Adverse Reactions to the Orphan Drug Cerliponase Alfa in the Treatment of Neurolipofuscinosis Type 2 (CLN2)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thoene, J.G. Curing the Orphan Drug Act. Science 1991, 251, 1158–1159. [Google Scholar] [CrossRef] [PubMed]
- Crisafulli, S.; Sultana, J.; Ingrasciotta, Y.; Addis, A.; Cananzi, P.; Cavagna, L.; Conter, V.; D’Angelo, G.; Ferrajolo, C.; Mantovani, L.; et al. Role of healthcare databases and re gistries for surveillance of orphan drugs in the real-world setting: The italian case study. Expert Opin. Drug Saf. 2019, 18, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Nelvagal, H.R.; Lange, J.; Takahashi, K.; Tarczyluk-Wells, M.A.; Cooper, J.D. Pathomechanisms in the neuronal ceroid lipofuscinoses. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165570. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.B.; Gupta, P.; Kartik, A.; Farooqui, N.; Singhal, S.; Shergill, S.; Singh, K.P.; Agarwal, A. Ocular Manifestations of Neuronal Ceroid Lipofuscinoses. Semin. Ophthalmol. 2021, 36, 582–595. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Kohlschütter, A.; Mink, J.; Simonati, A.; Williams, R. NCL diseases—Clinical perspectives. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 1801–1806. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bernardi, S.; Gemignani, F.; Marchese, M. The involvement of Purkinje cells in progressive myoclonic epilepsy: Focus on neuronal ceroid lipofuscinosis. Neurobiol. Dis. 2023, 185, 106258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naseri, N.; Sharma, M.; Velinov, M. Autosomal dominant neuronal ceroid lipofuscinosis: Clinical features and molecular basis. Clin. Genet. 2021, 99, 111–118. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sleat, D.E.; Gedvilaite, E.; Zhang, Y.; Lobel, P.; Xing, J. Analysis of large-scale whole exome sequencing data to determine the prevalence of genetically-distinct forms of neuronal ceroid lipofuscinosis. Gene 2016, 593, 284–291. [Google Scholar] [CrossRef]
- Wlodawer, A.; Durell, S.R.; Li, M.; Oyama, H.; Oda, K.; Dunn, B.M. A model of tripeptidyl-peptidase I (CLN2), a ubiquitous and highly conserved member of the sedolisin family of serine-carboxyl peptidases. BMC Struct. Biol. 2003, 3, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nickel, M.; Simonati, A.; Jacoby, D.; Lezius, S.; Kilian, D.; Van de Graaf, B.; Pagovich, O.E.; Kosofsky, B.; Yohay, K.; Downs, M.; et al. Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: An observational cohort study. Lancet Child Adolesc. Health 2018, 2, 582–590, Erratum in Lancet Child Adolesc. Health 2018, 2, e24. [Google Scholar] [CrossRef] [PubMed]
- Augustine, E.F.; Adams, H.R.; de Los Reyes, E.; Drago, K.; Frazier, M.; Guelbert, N.; Laine, M.; Levin, T.; Mink, J.W.; Nickel, M.; et al. Management of CLN1 Disease: International Clinical Consensus. Pediatr. Neurol. 2021, 120, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Fietz, M.; AlSayed, M.; Burke, D.; Cohen-Pfeffer, J.; Cooper, J.D.; Dvořáková, L.; Giugliani, R.; Izzo, E.; Jahnová, H.; Lukacs, Z.; et al. Diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2 disease): Expert recommendations for early detection and laboratory diagnosis. Mol. Genet. Metab. 2016, 119, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Markham, A. Cerliponase Alfa: First Global Approval. Drugs 2017, 77, 1247–1249. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.E.; Adams, H.R.; Blohm, M.; Cohen-Pfeffer, J.L.; de Los Reyes, E.; Denecke, J.; Drago, K.; Fairhurst, C.; Frazier, M.; Guelbert, N.; et al. Management Strategies for CLN2 Disease. Pediatr. Neurol. 2017, 69, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, L.P.B.; Manreza, M.L.G.; Pessoa, A.; Gurgel-Giannetti, J.; Coan, A.C.; Júnior, H.V.L.; Embiruçu, E.K.; Henriques-Souza, A.M.M.; Kok, F. Clinical management and diagnosis of CLN2 disease: Consensus of the Brazilian experts group. Arq. Neuro-Psiquiatr. 