Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine–Glycine–Aspartate) Strategies
Abstract
:1. Introduction
2. Integrins—Unveiling Tumor Dynamics
2.1. Fundamentals of Integrin Biology
2.2. RGD-Binding Integrins in Cancer Progression
3. RGD Peptides in Focus—Bridging Cancer Diagnosis and Targeted Therapy
3.1. Targeting RGD-Recognizing Integrins for Cancer Diagnosis
3.2. RGD-Based Peptides for Cancer Therapy
3.2.1. Pharmacological Targeting of Integrins
3.2.2. RGD-Based Peptides for Drug Delivery
3.2.3. RGD-Based Radiotracers for Targeted Radiotherapy
3.3. Challenges and Limitations in Integrin Targeting
4. Dual-Targeting Approaches Based on RGD Peptides
4.1. Dual-Targeting RGD-Based Radiotracers for Imaging and Targeted Therapy
4.1.1. Dual Targeting of GRPR and αvβ3
4.1.2. Dual Targeting of SSTR and αvβ3
4.1.3. Dual Targeting of FAP and αvβ3
4.1.4. Dual Targeting of PSMA and αvβ3
4.1.5. Dual Targeting of APN/CD13 and αvβ3
4.1.6. Dual Targeting of NRP-1 and αvβ3
4.1.7. Dual Targeting of Growth Factors Receptors (GFRs) and αvβ3
4.1.8. Dual Targeting of uPAR and αvβ3
4.1.9. Dual Targeting of MC1R and αvβ3
4.2. Dual-Targeting RGD-Based Nanoparticles and Liposomes; Implications for Brain Tumor Management
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Global Cancer Burden Growing, amidst Mounting Need for Services. Available online: https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed on 20 September 2024).
- Global Cancer Facts & Figures. Available online: https://www.cancer.org/research/cancer-facts-statistics/global-cancer-facts-and-figures.html (accessed on 11 October 2024).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Sonkin, D.; Thomas, A.; Teicher, B.A. Cancer Treatments: Past, Present, and Future. Cancer Genet. 2024, 286–287, 18–24. [Google Scholar] [CrossRef]
- Rulten, S.L.; Grose, R.P.; Gatz, S.A.; Jones, J.L.; Cameron, A.J.M. The Future of Precision Oncology. Int. J. Mol. Sci. 2023, 24, 12613. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.-W.; Qiu, S.-Q.; Zhang, G.-J. Molecular and Functional Imaging in Cancer-Targeted Therapy: Current Applications and Future Directions. Signal Transduct. Target. Ther. 2023, 8, 89. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, H.; Tan, L.; Siu, K.T.H.; Guan, X.-Y. Exploring Treatment Options in Cancer: Tumor Treatment Strategies. Signal Transduct. Target. Ther. 2024, 9, 175. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, H.; Ivaska, J. Every Step of the Way: Integrins in Cancer Progression and Metastasis. Nat. Rev. Cancer 2018, 18, 533–548. [Google Scholar] [CrossRef] [PubMed]
- Danhier, F.; Le Breton, A.; Préat, V. RGD-Based Strategies to Target Alpha(v) Beta(3) Integrin in Cancer Therapy and Diagnosis. Mol. Pharm. 2012, 9, 2961–2973. [Google Scholar] [CrossRef]
- Javid, H.; Oryani, M.A.; Rezagholinejad, N.; Esparham, A.; Tajaldini, M.; Karimi-Shahri, M. RGD Peptide in Cancer Targeting: Benefits, Challenges, Solutions, and Possible Integrin–RGD Interactions. Cancer Med. 2024, 13, e6800. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Gorlia, T.; Erridge, S.C.; Perry, J.; Hong, Y.-K.; Aldape, K.D.; Lhermitte, B.; Pietsch, T.; Grujicic, D.; et al. Cilengitide Combined with Standard Treatment for Patients with Newly Diagnosed Glioblastoma with Methylated MGMT Promoter (CENTRIC EORTC 26071-22072 Study): A Multicentre, Randomised, Open-Label, Phase 3 Trial. Lancet Oncol. 2014, 15, 1100–1108. [Google Scholar] [CrossRef]
- Nabors, L.B.; Fink, K.L.; Mikkelsen, T.; Grujicic, D.; Tarnawski, R.; Nam, D.H.; Mazurkiewicz, M.; Salacz, M.; Ashby, L.; Zagonel, V.; et al. Two Cilengitide Regimens in Combination with Standard Treatment for Patients with Newly Diagnosed Glioblastoma and Unmethylated MGMT Gene Promoter: Results of the Open-Label, Controlled, Randomized Phase II CORE Study. Neuro Oncol. 2015, 17, 708–717. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Dong, B.; He, X.; Qiu, Z.; Zhang, J.; Zhang, M.; Liu, H.; Pang, X.; Cui, Y. The Challenges and Opportunities of Avβ3-Based Therapeutics in Cancer: From Bench to Clinical Trials. Pharmacol. Res. 2023, 189, 106694. [Google Scholar] [CrossRef] [PubMed]
- Taghipour, Y.D.; Zarebkohan, A.; Salehi, R.; Rahimi, F.; Torchilin, V.P.; Hamblin, M.R.; Seifalian, A. An Update on Dual Targeting Strategy for Cancer Treatment. J. Control Release 2022, 349, 67–96. [Google Scholar] [CrossRef]
