Fibrillation (POAF) after Cardiac Surgery: Clinical Practice Review. J. Thorac. Dis. 2024, 16, 1503–1520. [Google Scholar] [CrossRef]
- Conen, D.; Wang, M.K.; Devereaux, P.J.; Whitlock, R.; McIntyre, W.F.; Healey, J.S.; Yuan, F.; Yusuf, S.; Lamy, A. New-Onset Perioperative Atrial Fibrillation After Coronary Artery Bypass Grafting and Long-Term Risk of Adverse Events: An Analysis From the CORONARY Trial. J. Am. Heart Assoc. 2021, 10, e020426. [Google Scholar] [CrossRef]
- Dobrev, D.; Aguilar, M.; Heijman, J.; Guichard, J.-B.; Nattel, S. Postoperative Atrial Fibrillation: Mechanisms, Manifestations and Management. Nat. Rev. Cardiol. 2019, 16, 417–436. [Google Scholar] [CrossRef]
- Mitchell, L.B.; Exner, D.V.; Wyse, D.G.; Connolly, C.J.; Prystai, G.D.; Bayes, A.J.; Kidd, W.T.; Kieser, T.; Burgess, J.J.; Ferland, A.; et al. Prophylactic Oral Amiodarone for the Prevention of Arrhythmias That Begin Early After Revascularization, Valve Replacement, or Repair: PAPABEAR: A Randomized Controlled Trial. JAMA 2005, 294, 3093–3100. [Google Scholar] [CrossRef] [PubMed]
- Bolderman, R.W.; Rob Hermans, J.J.; Rademakers, L.M.; Jansen, T.S.; Verheule, S.; Van Der Veen, F.H.; Maessen, J.G. Intrapericardial Delivery of Amiodarone and Sotalol: Atrial Transmural Drug Distribution and Electrophysiological Effects. J. Cardiovasc. Pharmacol. 2009, 54, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Marcano, J.; Campos, K.; Rodriguez, V.; Handy, K.; Brewer, M.A.; Cohn, W.E. Intrapericardial Delivery of Amiodarone Rapidly Achieves Therapeutic Levels in the Atrium. Heart Surg. Forum 2013, 16, E279–E286. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Shimamoto, T.; Marui, A.; Saito, N.; Uehara, K.; Minakata, K.; Miwa, S.; Nakajima, N.; Ikeda, T.; Hyon, S.-H.; et al. Topical Application of a Biodegradable Disc with Amiodarone for Atrial Fibrillation. Ann. Thorac. Surg. 2011, 91, 734–739. [Google Scholar] [CrossRef]
- Bolderman, R.W.; Bruin, P.; Hermans, J.J.R.; Boerakker, M.J.; Dias, A.A.; Van Der Veen, F.H.; Maessen, J.G. Atrium-Targeted Drug Delivery through an Amiodarone-Eluting Bilayered Patch. J. Thorac. Cardiovasc. Surg. 2010, 140, 904–910. [Google Scholar] [CrossRef]
- Garcia, J.R.; Campbell, P.F.; Kumar, G.; Langberg, J.J.; Cesar, L.; Deppen, J.N.; Shin, E.Y.; Bhatia, N.K.; Wang, L.; Xu, K.; et al. Minimally Invasive Delivery of Hydrogel-Encapsulated Amiodarone to the Epicardium Reduces Atrial Fibrillation. Circ. Arrhythm. Electrophysiol. 2018, 11, e006408. [Google Scholar] [CrossRef]
- Kanametov, T.N.; Shvartz, V.A.; Oltarzhevskaya, N.D.; Bockeria, O.L. Effect of Epicardial Application of Amiodarone-Releasing Hydrogel on Heart Rate in an Animal Model. Cardiovasc. Diagn. Ther. 2019, 9, 328–336. [Google Scholar] [CrossRef]
- Shvartz, V.; Kanametov, T.; Sokolskaya, M.; Petrosyan, A.; Le, T.; Bockeria, O.; Bockeria, L. Local Use of Hydrogel with Amiodarone in Cardiac Surgery: Experiment and Translation to the Clinic. Gels 2021, 7, 29. [Google Scholar] [CrossRef]
- Bolderman, R.W.; Hermans, J.J.R.; Rademakers, L.M.; De Jong, M.M.J.; Bruin, P.; Dias, A.A.; Van Der Veen, F.H.; Maessen, J.G. Epicardial Application of an Amiodarone-Releasing Hydrogel to Suppress Atrial Tachyarrhythmias. Int. J. Cardiol. 2011, 149, 341–346. [Google Scholar] [CrossRef]
- Feng, X.D.; Wang, X.N.; Yuan, X.H.; Wang, W. Effectiveness of Biatrial Epicardial Application of Amiodarone-Releasing Adhesive Hydrogel to Prevent Postoperative Atrial Fibrillation. J. Thorac. Cardiovasc. Surg. 2014, 148, 939–943. [Google Scholar] [CrossRef]
