The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gel Fraction Analysis
2.2. Swelling Analysis
2.3. FT-IR Analysis
2.4. SEM Analysis
2.5. Thermogravimetric Analysis (TG/DTG)
2.6. Analysis of Salicylic Acid and Fluocinolone Acetonide In Vitro Release
2.7. Kinetic Analysis of Salicylic Acid and Fluocinolone Acetonide In Vitro Release
2.8. In Vitro Biological Analysis
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the Empty Thermosensitive Nanocarrier (T)
3.3. Encapsulation of the Salicylic Acid and Fluocinolone Acetonide into the Thermosensitive Nanocarrier (T-SA + FA)
3.4. Preparation of the Hydrogels Containing a Dual Drug Delivery System Based on a Thermosensitive Nanocarrier
3.5. Freeze-Drying of the Hydrogels
3.6. Determination of Gel Fraction
3.7. Determination of Swelling Ratio
3.8. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.9. Scanning Electron Microscopy (SEM)
3.10. Thermogravimetric Analysis (TGA)
3.11. In Vitro Release of Salicylic Acid and Fluocinolone Acetonide
3.12. In Vitro Release Kinetics of Salicylic Acid and Fluocinolone Acetonide
- Ct—amount of drug released in time
- K0—zero-order kinetic constant
- K1—first-order kinetic constant
- KH—Higuchi kinetic constant
- KKP—Korsmeyer-Peppas kinetic constant
- n—diffusional release exponent
- t—time
3.13. Cytotoxicity Test
3.14. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mellor, J.D. Fundamentals of Freeze-Drying; Academic Press: London, UK, 1978; ISBN 978-0-12-490050-9. [Google Scholar]
- Izutsu, K. Applications of Freezing and Freeze-Drying in Pharmaceutical Formulations. In Survival Strategies in Extreme Cold and Desiccation; Iwaya-Inoue, M., Sakurai, M., Uemura, M., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2018; Volume 1081, pp. 371–383. ISBN 9789811312434. [Google Scholar]
- Liu, B.; Zhou, X. Freeze-Drying of Proteins. In Cryopreservation and Freeze-Drying Protocols; Wolkers, W.F., Oldenhof, H., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2015; Volume 1257, pp. 459–476. ISBN 978-1-4939-2192-8. [Google Scholar]
- Lim, S.B.; Rubinstein, I.; Önyüksel, H. Freeze Drying of Peptide Drugs Self-Associated with Long-Circulating, Biocompatible and Biodegradable Sterically Stabilized Phospholipid Nanomicelles. Int. J. Pharm. 2008, 356, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liao, Q.; Chen, T.; Zhang, Y.; Yuan, W.; Xu, J.; Zhang, X. Freeze-Drying Formulations Increased the Adenovirus and Poxvirus Vaccine Storage Times and Antigen Stabilities. Virol. Sin. 2021, 36, 365–372. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Dash, S.K.; Dhawan, D.; Sahoo, P.K.; Jindal, A.; Gugulothu, D. Freeze-Drying Revolution: Unleashing the Potential of Lyophilization in Advancing Drug Delivery Systems. Drug Deliv. Transl. Res. 2024, 14, 1111–1153. [Google Scholar] [CrossRef] [PubMed]
- Ramos Yacasi, G.R.; Calpena Campmany, A.C.; Egea Gras, M.A.; Espina García, M.; García López, M.L. Freeze Drying Optimization of Polymeric Nanoparticles for Ocular Flurbiprofen Delivery: Effect of Protectant Agents and Critical Process Parameters on Long-Term Stability. Drug Dev. Ind. Pharm. 2017, 43, 637–651. [Google Scholar] [CrossRef]
- van Winden, E.C.; Zhang, W.; Crommelin, D.J. Effect of Freezing Rate on the Stability of Liposomes during Freeze-Drying and Rehydration. Pharm. Res. 1997, 14, 1151–1160. [Google Scholar] [CrossRef]