- Ehlerding, E.B.; Sun, L.; Lan, X.; Zeng, D.; Cai, W. Dual-Targeted Molecular Imaging of Cancer. J. Nucl. Med. 2018, 59, 390–395. [Google Scholar] [CrossRef]
- Judmann, B.; Braun, D.; Wängler, B.; Schirrmacher, R.; Fricker, G.; Wängler, C. Current State of Radiolabeled Heterobivalent Peptidic Ligands in Tumor Imaging and Therapy. Pharmaceuticals 2020, 13, 173. [Google Scholar] [CrossRef]
- Takada, Y.; Ye, X.; Simon, S. The Integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Barczyk, M.; Carracedo, S.; Gullberg, D. Integrins. Cell Tissue Res. 2010, 339, 269–280. [Google Scholar] [CrossRef]
- Kadry, Y.A.; Calderwood, D.A. Chapter 22: Structural and Signaling Functions of Integrins. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183206. [Google Scholar] [CrossRef]
- Ginsberg, M.H. Integrin Activation. BMB Rep. 2014, 47, 655. [Google Scholar] [CrossRef]
- Alday-Parejo, B.; Stupp, R.; Rüegg, C. Are Integrins Still Practicable Targets for Anti-Cancer Therapy? Cancers 2019, 11, 978. [Google Scholar] [CrossRef]
- Humphries, J.D.; Byron, A.; Humphries, M.J. Integrin Ligands at a Glance. J. Cell Sci. 2006, 119, 3901–3903. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; He, X.; Qiu, Z.; Zhang, H.; Xie, R.; Liu, Z.; Gu, Y.; Zhao, N.; Xiang, Q.; Cui, Y. Targeting Integrin Pathways: Mechanisms and Advances in Therapy. Signal Transduct. Target. Ther. 2023, 8, 1. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, B.S.; Kessler, H.; Kossatz, S.; Reuning, U. RGD-Binding Integrins Revisited: How Recently Discovered Functions and Novel Synthetic Ligands (Re-)Shape an Ever-Evolving Field. Cancers 2021, 13, 1711. [Google Scholar] [CrossRef]
- Harburger, D.S.; Calderwood, D.A. Integrin Signalling at a Glance. J. Cell Sci. 2009, 122, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Luo, B.-H.; Springer, T.A. Integrin Structures and Conformational Signaling. Curr. Opin. Cell Biol. 2006, 18, 579–586. [Google Scholar] [CrossRef]
- Calderwood, D.A. Integrin Activation. J. Cell Sci. 2004, 117, 657–666. [Google Scholar] [CrossRef]
- Sun, Z.; Costell, M.; Fässler, R. Integrin Activation by Talin, Kindlin and Mechanical Forces. Nat. Cell Biol. 2019, 21, 25–31. [Google Scholar] [CrossRef]
- Legate, K.R.; Wickström, S.A.; Fässler, R. Genetic and Cell Biological Analysis of Integrin Outside-in Signaling. Genes. Dev. 2009, 23, 397–418. [Google Scholar] [CrossRef]
- Bachmann, M.; Kukkurainen, S.; Hytönen, V.P.; Wehrle-Haller, B. Cell Adhesion by Integrins. Physiol. Rev. 2019, 99, 1655–1699. [Google Scholar] [CrossRef]
- Mezu-Ndubuisi, O.J.; Maheshwari, A. The Role of Integrins in Inflammation and Angiogenesis. Pediatr. Res. 2021, 89, 1619–1626. [Google Scholar] [CrossRef]
- Avraamides, C.J.; Garmy-Susini, B.; Varner, J.A. Integrins in Angiogenesis and Lymphangiogenesis. Nat. Rev. Cancer 2008, 8, 604–617. [Google Scholar] [CrossRef] [PubMed]
- Desgrosellier, J.S.; Cheresh, D.A. Integrins in Cancer: Biological Implications and Therapeutic Opportunities. Nat. Rev. Cancer 2010, 10, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Wu, Q.; Dong, Z.; Liu, K. Integrins in Cancer: Emerging Mechanisms and Therapeutic Opportunities. Pharmacol. Ther. 2023, 247, 108458. [Google Scholar] [CrossRef]
- Borowska, K.; Jedrych, B.; Czerny, K.; Zabielski, S. Udział integryn w procesach fizjo- i patologicznych [The role of integrins in the physiologic and pathogenic processes]. Pol. Merkur. Lekarski 2006, 21, 362–366. [Google Scholar]
- Hou, J.; Yan, D.; Liu, Y.; Huang, P.; Cui, H. The Roles of Integrin A5β1 in Human Cancer. OncoTargets Ther. 2020, 13, 13329–13344. [Google Scholar] [CrossRef]
- Bergonzini, C.; Kroese, K.; Zweemer, A.J.; Danen, E.H. Targeting Integrins for Cancer Therapy—Disappointments and Opportunities. Front. Cell Dev. Biol. 2022, 10, 863850. [Google Scholar] [CrossRef] [PubMed]
- Echavidre, W.; Durivault, J.; Gotorbe, C.; Blanchard, T.; Pagnuzzi, M.; Vial, V.; Raes, F.; Broisat, A.; Villeneuve, R.; Amblard, R.; et al. Integrin-Avβ3 Is a Therapeutically Targetable Fundamental Factor in Medulloblastoma Tumorigenicity and Radioresistance. Cancer Res. Commun. 2023, 3, 2483–2496. [Google Scholar] [CrossRef]
- Pachane, B.C.; Selistre-de-Araujo, H.S. The Role of Avβ3 Integrin in Cancer Therapy Resistance. Biomedicines 2024, 12, 1163. [Google Scholar] [CrossRef]
- Adair, T.H.; Montani, J.-P. Overview of Angiogenesis. In Angiogenesis; Morgan & Claypool Life Sciences: San Rafael, CA, USA, 2010. [Google Scholar]