- Wang, W.; Mei, Y.Q.; Yuan, X.H.; Feng, X.D. Clinical Efficacy of Epicardial Application of Drug-Releasing Hydrogels to Prevent Postoperative Atrial Fibrillation. J. Thorac. Cardiovasc. Surg. 2016, 151, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, D.; Beau, J.; Gottlieb, G.; Teller, D.; Kulik, A. Topical Amiodarone during Cardiac Surgery: Does Epicardial Application of Amiodarone Prevent Postoperative Atrial Fibrillation? J. Thorac. Cardiovasc. Surg. 2017, 154, 886–892. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, L.; Romano, G.L. Gels in Medicine and Surgery: Current Trends and Future Perspectives. Gels 2020, 6, 48. [Google Scholar] [CrossRef]
- Bhuyan, C.; Saha, D.; Rabha, B. A Brief Review on Topical Gels as Drug Delivery System. J. Pharm. Res. Int. 2021, 33, 344–357. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hoffman, A.S. Hydrogels. In Biomaterials Science, 4th ed.; Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G., Yaszemski, M.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 153–166. [Google Scholar]
- Okay, O. General Properties of Hydrogels. In Hydrogel Sensors and Actuators; Gerlach, G., Arndt, K.-F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 6, pp. 1–14. [Google Scholar]
- Gulrez, S.K.H.; Al-Assaf, S.; Philips, G.O. Hydrogels: Methods of Preparation, Characterisation and Applications. In Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications; Carpi, A., Ed.; InTech: Rijeka, Croatia, 2011; pp. 117–150. [Google Scholar]
- Ghosal, K.; Nanda, A.; Chandra, A.; Rajabalaya, R.; Chakraborty, S.; Nanda, A. Mathematical Modeling of Drug Release Profiles for Modified Hydrophobic HPMC Based Gels. Pharmazie 2012, 67, 147–155. [Google Scholar]
- Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Yahia, L. History and Applications of Hydrogels. J. Biomed. Sci. 2015, 4, 13–23. [Google Scholar] [CrossRef]
- Perța-Crișan, S.; Ursachi, C.-Ș.; Chereji, B.-D.; Munteanu, F.-D. Oleogels—Innovative Technological Solution for the Nutritional Improvement of Meat Products. Foods 2022, 12, 131. [Google Scholar] [CrossRef]
- Aguilar-Zárate, M.; De la Peña-Gil, A.; Álvarez-Mitre, F.M.; Charó-Alonso, M.A.; Toro-Vazquez, J.F. Vegetable and Mineral Oil Organogels Based on Monoglyceride and Lecithin Mixtures. Food Biophys. 2019, 14, 326–345. [Google Scholar] [CrossRef]
- Manzoor, S.; Masoodi, F.A.; Naqash, F.; Rashid, R. Oleogels: Promising Alternatives to Solid Fats for Food Applications. Food Hydrocoll. Health 2022, 2, 100058. [Google Scholar] [CrossRef]
- Davidovich-Pinhas, M. Oleogels: A Promising Tool for Delivery of Hydrophobic Bioactive Molecules. Ther. Deliv. 2016, 7, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.A.; Valoppi, F.; Pal, K. Oleogels and Organogels: A Promising Tool for New Functionalities. Gels 2022, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, A.; Lupi, F.R.; Gabriele, D.; Baldino, N.; De Cindio, B. Bigels: A Unique Class of Materials for Drug Delivery Applications. Soft Mater. 2018, 16, 77–93. [Google Scholar] [CrossRef]
- Raytthatha, N.; Vyas, J.; Shah, I.; Upadhyay, U. Bigels: A Newer System–An Opportunity for Topical Application. Hamdan Med. J. 2022, 15, 113–121. [Google Scholar]
- Martinez, R.M.; Magalhães, W.V.; Sufi, B.D.S.; Padovani, G.; Nazato, L.I.S.; Velasco, M.V.R.; Lannes, S.C.D.S.; Baby, A.R. Vitamin E-Loaded Bigels and Emulsions: Physicochemical Characterization and Potential Biological Application. Colloids Surf. B Biointerfaces 2021, 201, 111651. [Google Scholar] [CrossRef] [PubMed]