- Fereshteh, Z. Freeze-Drying Technologies for 3D Scaffold Engineering. In Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications; Woodhead Publishing: Cambridge, UK, 2018; pp. 151–174. ISBN 978-0-08-100979-6. [Google Scholar]
- Maji, S.; Agarwal, T.; Das, J.; Maiti, T.K. Development of Gelatin/Carboxymethyl Chitosan/Nano-Hydroxyapatite Composite 3D Macroporous Scaffold for Bone Tissue Engineering Applications. Carbohydr. Polym. 2018, 189, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Feng, Q. Preparation of 3-D Regenerated Fibroin Scaffolds with Freeze Drying Method and Freeze Drying/Foaming Technique. J. Mater. Sci. Mater. Med. 2006, 17, 1349–1356. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hoffman, A.S. Hydrogel. In Biomaterials Science: An Introduction to Materials in Medicine, 4th ed.; Wagner, W., Sakiyama-Elbert, S., Zhang, G., Yaszemski, M., Eds.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2020; pp. 153–166. ISBN 978-0-12-816137-1. [Google Scholar]
- Autissier, A.; Visage, C.L.; Pouzet, C.; Chaubet, F.; Letourneur, D. Fabrication of Porous Polysaccharide-Based Scaffolds Using a Combined Freeze-Drying/Cross-Linking Process. Acta Biomater. 2010, 6, 3640–3648. [Google Scholar] [CrossRef]
- Grenier, J.; Duval, H.; Barou, F.; Lv, P.; David, B.; Letourneur, D. Mechanisms of Pore Formation in Hydrogel Scaffolds Textured by Freeze-Drying. Acta Biomater. 2019, 94, 195–203. [Google Scholar] [CrossRef]
- Sornkamnerd, S.; Okajima, M.K.; Kaneko, T. Tough and Porous Hydrogels Prepared by Simple Lyophilization of LC Gels. ACS Omega 2017, 2, 5304–5314. [Google Scholar] [CrossRef]
- Bahadoran, M.; Shamloo, A.; Nokoorani, Y.D. Development of a Polyvinyl Alcohol/Sodium Alginate Hydrogel-Based Scaffold Incorporating bFGF-Encapsulated Microspheres for Accelerated Wound Healing. Sci. Rep. 2020, 10, 7342. [Google Scholar] [CrossRef] [PubMed]
- Arsiccio, A.; Pisano, R. Clarifying the Role of Cryo- and Lyo-Protectants in the Biopreservation of Proteins. Phys. Chem. Chem. Phys. 2018, 20, 8267–8277. [Google Scholar] [CrossRef] [PubMed]
- Merivaara, A.; Zini, J.; Koivunotko, E.; Valkonen, S.; Korhonen, O.; Fernandes, F.M.; Yliperttula, M. Preservation of Biomaterials and Cells by Freeze-Drying: Change of Paradigm. J. Control. Release 2021, 336, 480–498. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Gao, K.; Zhao, N.; Yi, Z.; Jiang, C.; Yang, B.; Liu, J. A Novel Flexible Hydrogel Electrode with a Strong Moisturizing Ability for Long-Term EEG Recording. J. Neural Eng. 2021, 18, 066047. [Google Scholar] [CrossRef]
- Nakamura, K.; Hatakeyama, T.; Hatakeyama, H. Formation of the Glassy State and Mesophase in the Water–Sodium Alginate System. Polym. J. 1991, 23, 253–258. [Google Scholar] [CrossRef]
- Peppas, N.A. Turbidimetric Studies of Aqueous Poly(Vinyl Alcohol) Solutions. Makromol. Chem. 1975, 176, 3433–3440. [Google Scholar] [CrossRef]
- Cascone, M.G.; Maltinti, S.; Barbani, N.; Laus, M. Effect of Chitosan and Dextran on the Properties of Poly(Vinyl Alcohol) Hydrogels. J. Mater. Sci. Mater. Med. 1999, 10, 431–435. [Google Scholar] [CrossRef]
- Butylina, S.; Geng, S.; Oksman, K. Properties of As-Prepared and Freeze-Dried Hydrogels Made from Poly(Vinyl Alcohol) and Cellulose Nanocrystals Using Freeze-Thaw Technique. Eur. Polym. J. 2016, 81, 386–396. [Google Scholar] [CrossRef]