2023, 81, 284–295. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schulz, A.; Ajayi, T.; Specchio, N.; de Los Reyes, E.; Gissen, P.; Ballon, D.; Dyke, J.P.; Cahan, H.; Slasor, P.; Jacoby, D.; et al. CLN2 Study Group. Study of Intraventricular Cerliponase Alfa for CLN2 Disease. N. Engl. J. Med. 2018, 378, 1898–1907. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Grover, A.; Hammon, K.; de Hart, G.; Slasor, P.; Cherukuri, A.; Ajayi, T.; Jacoby, D.; Schulz, A.; Specchio, N.; et al. Clinical Pharmacokinetics and Pharmacodynamics of Cerliponase Alfa, Enzyme Replacement Therapy for CLN2 Disease by Intracerebroventricular Administration. Clin. Transl. Sci. 2021, 14, 635–644. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- European Medicines Agency. Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/documents/product-information/brineura-epar-product-information_en.pdf (accessed on 16 October 2023).
- Wu, J.; Wang, C.; Toh, S.; Pisa, F.E.; Bauer, L. Use of real-world evidence in regulatory decisions for rare diseases in the United States-Current status and future directions. Pharmacoepidemiol. Drug Saf. 2020, 29, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Price, J. What Can Big Data Offer the Pharmacovigilance of Orphan Drugs? Clin. Ther. 2016, 38, 2533–2545. [Google Scholar] [CrossRef] [PubMed]
- Lapeyre-Mestre, M. The challenges of pharmacoepidemiology of orphan drugs in rare diseases. Therapies 2020, 75, 215–220. [Google Scholar] [CrossRef] [PubMed]
- Nickel, M.; Schulz, A. Natural History Studies in NCL and Their Expanding Role in Drug Development: Experiences from CLN2 Disease and Relevance for Clinical Trials. Front. Neurol. 2022, 13, 785841. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kohlschütter, A.; Schulz, A. CLN2 Disease (Classic Late Infantile Neuronal Ceroid Lipofuscinosis). Pediatr. Endocrinol. Rev. 2016, 13 (Suppl. S1), 682–688. [Google Scholar] [PubMed]
- Boustany, R.M. Cerliponase alfa and neuronal ceroid lipofuscinosis type 2: Long-term outcomes and lessons for future research. Lancet Neurol. 2024, 23, 5–7. [Google Scholar] [CrossRef] [PubMed]
- de Los Reyes, E.; Lehwald, L.; Augustine, E.F.; Berry-Kravis, E.; Butler, K.; Cormier, N.; Demarest, S.; Lu, S.; Madden, J.; Olaya, J.; et al. Intracerebroventricular Cerliponase Alfa for Neuronal Ceroid Lipofuscinosis Type 2 Disease: Clinical Practice Considerations From US Clinics. Pediatr. Neurol. 2020, 110, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Cherukuri, A.; Cahan, H.; de Hart, G.; Van Tuyl, A.; Slasor, P.; Bray, L.; Henshaw, J.; Ajayi, T.; Jacoby, D.; O’Neill, C.A.; et al. Immunogenicity to cerliponase alfa intracerebroventricular enzyme replacement therapy for CLN2 disease: Results from a Phase 1/2 study. Clin. Immunol. 2018, 197, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Schulz, A.; Specchio, N.; de Los Reyes, E.; Gissen, P.; Nickel, M.; Trivisano, M.; Aylward, S.C.; Chakrapani, A.; Schwering, C.; Wibbeler, E.; et al. Safety and efficacy of cerliponase alfa in children with neuronal ceroid lipofuscinosis type 2 (CLN2 disease): An open-label extension study. Lancet Neurol. 2024, 23, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Schwering, C.; Kammler, G.; Wibbeler, E.; Christner, M.; Knobloch, J.K.; Nickel, M.; Denecke, J.; Baehr, M.; Schulz, A. Development of the “Hamburg Best Practice Guidelines for ICV-Enzyme Replacement therapy (ERT) in CLN2 Disease” Based on 6 Years Treatment Experience in 48 Patients. J. Child Neurol. 2021, 36, 635–641. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- BioMarin Pharmaceutical Inc. Prescribing Information: Brineura (Cerliponase Alfa) Injection, for Intraventricular Use. Available online: https://www.brineura.com/wpcontent/themes/jupiter-child/assets/pdfs/resources/Brineura-PrescribingInformation.pdf (accessed on 16 October 2023).