- Wroblewska, M.; Szekalska, M.; Hafner, A.; Winnicka, K. Oleogels and bigels as topical drug carriers for ketoconazole—Development and in vitro characterization. Acta Pol. Pharm.-Drug Res. 2018, 75, 777–786. [Google Scholar]
- Ilomuanya, M.O.; Hameedat, A.T.; Akang, E.N.; Ekama, S.O.; Silva, B.O.; Akanmu, A.S. Development and Evaluation of Mucoadhesive Bigel Containing Tenofovir and Maraviroc for HIV Prophylaxis. Future J. Pharm. Sci. 2020, 6, 81. [Google Scholar] [CrossRef]
- Lazăr, A.R.; Pușcaș, A.; Tanislav, A.E.; Mureșan, V. Bioactive compounds delivery and bioavailability in structured edible oils systems. Compr. Rev. Food Sci. Food Saf. 2024, 23, e70020. [Google Scholar] [CrossRef]
- Al Hanbali, O.A.; Khan, H.M.S.; Sarfraz, M.; Arafat, M.; Ijaz, S.; Hameed, A. Transdermal patches: Design and current approaches to painless drug delivery. Acta Pharm. 2019, 69, 197–215. [Google Scholar] [CrossRef]
- Sotirova, Y.; Gugleva, V.; Stoeva, S.; Kolev, I.; Nikolova, R.; Marudova, M.; Nikolova, K.; Kiselova-Kaneva, Y.; Hristova, M.; Andonova, V. Bigel Formulations of Nanoencapsulated St. John’s Wort Extract-An Approach for Enhanced Wound Healing. Gels 2023, 9, 360. [Google Scholar] [CrossRef]
- Sabbagh, F.; Kim, B.S. Recent advances in polymeric transdermal drug delivery systems. J. Control. Release 2022, 341, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Martín-Illana, A.; Notario-Pérez, F.; Cazorla-Luna, R.; Ruiz-Caro, R.; Bonferoni, M.C.; Tamayo, A.; Veiga, M.D. Bigels as Drug Delivery Systems: From Their Components to Their Applications. Drug Discov. Today 2022, 27, 1008–1026. [Google Scholar] [CrossRef] [PubMed]
- Francavilla, A.; Corradini, M.G.; Joye, I.J. Bigels as Delivery Systems: Potential Uses and Applicability in Food. Gels 2023, 9, 648. [Google Scholar] [CrossRef] [PubMed]
- Chandra, M.V.; Shamasundar, B.A. Texture Profile Analysis and Functional Properties of Gelatin from the Skin of Three Species of Fresh Water Fish. Int. J. Food Prop. 2015, 18, 572–584. [Google Scholar] [CrossRef]
- Lupi, F.R.; Shakeel, A.; Greco, V.; Oliviero Rossi, C.; Baldino, N.; Gabriele, D. A rheological and microstructural characterisation of bigels for cosmetic and pharmaceutical uses. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 358–365. [Google Scholar] [CrossRef]
- Singh, V.K.; Banerjee, I.; Agarwal, T.; Pramanik, K.; Bhattacharya, M.K.; Pal, K. Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf. B Biointerfaces 2014, 123, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Shakeel, A.; Farooq, U.; Gabriele, D.; Marangoni, A.G.; Lupi, F.R. Bigels and multi-component organogels: An overview from rheological perspective. Food Hydrocoll. 2021, 111, 106190. [Google Scholar] [CrossRef]
- Raghavan, S.R.; Cipriano, B.H. Gel formation phase diagrams using tabletop rheology and calorimetry. In Molecular Gels: Materials with Self-Assembled Fibrillar Networks; Richard, G., Weiss, P.T., Eds.; Springer Science & Business Media: Dordrecht, The Netherlands, 2006; p. 978. [Google Scholar]
- Lardy, F.; Vennat, B.; Pouget, M.P.; Pourrat, A. Functionalization of Hydrocolloids: Principal Component Analysis Applied to the Study of Correlations Between Parameters Describing the Consistency of Hydrogels. Drug Dev. Ind. Pharm. 2000, 26, 715–721. [Google Scholar] [CrossRef]
- European Pharmacopoeia 9.1 (04/2017:20940): Uniformity of Dosage Units. Available online: https://www.studocu.com/da/document/syddansk-universitet/farmaci-grundkursus/uniformity-of-dosage-units/12156864 (accessed on 25 June 2024).