- Rivera-Hernández, G.; Antunes-Ricardo, M.; Martínez-Morales, P.; Sánchez, M.L. Polyvinyl Alcohol Based-Drug Delivery Systems for Cancer Treatment. Int. J. Pharm. 2021, 600, 120478. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Majka, T.M. Alginate/PVA-Based Hydrogel Matrices with Echinacea purpurea Extract as a New Approach to Dermal Wound Healing. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 195–206. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Miastkowska, M.; Sapuła, P.; Sycz, A.; Pluta, K.; Malina, D.; Chwastowski, J. Kinetic Analysis of in Vitro Release Profiles of Salicylic Acid and Fluocinolone Acetonide from Dual Delivery Systems Composed of Polymeric Nanocarriers and a Hydrogel Matrix. J. Drug Deliv. Sci. Technol. 2024, 92, 105355. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. The Effect of Glycerin Content in Sodium Alginate/Poly(Vinyl Alcohol)-Based Hydrogels for Wound Dressing Application. Int. J. Mol. Sci. 2021, 22, 12022. [Google Scholar] [CrossRef] [PubMed]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Barczewski, M.; Malarz, K.; Mrozek-Wilczkiewicz, A. Advanced SA/PVA-Based Hydrogel Matrices with Prolonged Release of Aloe Vera as Promising Wound Dressings. Mater. Sci. Eng. C 2021, 120, 111667. [Google Scholar] [CrossRef]
- Thakur, S.; Arotiba, O.A. Synthesis, Swelling and Adsorption Studies of a pH-Responsive Sodium Alginate–Poly(Acrylic Acid) Superabsorbent Hydrogel. Polym. Bull. 2018, 75, 4587–4606. [Google Scholar] [CrossRef]
- Hwang, U.; Moon, H.; Park, J.; Jung, H.W. Crosslinking and Swelling Properties of pH-Responsive Poly(Ethylene Glycol)/Poly(Acrylic Acid) Interpenetrating Polymer Network Hydrogels. Polymers 2024, 16, 2149. [Google Scholar] [CrossRef]
- Huaman, M.A.L.; Vega-Chacón, J.; Quispe, R.I.H.; Negrón, A.C.V. Synthesis and Swelling Behaviors of Poly(2-Hydroxyethyl Methacrylate-Co-Itaconic Acid) and Poly(2-Hydroxyethyl Methacrylate-Co-Sodium Itaconate) Hydrogels as Potential Drug Carriers. Results Chem. 2023, 5, 100917. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Miastkowska, M.; Sapuła, P.; Pluta, K.; Malina, D.; Chwastowski, J.; Barczewski, M. Bio-Hybrid Hydrogels Incorporated into a System of Salicylic Acid-pH/Thermosensitive Nanocarriers Intended for Cutaneous Wound-Healing Processes. Pharmaceutics 2022, 14, 773. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J.; Bryce, D.L. Spectrometric Identification of Organic Compounds, 8th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2015; ISBN 978-0-470-61637-6. [Google Scholar]
- Yang, L.; Xu, Y.; Su, Y.; Wu, J.; Zhao, K.; Chen, J.; Wang, M. FT-IR Spectroscopic Study on the Variations of Molecular Structures of Some Carboxyl Acids Induced by Free Electron Laser. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2005, 62, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Karande, T.S.; Ong, J.L.; Agrawal, C.M. Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient Mixing. Ann. Biomed. Eng. 2004, 32, 1728–1743. [Google Scholar] [CrossRef]
- Ronca, A.; D’Amora, U.; Raucci, M.G.; Lin, H.; Fan, Y.; Zhang, X.; Ambrosio, L. A Combined Approach of Double Network Hydrogel and Nanocomposites Based on Hyaluronic Acid and Poly(Ethylene Glycol) Diacrylate Blend. Materials 2018, 11, 2454. [Google Scholar] [CrossRef]
- Huang, X.; Brazel, C.S. On the Importance and Mechanisms of Burst Release in Matrix-Controlled Drug Delivery Systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Brazel, C.; Peppas, N. Recent Studies and Molecular Analysis of Drug Release from Swelling-Controlled Devices. STP Pharma Sci. 1999, 9, 473–485. [Google Scholar]