- Østergaard, A.A.; Sydenham, T.V.; Nybo, M.; Andersen, Å.B. Cerebrospinal fluid pleocytosis level as a diagnostic predictor? A cross-sectional study. BMC Clin. Pathol. 2017, 17, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jaijakul, S.; Salazar, L.; Wootton, S.H.; Aguilera, E.; Hasbun, R. The clinical significance of neutrophilic pleocytosis in cerebrospinal fluid in patients with viral central nervous system infections. Int. J. Infect. Dis. 2017, 59, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Dagenais, S.; Russo, L.; Madsen, A.; Webster, J.; Becnel, L. Use of Real-World Evidence to Drive Drug Development Strategy and Inform Clinical Trial Design. Clin. Pharmacol. Ther. 2022, 111, 77–89. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ammendolia, I.; Mannucci, C.; Cardia, L.; Calapai, G.; Gangemi, S.; Esposito, E.; Calapai, F. Pharmacovigilance on cannabidiol as an antiepileptic agent. Front. Pharmacol. 2023, 14, 1091978. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- MedDRA and Pharmacovigilance: A Complex and Little Evaluated Tool. Prescrire. Int. 2016, 25, 247–250. [PubMed]
- Calapai, F.; Mannucci, C.; Cardia, L.; Currò, M.; Calapai, G.; Esposito, E.; Ammendolia, I. Response to “Evaluating Adverse Events in Databases”. Pharmacol. Res. Perspect. 2023, 11, e01127. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Calapai, F.; Mannucci, C.; Cardia, L.; Currò, M.; Calapai, G.; Esposito, E.; Ammendolia, I. Suspected oncologic adverse reactions associated with interleukin-23 inhibitors in EudraVigilance: Comparative study and gender distribution. Pharmacol. Res. Perspect. 2023, 11, e01130. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Suspected Adverse Reaction | Males SARs | Males % of Total Number of SARs | Females SARs | Females % of Total Number of SARs | Total Cases with SARs | % of Total Number of SARs |
---|---|---|---|---|---|---|
Fever/Pyrexia | 21 | 14.2 | 24 | 16.2 | 45 | 30.4 |
Device-related infection | 16 | 10.8 | 11 | 7.4 | 27 | 18.2 |
Positive cerebrospinal fluid culture | 4 | 2.7 | 17 | 11.5 | 21 | 14.2 |
Seizures/Convulsions | 9 | 6.1 | 11 | 7.4 | 20 | 13.5 |
Vomiting | 11 | 7.4 | 7 | 4.7 | 18 | 12.2 |
Pleocytosis | 5 | 3.4 | 8 | 5.4 | 13 | 8.8 |
Irritability | 3 | 2.0 | 6 | 4.0 | 9 | 6.1 |
Ventriculitis | 4 | 2.7 | 2 | 1.3 | 6 | 4.0 |
Respiratory distress | 0 | 0 | 3 | 2.0 | 3 | 2.0 |
Suspected Adverse Reaction | Males SARs | Females SARs | OR (C.I.) | p-Value |
---|---|---|---|---|
Fever/Pyrexia | 21 | 24 | 0.765625 (0.33–1.75) | 0.263698 |
Device-related infection | 16 | 11 | 2.1157024 (0.71–6.26) | 0.088044 |