- Nurman, S.; Yulia, R.; Irmayanti; Noor, E.; Candra Sunarti, T. The Optimization of Gel Preparations Using the Active Compounds of Arabica Coffee Ground Nanoparticles. Sci. Pharm. 2019, 87, 32. [Google Scholar] [CrossRef]
- Rotational Viscometry | Anton Paar Wiki. Available online: https://wiki.anton-paar.com/en/rotational-viscometry/ (accessed on 30 June 2024).
- Texture Profile Analysis. Available online: https://texturetechnologies.com/resources/texture-profile-analysis (accessed on 26 June 2024).
Formulation | Pearson (r) Correlation Coefficient Values | R2 | Strength | Direction | p | Statistical Significance |
---|---|---|---|---|---|---|
ABG1 | 0.9816 | 0.9634 | strong | positive | <0.0001 | significant |
ABG2 | 0.9451 | 0.8931 | strong | positive | 0.0004 | significant |
ABG6 | 0.9828 | 0.9659 | strong | positive | <0.0001 | significant |
Formulation | λ (nm) | C (g%) ± SD |
---|---|---|
ABG1 | 206.9 | 1.43 ± 0.26 |
ABG2 | 1.35 ± 0.16 | |
ABG6 | 242 | 1.49 ± 0.08 |
No. | Time (s) | ABG1 | ABG2 | ABG6 | |||
---|---|---|---|---|---|---|---|
Force (N) | D (mm) | Force (N) | D (mm) | Force (N) | D (mm) | ||
1 | 0.008 | −0.00758 | 0.006 | −0.00192 | 0.006 | −0.01021 | 0.005 |
2 | 0.532 | 0.02004 | 0.519 | 0.01880 | 0.508 | 0.03122 | 0.513 |
3 | 1.057 | 0.02349 | 1.042 | 0.01535 | 1.033 | 0.03813 | 1.038 |
4 | 1.581 | 0.03040 | 1.567 | 0.00844 | 1.556 | 0.03122 | 1.561 |
5 | 2.105 | 0.03385 | 2.091 | 0.00844 | 2.081 | 0.03122 | 2.086 |
6 | 2.637 | −0.00068 | 2.623 | 0.03951 | 2.613 | 0.02086 | 2.617 |
7 | 3.162 | 0.00623 | 3.147 | 0.04642 | 3.138 | 0.02432 | 3.142 |
8 | 3.686 | 0.00623 | 3.672 | 0.04297 | 3.661 | 0.03467 | 3.667 |
9 | 4.21 | 0.01313 | 4.195 | 0.04642 | 4.186 | 0.03813 | 4.191 |
10 | 4.734 | 0.01313 | 4.72 | 0.04297 | 4.711 | 0.04158 | 4.716 |
11 | 5.267 | 0.00277 | 5.252 | 0.04642 | 5.242 | 0.01051 | 5.247 |
12 | 5.791 | 0.00623 | 5.777 | 0.04642 | 5.767 | 0.02086 | 5.772 |
13 | 6.315 | 0.00277 | 6.302 | 0.06023 | 6.291 | 0.02432 | 6.295 |
14 | 6.839 | −0.00068 | 6.825 | 0.06714 | 6.816 | 0.02777 | 6.82 |
15 | 7.364 | 0.01313 | 7.35 | 0.07059 | 7.339 | 0.03467 | 7.344 |
16 | 7.896 | 0.00623 | 7.881 | 0.04642 | 7.872 | 0.02432 | 7.877 |
17 | 8.42 | 0.00968 | 8.406 | 0.05678 | 8.395 | 0.02777 | 8.402 |
18 | 8.945 | 0.00277 | 8.93 | 0.06368 | 8.92 | 0.02777 | 8.925 |
19 | 9.469 | 0.00968 | 9.455 | 0.07749 | 9.445 | 0.03467 | 9.45 |
20 | 10.001 | 0.04421 | 9.986 | 0.07404 | 9.977 | 0.04849 | 9.981 |
21 | 10.009 | 0.03385 | 9.989 | 0.10857 | 9.98 | 0.07956 | 9.984 |
Formulation | Hardness (g) | Cohesiveness | Resilience | Springiness | Adhesion Force (g) |
---|---|---|---|---|---|
ABG1 | 75.88 | 0.628 | 0.065 | 1.667 | −25.27 |
ABG2 | 78.3 | 0.557 | 0.051 | 1.667 | −39.99 |