- Batycky, R.P.; Hanes, J.; Langer, R.; Edwards, D.A. A Theoretical Model of Erosion and Macromolecular Drug Release from Biodegrading Microspheres. J. Pharm. Sci. 1997, 86, 1464–1477. [Google Scholar] [CrossRef] [PubMed]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of Solute Release from Porous Hydrophilic Polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Peppas, N.A. Analysis of Fickian and Non-Fickian Drug Release from Polymers. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release II. Fickian and Anomalous Release from Swellable Devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Sanopoulou, M.; Papadokostaki, K.G. Controlled Drug Release Systems: Mechanisms and Kinetics. In Biomedical Membranes and (Bio)Artificial Organs; World Scientific: Singapore, 2018; pp. 1–33. ISBN 978-981-322-175-8. [Google Scholar]
- Kelm, J.; Regitz, T.; Schmitt, E.; Jung, W.; Anagnostakos, K. In Vivo and In Vitro Studies of Antibiotic Release from and Bacterial Growth Inhibition by Antibiotic-Impregnated Polymethylmethacrylate Hip Spacers. Antimicrob. Agents Chemother. 2006, 50, 332–335. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, X.; Sun, L. Reaction Mechanisms of N-Isopropylacrylamide Soap-Free Emulsion Polymerization Based on Two Different Initiators. J. Macromol. Sci. Part A 2014, 51, 447–455. [Google Scholar] [CrossRef]
- Yan, X.; Gemeinhart, R.A. Cisplatin Delivery from Poly(Acrylic Acid-Co-Methyl Methacrylate) Microparticles. J. Control. Release 2005, 106, 198–208. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Malina, D.; Pluta, K.; Miastkowska, M. Sposób Wprowadzania Hydrofobowych Leczniczych Substancji Czynnych, Tworzących Układ z Termoczułym Nanonośnikiem, do Hydrofilowej Matrycy Opatrunku Hydrożelowego. Patent Application No. P.439845, 15 December 2021. [Google Scholar]
- Bialik-Wąs, K.; Malina, D.; Pluta, K. Sposób Otrzymywania Hydrożelowych Materiałów Opatrunkowych. 1AD. Patent Application No. P.432720, 28 January 2020. [Google Scholar]
- Bialik-Wąs, K.; Raftopoulos, K.N.; Pielichowski, K. Alginate Hydrogels with Aloe Vera: The Effects of Reaction Temperature on Morphology and Thermal Properties. Materials 2022, 15, 748. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic Modeling on Drug Release from Controlled Drug Delivery Systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
Sample | GF (%) ± SD |
---|---|
F-D-M-SA + FA | 72 ± 0.5 |
F-D-M | 61 ± 0.8 |
M-SA + FA | 55 ± 1.6 |
Hydrogel Sample | T10 (°C) | T50 (°C) | Tf (°C) | DTG Peaks (°C; %/min) | Residual Mass (%) |
M-SA + FA | 194.0 | 386.4 | 402.0 | 75.5; −0.25 197.1; −2.55 289.3; −1.67 402.0; −11.35 | 8.72 |
F-D-M-SA + FA | 198.9 | 396.7 | 409.3 | 99.3; −0.49 215.3; −1.81 298.9; −1.59 409.3; −12.54 | 6.62 |
F-D-M | 203.1 | 397.1 | 409.0 | 76.7; −0.44 226.7; −1.92 295.0; −1.49 409.0; −12.58 | 6.15 |
Mathematical Model | Linear Regression | Model Parameters | Parameter Value Calculated for a Given Sample | ||
---|---|---|---|---|---|
pH = 4.0 | pH = 7.4 | pH = 9.0 | |||
Zero-order model | Ct = K0 ∙ t | R2 K0 (mg/h) | 0.4858 | 0.7342 | 0.8616 |
0.1334 | 0.3252 | 0.5774 | |||
First-order model | log(100 − Ct) = (−K1 ∙ t)/2.303 | R2 K1 (1/h) | 0.5157 | 0.7929 | 0.9164 |
0.0016 | 0.0044 | 0.0092 | |||
Higuchi model | Ct = KH ∙ √t | R2 KH (mg/h1/2) | 0.6243 | 0.8639 | 0.9229 |