- Lugano, R.; Ramachandran, M.; Dimberg, A. Tumor Angiogenesis: Causes, Consequences, Challenges and Opportunities. Cell. Mol. Life Sci. CMLS 2020, 77, 1745–1770. [Google Scholar] [CrossRef]
- Bussolati, B.; Deambrosis, I.; Russo, S.; Deregibus, M.C.; Camussi, G. Altered Angiogenesis and Survival in Human Tumor-Derived Endothelial Cells. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2003, 17, 1159–1161. [Google Scholar] [CrossRef]
- Ata, R.; Antonescu, C.N. Integrins and Cell Metabolism: An Intimate Relationship Impacting Cancer. Int. J. Mol. Sci. 2017, 18, 189. [Google Scholar] [CrossRef] [PubMed]
- Cooper, J.; Giancotti, F.G. Integrin Signaling in Cancer: Mechanotransduction, Stemness, Epithelial Plasticity, and Therapeutic Resistance. Cancer Cell 2019, 35, 347–367. [Google Scholar] [CrossRef] [PubMed]
- Harryman, W.L.; Marr, K.D.; Nagle, R.B.; Cress, A.E. Integrins and Epithelial-Mesenchymal Cooperation in the Tumor Microenvironment of Muscle-Invasive Lethal Cancers. Front. Cell Dev. Biol. 2022, 10, 837585. [Google Scholar] [CrossRef] [PubMed]
- Bagati, A.; Kumar, S.; Jiang, P.; Pyrdol, J.; Zou, A.E.; Godicelj, A.; Mathewson, N.D.; Cartwright, A.N.R.; Cejas, P.; Brown, M.; et al. Integrin Avβ6-TGFβ-SOX4 Pathway Drives Immune Evasion in Triple-Negative Breast Cancer. Cancer Cell 2021, 39, 54–67.e9. [Google Scholar] [CrossRef]
- Dodagatta-Marri, E.; Ma, H.-Y.; Liang, B.; Li, J.; Meyer, D.S.; Chen, S.-Y.; Sun, K.-H.; Ren, X.; Zivak, B.; Rosenblum, M.D.; et al. Integrin Avβ8 on T Cells Suppresses Anti-Tumor Immunity in Multiple Models and Is a Promising Target for Tumor Immunotherapy. Cell Rep. 2021, 36, 109309. [Google Scholar] [CrossRef]
- Liao, J.; Chen, R.; Lin, B.; Deng, R.; Liang, Y.; Zeng, J.; Ma, S.; Qiu, X. Cross-Talk between the TGF-β and Cell Adhesion Signaling Pathways in Cancer. Int. J. Med. Sci. 2024, 21, 1307–1320. [Google Scholar] [CrossRef]
- Vogetseder, A.; Thies, S.; Ingold, B.; Roth, P.; Weller, M.; Schraml, P.; Goodman, S.L.; Moch, H. Av-Integrin Isoform Expression in Primary Human Tumors and Brain Metastases. Int. J. Cancer 2013, 133, 2362–2371. [Google Scholar] [CrossRef]
- Hoshino, A.; Costa-Silva, B.; Shen, T.-L.; Rodrigues, G.; Hashimoto, A.; Tesic Mark, M.; Molina, H.; Kohsaka, S.; Di Giannatale, A.; Ceder, S.; et al. Tumour Exosome Integrins Determine Organotropic Metastasis. Nature 2015, 527, 329–335. [Google Scholar] [CrossRef]
- Wu, Y.J.; Pagel, M.A.; Muldoon, L.L.; Fu, R.; Neuwelt, E.A. High Av Integrin Level of Cancer Cells Is Associated with Development of Brain Metastasis in Athymic Rats. Anticancer Res. 2017, 37, 4029–4040. [Google Scholar] [CrossRef]
- Huang, R.; Rofstad, E.K. Integrins as Therapeutic Targets in the Organ-Specific Metastasis of Human Malignant Melanoma. J. Exp. Clin. Cancer Res. 2018, 37, 92. [Google Scholar] [CrossRef]
- Yan, P.; Zhu, H.; Yin, L.; Wang, L.; Xie, P.; Ye, J.; Jiang, X.; He, X. Integrin Avβ6 Promotes Lung Cancer Proliferation and Metastasis through Upregulation of IL-8-Mediated MAPK/ERK Signaling. Transl. Oncol. 2018, 11, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Zhang, C.; Luo, Q.; Li, B.; Ai, L.; Li, D.; Jia, W. In Vivo Evaluation of Integrin Avβ6-Targeting Peptide in NSCLC and Brain Metastasis. Front. Oncol. 2023, 13, 1070967. [Google Scholar] [CrossRef] [PubMed]
- Mitra, A.; Sawada, K.; Tiwari, P.; Mui, K.; Gwin, K.; Lengyel, E. Ligand Independent Activation of C-Met by Fibronectin and A5β1-Integrin Regulates Ovarian Cancer Invasion and Metastasis. Oncogene 2011, 30, 1566–1576. [Google Scholar] [CrossRef]
- Stefańska, K.; Józkowiak, M.; Angelova Volponi, A.; Shibli, J.A.; Golkar-Narenji, A.; Antosik, P.; Bukowska, D.; Piotrowska-Kempisty, H.; Mozdziak, P.; Dzięgiel, P.; et al. The Role of Exosomes in Human Carcinogenesis and Cancer Therapy—Recent Findings from Molecular and Clinical Research. Cells 2023, 12, 356. [Google Scholar] [CrossRef]
- Zhao, L.; Ma, X.; Yu, J. Exosomes and Organ-Specific Metastasis. Mol. Ther. Methods Clin. Dev. 2021, 22, 133–147. [Google Scholar] [CrossRef]
- Grigoryeva, E.S.; Tashireva, L.A.; Savelieva, O.E.; Zavyalova, M.V.; Popova, N.O.; Kuznetsov, G.A.; Andryuhova, E.S.; Perelmuter, V.M. The Association of Integrins Β3, Β4, and αVβ5 on Exosomes, CTCs and Tumor Cells with Localization of Distant Metastasis in Breast Cancer Patients. Int. J. Mol. Sci. 2023, 24, 2929. [Google Scholar] [CrossRef]
- Nuclear Medicine. Available online: https://www.nibib.nih.gov/science-education/science-topics/nuclear-medicine (accessed on 19 June 2024).