ABG6 | 95.76 | 0.718 | 0.079 | 1.666 | −21.83 |
Code | J (µg/cm2 × h) (at 4 h) | JSS (µg/h/cm2) | Kp × 10−6 (cm−2 × h−1) | D × 10−6 (cm2/h) |
---|---|---|---|---|
ABG1 | 99.94 ± 6.94 | 0.0201 | 1.34 | 1.34 |
ABG2 | 85.71 ± 6.28 | 0.1819 | 12.12 | 12.13 |
ABG6 | 110.68 ± 6.28 | 0.1658 | 11.05 | 11.05 |
Ingredient | HGL CMC (3.5%) | HGL CMC (5%) | HGL CBP (1%) | |
---|---|---|---|---|
Amount (% w/w) | Role | |||
Sodium Carboxymethyl Cellulose | 3.5 | 5 | - | gelling agent |
Carbopol 940 | - | - | 1 | |
Glycerol | 3 | 3 | 3 | humectant |
NaOH 10% | - | - | 3 | pH stabilizer |
Preservative solution | ad 100 | ad 100 | ad 100 | vehicle |
Ingredient | OGL Carnauba | OGL Beeswax | |
---|---|---|---|
Amount (% w/w) | Role | ||
Carnauba wax | 5 | - | gelling agent |
Beeswax | - | 0.2 | |
Cosgard | 0.1 | 0.1 | preservative |
Span 60 | - | 15 | emulsifier/gelling agent |
Sunflower oil | ad 100 | vehicle | |
Almond oil | - | ad 100 |
Code | Hydrogel (46.5 g) | Oleogel (46.5 g) | Cholesterol (g) | Tween 80 (g) | Span 80 (g) | AMDR (g) |
---|---|---|---|---|---|---|
ABG1 | HGL CMC (5%) | OGL Beeswax | 0.5 | 3 | 2 | 1.5 |
ABG2 | HGL CBP (1%) | OGL Beeswax | 0.5 | 3 | 2 | 1.5 |
ABG3 | HGL CMC (5%) | OGL Carnauba | 0.5 | 3 | 2 | 1.5 |
ABG4 | HGL CBP (1%) | OGL Carnauba | 0.5 | 3 | 2 | 1.5 |
ABG5 | HGL CMC (3.5%) | OGL Carnauba | 0.5 | 3 | 2 | 1.5 |
ABG6 | HGL CMC (3.5%) | OGL Beeswax | 0.5 | 3 | 2 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pintea, C.; Vlad, R.-A.; Antonoaea, P.; Rédai, E.M.; Bîrsan, M.; Barabás, E.-C.; Manea, A.; Pușcaș, I.A.; Ciurba, A. Innovative Epicardial Bigels Containing Amiodarone Hydrochloride: Pharmacotechnical and Analytical Characterization. Pharmaceuticals 2024, 17, 1511. https://doi.org/10.3390/ph17111511
Pintea C, Vlad R-A, Antonoaea P, Rédai EM, Bîrsan M, Barabás E-C, Manea A, Pușcaș IA, Ciurba A. Innovative Epicardial Bigels Containing Amiodarone Hydrochloride: Pharmacotechnical and Analytical Characterization. Pharmaceuticals. 2024; 17(11):1511. https://doi.org/10.3390/ph17111511
Chicago/Turabian StylePintea, Cezara, Robert-Alexandru Vlad, Paula Antonoaea, Emőke Margit Rédai, Magdalena Bîrsan, Enikő-Csilla Barabás, Andrei Manea, Iulia Alexandra Pușcaș, and Adriana Ciurba. 2024. "Innovative Epicardial Bigels Containing Amiodarone Hydrochloride: Pharmacotechnical and Analytical Characterization" Pharmaceuticals 17, no. 11: 1511. https://doi.org/10.3390/ph17111511
APA StylePintea, C., Vlad, R. -A., Antonoaea, P., Rédai, E. M., Bîrsan, M., Barabás, E. -C., Manea, A., Pușcaș, I. A., & Ciurba, A. (2024). Innovative Epicardial Bigels Containing Amiodarone Hydrochloride: Pharmacotechnical and Analytical Characterization. Pharmaceuticals, 17(11), 1511. https://doi.org/10.3390/ph17111511