0.0002 | 0.0005 | 0.0008 | |||
Korsmeyer–Peppas model | logCt = logKKP + n ∙ logt | R2 KKP (h−n) n | 0.9196 | 0.9612 | 0.9319 |
11.65 | 15.64 | 12.51 | |||
0.1130 | 0.2077 | 0.3332 |
Mathematical Model | Linear Regression | Model Parameters | Parameter Value Calculated for a Given Sample | ||
---|---|---|---|---|---|
pH = 4.0 | pH = 7.4 | pH = 9.0 | |||
Zero-order model | Ct = K0 ∙ t | R2 K0 (mg/h) | 0.6421 | 0.8416 | 0.9226 |
0.1602 | 0.4162 | 0.7423 | |||
First-order model | log(100 − Ct) = (−K1 ∙ t)/2.303 | R2 K1 (1/h) | 0.6666 | 0.8781 | 0.9601 |
0.0018 | 0.0058 | 0.0129 | |||
Higuchi model | Ct = KH ∙ √t | R2 KH (mg/h1/2) | 0.7765 | 0.9512 | 0.9732 |
0.0002 | 0.0004 | 0.0008 | |||
Korsmeyer–Peppas model | logCt = logKKP + n ∙ logt | R2 KKP (h−n) n | 0.9738 | 0.9718 | 0.9919 |
6.67 | 10.39 | 7.48 | |||
0.2312 | 0.3225 | 0.5022 |
Substrate | Producer | Purity Degree |
---|---|---|
N-isopropylacrylamide | Sigma-Aldrich (Darmstadt, Germany) | Reagent grade |
N,N′-methylenebisacrylamide | Sigma-Aldrich (Darmstadt, Germany) | Reagent grade |
Gum arabic | POCH S.A. (Gliwice, Poland) | Reagent grade |
Sodium alginate | Sigma-Aldrich (Darmstadt, Germany) | Reagent grade |
Poly(vinyl alcohol) (Mw = 72,000 g/mol) | POCH S.A. (Gliwice, Poland) | Reagent grade |
Aloe vera lyophilisate | Zrób sobie krem (Prochowice, Poland) | n.d. |
Glycerin | POCH S.A. (Gliwice, Poland) | Reagent grade |
Poly(ethylene glycol) diacrylate (PEGDA) (Mn = 700 g/mol) | Sigma-Aldrich (Darmstadt, Germany) | Reagent grade |
Ammonium persulphate | POCH S.A. (Gliwice, Poland) | Reagent grade |
Salicylic acid | Sigma-Aldrich (Darmstadt, Germany) | Reagent grade |
Fluocinolone acetonide | Sigma-Aldrich (Darmstadt, Germany) | Reagent grade |
Buffer solutions with pH values of 4.0, 7.4, and 9.0 | Chempur (Piekary Śląskie, Poland) | n.d. |
Ethyl alcohol (96%, v/v) | Fisher Scientific (Hampton, NH, USA) | Reagent grade |
MEM with Earle’s Salts, with Stable Glutamine | Biowest (Nuaillé, France) | Reagent grade |
Fetal Bovine Serum | Biowest (Nuaillé, France) | Reagent grade |
Antibiotic Antimycotic Solution (100×) | Sigma-Aldrich (Darmstadt, Germany) | Reagent grade |
MEM Non-Essential Amino Acids Solution (100×) | Gibco, Life Technologies (Waltham, MA, USA) | Reagent grade |
CytoTox-Fluor™ Cytotoxicity Assay | Promega (Madison, WI, USA) | Reagent grade |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Odziomek, K.; Drabczyk, A.K.; Kościelniak, P.; Konieczny, P.; Barczewski, M.; Bialik-Wąs, K. The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use. Pharmaceuticals 2024, 17, 1512. https://doi.org/10.3390/ph17111512
Odziomek K, Drabczyk AK, Kościelniak P, Konieczny P, Barczewski M, Bialik-Wąs K. The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use. Pharmaceuticals. 2024; 17(11):1512. https://doi.org/10.3390/ph17111512
Chicago/Turabian StyleOdziomek, Kacper, Anna K. Drabczyk, Paulina Kościelniak, Patryk Konieczny, Mateusz Barczewski, and Katarzyna Bialik-Wąs. 2024. "The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use" Pharmaceuticals 17, no. 11: 1512. https://doi.org/10.3390/ph17111512
APA StyleOdziomek, K., Drabczyk, A. K., Kościelniak, P., Konieczny, P., Barczewski, M., & Bialik-Wąs, K. (2024). The Role of Freeze-Drying as a Multifunctional Process in Improving the Properties of Hydrogels for Medical Use. Pharmaceuticals, 17(11), 1512. https://doi.org/10.3390/ph17111512