- Tafti, D.; Banks, K.P. Nuclear Medicine Physics. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Li, L.; Chen, X.; Yu, J.; Yuan, S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front. Oncol. 2022, 12, 837952. [Google Scholar] [CrossRef]
- Blower, P.J. A Nuclear Chocolate Box: The Periodic Table of Nuclear Medicine. Dalton Trans. 2015, 44, 4819–4844. [Google Scholar] [CrossRef] [PubMed]
- Beer, A.J.; Grosu, A.-L.; Carlsen, J.; Kolk, A.; Sarbia, M.; Stangier, I.; Watzlowik, P.; Wester, H.-J.; Haubner, R.; Schwaiger, M. [18F]Galacto-RGD Positron Emission Tomography for Imaging of Alphavbeta3 Expression on the Neovasculature in Patients with Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. 2007, 13, 6610–6616. [Google Scholar] [CrossRef]
- Schnell, O.; Krebs, B.; Carlsen, J.; Miederer, I.; Goetz, C.; Goldbrunner, R.H.; Wester, H.-J.; Haubner, R.; Pöpperl, G.; Holtmannspötter, M.; et al. Imaging of Integrin Avβ3 Expression in Patients with Malignant Glioma by [18F] Galacto-RGD Positron Emission Tomography. Neuro-Oncol. 2009, 11, 861–870. [Google Scholar] [CrossRef]
- Beer, A.J.; Schwarzenböck, S.M.; Zantl, N.; Souvatzoglou, M.; Maurer, T.; Watzlowik, P.; Kessler, H.; Wester, H.-J.; Schwaiger, M.; Krause, B.J. Non-Invasive Assessment of Inter-and Intrapatient Variability of Integrin Expression in Metastasized Prostate Cancer by PET. Oncotarget 2016, 7, 28151–28159. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhou, J.; Yao, S.; Li, J.; Fu, Z.; Liu, S. The Application Value of 18F-Alfatide-RGD PET/CT in the Preliminary Diagnosis of Patients with Non-Small Cell Lung Cancer. J. Radioanal. Nucl. Chem. 2022, 331, 4141–4148. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, S.; Huang, Y.; Zheng, J.; Dong, Y.; Zhang, B.; Zhao, S.; Lu, H.; Liu, Z.; Yu, J.; et al. A Pilot Study of 18F-Alfatide PET/CT Imaging for Detecting Lymph Node Metastases in Patients with Non-Small Cell Lung Cancer. Sci. Rep. 2017, 7, 2877. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhao, W.; Hu, X.-D.; Gao, S.; Yu, Q.; Wang, S.; Hou, W.; Zhu, S.; Lu, H.; Yuan, S. A Pilot Study on Imaging of Integrin Avβ3 with RGD PET/CT in Patients with Glioma. J. Nucl. Med. 2015, 56, 324. [Google Scholar]
- Li, L.; Liu, N.; Zhang, H.; Tao, R.; Zhao, S.; Chen, Z.; Fu, Z.; Li, W.; Xu, L.; Liu, Y.; et al. Potential 18F-RGD PET/CT and DCE-MRI Imaging-Based Biomarkers for Postoperative Survival Prediction Among Patients with Newly Diagnosed Glioblastoma Treated with Bevacizumab and Chemoradiotherapy. Front. Oncol. 2022, 12, 848266. [Google Scholar] [CrossRef]
- Li, D.; Zhao, X.; Zhang, L.; Li, F.; Ji, N.; Gao, Z.; Wang, J.; Kang, P.; Liu, Z.; Shi, J.; et al. (68)Ga-PRGD2 PET/CT in the Evaluation of Glioma: A Prospective Study. Mol. Pharm. 2014, 11, 3923–3929. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Ji, N.; Zhao, X.; Zheng, K.; Qiao, Z.; Li, F.; Lang, L.; Iagaru, A.; Niu, G.; et al. Combined 68Ga-NOTA-PRGD2 and 18F-FDG PET/CT Can Discriminate Uncommon Meningioma Mimicking High-Grade Glioma. Clin. Nucl. Med. 2018, 43, 648–654. [Google Scholar] [CrossRef]
- Zheng, K.; Liang, N.; Zhang, J.; Lang, L.; Zhang, W.; Li, S.; Zhao, J.; Niu, G.; Li, F.; Zhu, Z.; et al. 68Ga-NOTA-PRGD2 PET/CT for Integrin Imaging in Patients with Lung Cancer. J. Nucl. Med. 2015, 56, 1823–1827. [Google Scholar] [CrossRef]
- Parihar, A.S.; Mittal, B.R.; Kumar, R.; Shukla, J.; Bhattacharya, A. 68Ga-DOTA-RGD2 Positron Emission Tomography/Computed Tomography in Radioiodine Refractory Thyroid Cancer: Prospective Comparison of Diagnostic Accuracy with 18F-FDG Positron Emission Tomography/Computed Tomography and Evaluation Toward Potential Theranostics. Thyroid 2020, 30, 557–567. [Google Scholar] [CrossRef]
- Lobeek, D.; Rijpkema, M.; Terry, S.Y.A.; Molkenboer-Kuenen, J.D.M.; Joosten, L.; van Genugten, E.A.J.; van Engen-van Grunsven, A.C.H.; Kaanders, J.H.A.M.; Pegge, S.A.H.; Boerman, O.C.; et al. Imaging Angiogenesis in Patients with Head and Neck Squamous Cell Carcinomas by [68Ga]Ga-DOTA-E-[c(RGDfK)]2 PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 2647–2655. [Google Scholar] [CrossRef]
- Krishnaraju, V.S.; Kumar, R.; Sood, A.; Shukla, J.; Subramanian, K.; Kakkar, N.; Panda, N.; Mittal, B.R. Angiogenesis-Targeted 68Ga-DOTA-RGD2 PET/CT Imaging: A Potential Theranostic Application in the Case of Chondrosarcoma. Nucl. Med. Mol. Imaging 2021, 55, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Clausen, M.M.; Carlsen, E.A.; Christensen, C.; Madsen, J.; Brandt-Larsen, M.; Klausen, T.L.; Holm, S.; Loft, A.; Berthelsen, A.K.; Kroman, N.; et al. First-in-Human Study of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET for Integrin Avβ3 Imaging in Patients with Breast Cancer and Neuroendocrine Neoplasms: Safety, Dosimetry and Tumor Imaging Ability. Diagnostics 2022, 12, 851. [Google Scholar] [CrossRef] [PubMed]