Positive cerebrospinal fluid culture | 4 | 17 | 0.055363 (0.01–0.26) | 0.000116 |
Seizures/Convulsions | 9 | 11 | 0.669421 (0.19–2.33) | 0.263891 |
Vomiting | 11 | 7 | 2.469388 (0.65–9.43) | 0.093076 |
Pleocytosis | 5 | 8 | 0.390625 (0.08–1.90) | 0.121820 |
Irritability | 3 | 6 | 0.25 (0.03–1.77) | 0.082829 |
Ventriculitis | 4 | 2 | 4 (0.36–44.11) | 0.128837 |
Respiratory distress | 0 | 3 | N/A | N/A |
Reaction Groups According to System Organ Class (SOC) Level | Number of Signaled SARs | % of Total Number of Signaled SARs |
---|---|---|
Nervous system disorders | 77 | 24.0 |
General disorders and administration site conditions | 67 | 20.9 |
Infections and infestations | 42 | 13.1 |
Gastrointestinal disorders | 28 | 8.7 |
Investigations | 24 | 7.5 |
Respiratory, thoracic, and mediastinal disorders | 20 | 6.2 |
Psychiatric disorders | 14 | 4.4 |
Injury, poisoning, and procedural complications | 11 | 3.4 |
Eye disorders | 10 | 3.1 |
Skin and subcutaneous tissue disorders | 9 | 2.8 |
Males (n = 62) | Females (n = 86) | OR 95% CI | p-Value | |
---|---|---|---|---|
Number of cases with more than one adverse reaction | 28/62 | 43/86 | 0.78 (0.41, 1.49) | 0.224307 |
Number of cases with more than two adverse reactions | 18/62 | 24/86 | 1.0568 (0.51, 2.18) | 0.440458 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ammendolia, I.; Sframeli, M.; Esposito, E.; Cardia, L.; Noto, A.; Currò, M.; Calapai, G.; De Pasquale, M.; Mannucci, C.; Calapai, F. Adverse Reactions to the Orphan Drug Cerliponase Alfa in the Treatment of Neurolipofuscinosis Type 2 (CLN2). Pharmaceuticals 2024, 17, 1513. https://doi.org/10.3390/ph17111513
Ammendolia I, Sframeli M, Esposito E, Cardia L, Noto A, Currò M, Calapai G, De Pasquale M, Mannucci C, Calapai F. Adverse Reactions to the Orphan Drug Cerliponase Alfa in the Treatment of Neurolipofuscinosis Type 2 (CLN2). Pharmaceuticals. 2024; 17(11):1513. https://doi.org/10.3390/ph17111513
Chicago/Turabian StyleAmmendolia, Ilaria, Maria Sframeli, Emanuela Esposito, Luigi Cardia, Alberto Noto, Mariaconcetta Currò, Gioacchino Calapai, Maria De Pasquale, Carmen Mannucci, and Fabrizio Calapai. 2024. "Adverse Reactions to the Orphan Drug Cerliponase Alfa in the Treatment of Neurolipofuscinosis Type 2 (CLN2)" Pharmaceuticals 17, no. 11: 1513. https://doi.org/10.3390/ph17111513
APA StyleAmmendolia, I., Sframeli, M., Esposito, E., Cardia, L., Noto, A., Currò, M., Calapai, G., De Pasquale, M., Mannucci, C., & Calapai, F. (2024). Adverse Reactions to the Orphan Drug Cerliponase Alfa in the Treatment of Neurolipofuscinosis Type 2 (CLN2). Pharmaceuticals, 17(11), 1513. https://doi.org/10.3390/ph17111513