- Carlsen, E.A.; Loft, M.; Loft, A.; Czyzewska, D.; Andreassen, M.; Langer, S.W.; Knigge, U.; Kjaer, A. Prospective Phase II Trial of [68Ga]Ga-NODAGA-E[c(RGDyK)]2 PET/CT Imaging of Integrin Avβ3 for Prognostication in Patients with Neuroendocrine Neoplasms. J. Nucl. Med. 2023, 64, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Gondhane, A.; Verma, P.; Chandak, A.; Basu, S. Prospective Evaluation of 68Ga-NODAGA-RGD PET-CT in Patients of Carcinoma Thyroid with Thyroglobulin Elevated Negative Radioiodine Scintigraphy (TENIS) with a Head-to-Head Comparison with FDG-PET/CT. Nucl. Med. Commun. 2024, 45, 412–419. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Y.; Lu, D.; Xu, X.; Zhou, X.; Zhang, H.; Zhang, T.; Zhu, H.; Yang, Z.; Wang, F.; et al. Clinical Translation of a 68Ga-Labeled Integrin Avβ6–Targeting Cyclic Radiotracer for PET Imaging of Pancreatic Cancer. J. Nucl. Med. 2020, 61, 1461–1467. [Google Scholar] [CrossRef]
- Hausner, S.H.; Bold, R.J.; Cheuy, L.Y.; Chew, H.K.; Daly, M.E.; Davis, R.A.; Foster, C.C.; Kim, E.J.; Sutcliffe, J.L. Preclinical Development and First-in-Human Imaging of the Integrin Avβ6 with [18F]Avβ6-Binding Peptide in Metastatic Carcinoma. Clin. Cancer Res. 2019, 25, 1206–1215. [Google Scholar] [CrossRef]
- Nakamoto, R.; Ferri, V.; Duan, H.; Hatami, N.; Goel, M.; Rosenberg, J.; Kimura, R.; Wardak, M.; Haywood, T.; Kellow, R.; et al. Pilot-Phase PET/CT Study Targeting Integrin Avβ6 in Pancreatic Cancer Patients Using the Cystine-Knot Peptide-Based 18F-FP-R01-MG-F2. Eur. J. Nucl. Med. Mol. Imaging 2022, 50, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Mas-Moruno, C.; Rechenmacher, F.; Kessler, H. Cilengitide: The First Anti-Angiogenic Small Molecule Drug Candidate. Design, Synthesis and Clinical Evaluation. Anticancer. Agents Med. Chem. 2010, 10, 753–768. [Google Scholar] [CrossRef]
- Maurer, G.D.; Tritschler, I.; Adams, B.; Tabatabai, G.; Wick, W.; Stupp, R.; Weller, M. Cilengitide Modulates Attachment and Viability of Human Glioma Cells, but Not Sensitivity to Irradiation or Temozolomide in Vitro. Neuro-Oncol. 2009, 11, 747–756. [Google Scholar] [CrossRef]
- Stupp, R.; Hegi, M.E.; Neyns, B.; Goldbrunner, R.; Schlegel, U.; Clement, P.M.J.; Grabenbauer, G.G.; Ochsenbein, A.F.; Simon, M.; Dietrich, P.-Y.; et al. Phase I/IIa Study of Cilengitide and Temozolomide with Concomitant Radiotherapy Followed by Cilengitide and Temozolomide Maintenance Therapy in Patients with Newly Diagnosed Glioblastoma. JCO 2010, 28, 2712–2718. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Lee, J.K.; Kim, B.; DeWitt, J.P.; Lee, J.E.; Han, J.H.; Kim, S.-K.; Oh, C.W.; Kim, C.-Y. Combination Therapy of Cilengitide with Belotecan against Experimental Glioblastoma. Int. J. Cancer 2013, 133, 749–756. [Google Scholar] [CrossRef] [PubMed]
- Nabors, L.B.; Mikkelsen, T.; Hegi, M.E.; Ye, X.; Batchelor, T.; Lesser, G.; Peereboom, D.; Rosenfeld, M.R.; Olsen, J.; Brem, S.; et al. A Safety Run-in and Randomized Phase 2 Study of Cilengitide Combined with Chemoradiation for Newly Diagnosed Glioblastoma (NABTT 0306). Cancer 2012, 118, 5601–5607. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.R.; Hart, I.R.; Watson, A.R.; Welti, J.C.; Silva, R.G.; Robinson, S.D.; Da Violante, G.; Gourlaouen, M.; Salih, M.; Jones, M.C.; et al. Stimulation of Tumor Growth and Angiogenesis by Low Concentrations of RGD-Mimetic Integrin Inhibitors. Nat. Med. 2009, 15, 392–400. [Google Scholar] [CrossRef]
- Weller, M.; Nabors, L.B.; Gorlia, T.; Leske, H.; Rushing, E.; Bady, P.; Hicking, C.; Perry, J.; Hong, Y.-K.; Roth, P.; et al. Cilengitide in Newly Diagnosed Glioblastoma: Biomarker Expression and Outcome. Oncotarget 2016, 7, 15018–15032. [Google Scholar] [CrossRef]
- Sanati, M.; Afshari, A.R.; Aminyavari, S.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. RGD-Engineered Nanoparticles as an Innovative Drug Delivery System in Cancer Therapy. J. Drug Deliv. Sci. Technol. 2023, 84, 104562. [Google Scholar] [CrossRef]
- Kim, H.-S.; Kang, J.-H.; Jang, J.; Lee, E.-J.; Kim, J.H.; Byun, J.; Shin, U.S. Dual Stimuli-Responsive Mesoporous Silica Nanoparticles for Efficient Loading and Smart Delivery of Doxorubicin to Cancer with RGD-Integrin Targeting. Eur. J. Pharm. Sci. 2023, 188, 106525. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-T.; Meng, D.; Feng, M.-X.; Ruan, K.-Y.; Dong, J.-J.; Bin-Shen; Xiao, Y.-P.; Zhang, X.-H.; Shi, L.-L.; Jiang, X.-H. RGD-Modified Solid Lipid Nanoparticles Improve Oral Doxorubicin Absorption: In Vitro and in Vivo Study. J. Drug Deliv. Sci. Technol. 2024, 91, 105293. [Google Scholar] [CrossRef]
- Zheng, G.; Zheng, M.; Yang, B.; Fu, H.; Li, Y. Improving Breast Cancer Therapy Using Doxorubicin Loaded Solid Lipid Nanoparticles: Synthesis of a Novel Arginine-Glycine-Aspartic Tripeptide Conjugated, pH Sensitive Lipid and Evaluation of the Nanomedicine in Vitro and in Vivo. Biomed. Pharmacother. 2019, 116, 109006. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Z.; Li, C.; Duan, G.; Wang, K.; Li, Q.; Tao, T. RGD Peptide-Modified, Paclitaxel Prodrug-Based, Dual-Drugs Loaded, and Redox-Sensitive Lipid-Polymer Nanoparticles for the Enhanced Lung Cancer Therapy. Biomed. Pharmacother. 2018, 106, 275–284. [Google Scholar] [CrossRef]
- Zhang, X.; He, Z.; Xiang, L.; Li, L.; Zhang, H.; Lin, F.; Cao, H. Codelivery of GRP78 siRNA and Docetaxel via RGD-PEG-DSPE/DOPA/CaP Nanoparticles for the Treatment of Castration-Resistant Prostate Cancer. Drug Des. Devel Ther. 2019, 13, 1357–1372. [Google Scholar] [CrossRef]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical Therapy in Cancer: Clinical Advances and Challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef] [PubMed]
- Bozon-Petitprin, A.; Bacot, S.; Gauchez, A.S.; Ahmadi, M.; Bourre, J.C.; Marti-Batlle, D.; Perret, P.; Broisat, A.; Riou, L.M.; Claron, M.; et al. Targeted Radionuclide Therapy with RAFT-RGD Radiolabelled with (90)Y or (177)Lu in a Mouse Model of Avβ3-Expressing Tumours. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 252–263. [Google Scholar] [CrossRef]
- Jin, Z.-H.; Furukawa, T.; Degardin, M.; Sugyo, A.; Tsuji, A.B.; Yamasaki, T.; Kawamura, K.; Fujibayashi, Y.; Zhang, M.-R.; Boturyn, D.; et al. αVβ3 Integrin-Targeted Radionuclide Therapy with 64Cu-Cyclam-RAFT-c(-RGDfK-)4. Mol. Cancer Ther. 2016, 15, 2076–2085. [Google Scholar] [CrossRef]
- Jin, Z.-H.; Furukawa, T.; Ohya, T.; Degardin, M.; Sugyo, A.; Tsuji, A.B.; Fujibayashi, Y.; Zhang, M.-R.; Higashi, T.; Boturyn, D.; et al. 67Cu-Radiolabeling of a Multimeric RGD Peptide for αVβ3 Integrin-Targeted Radionuclide Therapy: Stability, Therapeutic Efficacy, and Safety Studies in Mice. Nucl. Med. Commun. 2017, 38, 347–355. [Google Scholar] [CrossRef]
- Shi, J.; Fan, D.; Dong, C.; Liu, H.; Jia, B.; Zhao, H.; Jin, X.; Liu, Z.; Li, F.; Wang, F. Anti-Tumor Effect of Integrin Targeted (177)Lu-3PRGD2 and Combined Therapy with Endostar. Theranostics 2014, 4, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Pirooznia, N.; Abdi, K.; Beiki, D.; Emami, F.; Arab, S.S.; Sabzevari, O.; Soltani-Gooshkhaneh, S. 177Lu-Labeled Cyclic RGD Peptide as an Imaging and Targeted Radionuclide Therapeutic Agent in Non-Small Cell Lung Cancer: Biological Evaluation and Preclinical Study. Bioorg. Chem. 2020, 102, 104100. [Google Scholar] [CrossRef] [PubMed]
- Vats, K.; Sharma, R.; Sharma, A.K.; Sarma, H.D.; Satpati, D. Assessment of 177 Lu-Labeled Carboxyl-Terminated Polyamidoamine (PAMAM) Dendrimer-RGD Peptide Conjugate. J. Pept. Sci. 2022, 28, e3366. [Google Scholar] [CrossRef]
- Yoshimoto, M.; Washiyama, K.; Ohnuki, K.; Kojima, M.; Miller, B.; Yoshii, Y.; Fujii, H. Pre-Clinical Evaluation of 225Ac-DOTA-E[c(RGDfK)]2 for Targeted Alpha Therapy in PDCA Mice Model. J. Nucl. Med. 2023, 64, P276. [Google Scholar]
- Parihar, A.S.; Sood, A.; Kumar, R.; Bhusari, P.; Shukla, J.; Mittal, B.R. Novel Use of 177Lu-DOTA-RGD2 in Treatment of 68Ga-DOTA-RGD2-Avid Lesions in Papillary Thyroid Cancer with TENIS. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1836–1837. [Google Scholar] [CrossRef]
- Study Details|177Lu-AB-3PRGD2 in Patients with Integrin αVβ3 Positive Tumors|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT05013086 (accessed on 9 August 2024).
- Gvozdenovic, A.; Boro, A.; Meier, D.; Bode-Lesniewska, B.; Born, W.; Muff, R.; Fuchs, B. Targeting Avβ3 and Avβ5 Integrins Inhibits Pulmonary Metastasis in an Intratibial Xenograft Osteosarcoma Mouse Model. Oncotarget 2016, 7, 55141–55154. [Google Scholar] [CrossRef]
- Ramón y Cajal, S.; Sesé, M.; Capdevila, C.; Aasen, T.; De Mattos-Arruda, L.; Diaz-Cano, S.J.; Hernández-Losa, J.; Castellví, J. Clinical Implications of Intratumor Heterogeneity: Challenges and Opportunities. J. Mol. Med. 2020, 98, 161–177. [Google Scholar] [CrossRef] [PubMed]
- Truong, H.H.; Xiong, J.; Ghotra, V.P.S.; Nirmala, E.; Haazen, L.; Le Dévédec, S.E.; Balcioğlu, H.E.; He, S.; Snaar-Jagalska, B.E.; Vreugdenhil, E.; et al. Β1 Integrin Inhibition Elicits a Prometastatic Switch Through the TGFβ–miR-200–ZEB Network in E-Cadherin–Positive Triple-Negative Breast Cancer. Sci. Signal. 2014, 7, ra15. [Google Scholar] [CrossRef]
- Su, C.; Li, J.; Zhang, L.; Wang, H.; Wang, F.; Tao, Y.; Wang, Y.; Guo, Q.; Li, J.; Liu, Y.; et al. The Biological Functions and Clinical Applications of Integrins in Cancers. Front. Pharmacol. 2020, 11, 579068. [Google Scholar] [CrossRef]
- Krishn, S.R.; Singh, A.; Bowler, N.; Duffy, A.N.; Friedman, A.; Fedele, C.; Kurtoglu, S.; Tripathi, S.K.; Wang, K.; Hawkins, A.; et al. Prostate Cancer Sheds the Avβ3 Integrin in Vivo through Exosomes. Matrix Biol. 2019, 77, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Niu, G.; Wang, F.; Chen, X. (68)Ga-Labeled NOTA-RGD-BBN Peptide for Dual Integrin and GRPR-Targeted Tumor Imaging. Eur. J. Nucl. Med. Mol. Imaging 2009, 36, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Niu, G.; Lang, L.; Li, F.; Fan, X.; Yan, X.; Yao, S.; Yan, W.; Huo, L.; Chen, L.; et al. Clinical Translation of a Dual Integrin Avβ3– and Gastrin-Releasing Peptide Receptor–Targeting PET Radiotracer, 68Ga-BBN-RGD. J. Nucl. Med. 2017, 58, 228–234. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, F.; Niu, G.; Peng, L.; Lang, L.; Li, F.; Ying, H.; Wu, H.; Pan, B.; Zhu, Z.; et al. 68Ga-BBN-RGD PET/CT for GRPR and Integrin Avβ3 Imaging in Patients with Breast Cancer. Theranostics 2018, 8, 1121–1130. [Google Scholar] [CrossRef]
- Bandara, N.; Stott Reynolds, T.J.; Schehr, R.; Bandari, R.P.; Diebolder, P.J.; Krieger, S.; Xu, J.; Miao, Y.; Rogers, B.E.; Smith, C.J. Matched-Pair, 86Y/90Y-Labeled, Bivalent RGD/Bombesin Antagonist, [RGD-Glu-[DO3A]-6-Ahx-RM2], as a Potential Theranostic Agent for Prostate Cancer. Nucl. Med. Biol. 2018, 62–63, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Wang, R.; Xu, P.; Shi, M.; Shang, Q.; Zeng, X.; Zeng, X.; Liu, J.; Wang, X.; Zhu, Z.; et al. Synthesis, Preclinical, and Initial Clinical Evaluation of Integrin αVβ3 and Gastrin-Releasing Peptide Receptor (GRPR) Dual-Targeting Radiotracer [68Ga]Ga-RGD-RM26-03. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2023–2035. [Google Scholar] [CrossRef]
- Li, D.; Li, Z.; Chen, X.; Zhang, J.; Zhu, Z.; Wang, R.; Wang, J. Dual Integrin αvÎ23 and Gastrin-Releasing Peptide Receptor Targeting PET Tracer 68Ga-DOTA-RM26-RGD in Glioma: A Pilot Study. J. Nucl. Med. 2024, 65, 241697. [Google Scholar]
- Liu, B.; Zhang, Z.; Wang, H.; Yao, S. Preclinical Evaluation of a Dual Sstr2 and Integrin Avβ3-Targeted Heterodimer [68Ga]-NOTA-3PEG4-TATE-RGD. Bioorg. Med. Chem. 2019, 27, 115094. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhu, Z. A Proof-of-Concept Study of 68Ga-NOTA-3P-TATE-RGD PET/CT for Dual-Target Imaging of Somatostatin Receptor and Integrin Avβ3 to Detect Lung Cancer in a Single Scan. J. Nucl. Med. 2018, 59, 1141. [Google Scholar]
- Jiang, Y.; Liu, Q.; Wang, G.; Sui, H.; Wang, R.; Wang, J.; Zhu, Z. A Prospective Head-to-Head Comparison of 68 Ga-NOTA-3P-TATE-RGD and 68 Ga-DOTATATE in Patients with Gastroenteropancreatic Neuroendocrine Tumours. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4218–4227. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Sun, D.; Sun, Y.-Q.; Wang, J.; Li, L.; Zhu, Z.; Lin, Y. Initial Experience with 68Ga-NOTA-3P-TATE-RGD PET Imaging in Patients with Radioiodine Refractory Thyroid Carcinoma. J. Nucl. Med. 2024, 65, 241978. [Google Scholar]
- Zang, J.; Wen, X.; Lin, R.; Zeng, X.; Wang, C.; Shi, M.; Zeng, X.; Zhang, J.; Wu, X.; Zhang, X.; et al. Synthesis, Preclinical Evaluation and Radiation Dosimetry of a Dual Targeting PET Tracer [68Ga]Ga-FAPI-RGD. Theranostics 2022, 12, 7180–7190. [Google Scholar] [CrossRef]
- Wang, R.; Jakobsson, V.; Wang, J.; Zhao, T.; Peng, X.; Li, B.; Xue, J.; Liang, N.; Zhu, Z.; Chen, X.; et al. Dual Targeting PET Tracer [68Ga]Ga-FAPI-RGD in Patients with Lung Neoplasms: A Pilot Exploratory Study. Theranostics 2023, 13, 2979–2992. [Google Scholar] [CrossRef]
- Zhao, L.; Wen, X.; Xu, W.; Pang, Y.; Sun, L.; Wu, X.; Xu, P.; Zhang, J.; Guo, Z.; Lin, Q.; et al. Clinical Evaluation of 68Ga-FAPI-RGD for Imaging of Fibroblast Activation Protein and Integrin Avβ3 in Various Cancer Types. J. Nucl. Med. 2023, 64, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Lin, R.; Wen, X.; Wang, C.; Zhao, T.; Jakobsson, V.; Yang, Y.; Wu, X.; Guo, Z.; Chen, X.; et al. A Head-to-Head Comparison of 68Ga-LNC1007 and 2-18F-FDG/68Ga-FAPI-02 PET/CT in Patients with Various Cancers. Clin. Nucl. Med. 2023, 48, 861–868. [Google Scholar] [CrossRef]
- Lin, R.; Wang, C.; Chen, S.; Lin, T.; Cai, H.; Chen, S.; Yang, Y.; Zhang, J.; Xu, F.; Zhang, J.; et al. [68Ga]Ga-LNC1007 PET/CT in the Evaluation of Renal Cell Carcinoma: Comparison with 2-[18F]FDG/[68Ga]Ga-PSMA PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 535–547. [Google Scholar] [CrossRef]
- Chen, Y.; Zang, J.; Wu, Z.; Miao, W. 68Ga-FAPI-RGD PET/CT Detected Skull Metastasis Better Than 18F-FDG in a Patient With Radioiodine-Refractory Differentiated Thyroid Cancer. Clin. Nucl. Med. 2024, 49, 964–965. [Google Scholar] [CrossRef]
- Liu, N.; Wan, Q.; Wu, X.; Zhao, T.; Jakobsson, V.; Yuan, H.; Chen, X.; Zhang, J.; Zhang, W. A Comparison of [18F]AlF- and 68Ga-Labeled Dual Targeting Heterodimer FAPI-RGD in Malignant Tumor: Preclinical Evaluation and Pilot Clinical PET/CT Imaging. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1685–1697. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, W.; Zhang, J.; Chen, X. 18F-AlF-LNC1007 in the Evaluation of Breast Cancer:Comparison with 18F-FDG/18F-FAPI-04 PET/CT. J. Nucl. Med. 2024, 65, 242585. [Google Scholar]
- Yan, Q.; Zhong, J.; Liu, Y.; Peng, S.; Feng, P.; Zhong, Y.; Hu, K. Synthesis and Preclinical Evaluation of a Heterodimeric Radioligand Targeting Fibroblast Activation Protein and Integrin-Avβ3. Eur. J. Med. Chem. 2023, 251, 115279. [Google Scholar] [CrossRef]
- Liu, K.; Jiang, T.; Rao, W.; Chen, B.; Yin, X.; Xu, P.; Hu, S. Peptidic Heterodimer-Based Radiotracer Targeting Fibroblast Activation Protein and Integrin Avβ3. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1544–1557. [Google Scholar] [CrossRef]
- Wen, X.; Yang, H.; Liu, J.; Guo, Z.; Zhang, J.; Chen, X. Development of Dual Targeting Heterodimer 177Lu-LNC1009 for Cancer Theranostics. J. Nucl. Med. 2024, 65, 241873. [Google Scholar]
- Escudero-Castellanos, A.; Ocampo-García, B.E.; Ferro-Flores, G.; Isaac-Olivé, K.; Santos-Cuevas, C.L.; Olmos-Ortiz, A.; García-Quiroz, J.; García-Becerra, R.; Díaz, L. Preparation and in Vitro Evaluation of 177Lu-iPSMA-RGD as a New Heterobivalent Radiopharmaceutical. J. Radioanal. Nucl. Chem. 2017, 314, 2201–2207. [Google Scholar] [CrossRef]
- Ocampo-García, B.; Cruz-Nova, P.; Jiménez-Mancilla, N.; Luna-Gutiérrez, M.; Oros-Pantoja, R.; Lara-Almazán, N.; Pérez-Velasco, D.; Santos-Cuevas, C.; Ferro-Flores, G. 225Ac-iPSMA-RGD for Alpha-Therapy Dual Targeting of Stromal/Tumor Cell PSMA and Integrins. Int. J. Mol. Sci. 2023, 24, 16553. [Google Scholar] [CrossRef]
- Gai, Y.; Jiang, Y.; Long, Y.; Sun, L.; Liu, Q.; Qin, C.; Zhang, Y.; Zeng, D.; Lan, X. Evaluation of an Integrin Avβ3 and Aminopeptidase N Dual-Receptor Targeting Tracer for Breast Cancer Imaging. Mol. Pharm. 2020, 17, 349–358. [Google Scholar] [CrossRef]
- Long, Y.; Shao, F.; Ji, H.; Song, X.; Lv, X.; Xia, X.; Liu, Q.; Zhang, Y.; Zeng, D.; Lan, X.; et al. Evaluation of a CD13 and Integrin Avβ3 Dual-Receptor Targeted Tracer 68Ga-NGR-RGD for Ovarian Tumor Imaging: Comparison With 18F-FDG. Front. Oncol. 2022, 12, 884554. [Google Scholar] [CrossRef]
- Lv, X.; Song, X.; Long, Y.; Zeng, D.; Lan, X.; Gai, Y. Preclinical Evaluation of a Dual-Receptor Targeted Tracer [68Ga]Ga-HX01 in 10 Different Subcutaneous and Orthotopic Tumor Models. Eur. J. Nucl. Med. Mol. Imaging 2023, 51, 54–67. [Google Scholar] [CrossRef]
- Yang, B.; Shan, C.; Song, X.; Lv, X.; Long, Y.; Zeng, D.; An, R.; Lan, X.; Gai, Y. Development and Evaluation of Albumin Binder-Conjugated Heterodimeric Radiopharmaceuticals Targeting Integrin Avβ3 and CD13 for Cancer Therapy. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 3334–3345. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chen, H.; Pan, D.; Ma, Y.; Liang, S.; Wan, Y.; Fang, Y. Imaging Integrin Avβ 3 and NRP-1 Positive Gliomas with a Novel Fluorine-18 Labeled RGD-ATWLPPR Heterodimeric Peptide Probe. Mol. Imaging Biol. 2014, 16, 781–792. [Google Scholar] [CrossRef]
- Yao, L.; Li, Y.; Chen, H.; Wen, X.; Pang, Y.; Chen, Z.; Guo, Z.; Zhang, X.; Wu, H.; Guo, W. Dual Targeting of Integrin Avβ3 and VEGF Receptor Improves PET Imaging of Breast Cance. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Yao, L.; Li, Y.; Chen, H.; Wen, X.; Pang, Y.; Chen, Z.; Guo, Z.; Zhang, X.; Wu, H.; Guo, W. Dual Targeting of Integrin Avβ3 and Neuropilin-1 Receptors Improves Micropositron Emission Tomography Imaging of Breast Cancer. Mol. Pharm. 2022, 19, 1458–1467. [Google Scholar] [CrossRef]
- Liu, W.; Ma, H.; Liang, R.; Chen, X.; Li, H.; Lan, T.; Yang, J.; Liao, J.; Qin, Z.; Yang, Y.; et al. Targeted Alpha Therapy of Glioma Using 211At-Labeled Heterodimeric Peptide Targeting Both VEGFR and Integrins. Mol. Pharm. 2022, 19, 3206–3216. [Google Scholar] [CrossRef]
- Chen, C.-J.; Chan, C.-H.; Lin, K.-L.; Chen, J.-H.; Tseng, C.-H.; Wang, P.-Y.; Chien, C.-Y.; Yu, H.-M.; Lin, W.-J. 68Ga-Labelled NOTA-RGD-GE11 Peptide for Dual Integrin and EGFR-Targeted Tumour Imaging. Nucl. Med. Biol. 2019, 68–69, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Peng, W.; Zhen, Z.; Zhang, W.; Liao, S.; Wu, X.; Wang, L.; Xuan, A.; Gao, Y.; Xu, J. Integrin Avβ3 and EGFR Dual-Targeted [64Cu]Cu-NOTA-RGD-GE11 Heterodimer for PET Imaging in Pancreatic Cancer Mouse Model. Nucl. Med. Biol. 2023, 124–125, 108364. [Google Scholar] [CrossRef]
- Braun, D.; Judmann, B.; Cheng, X.; Wängler, B.; Schirrmacher, R.; Fricker, G.; Wängler, C. Synthesis, Radiolabeling, and In Vitro and In Vivo Characterization of Heterobivalent Peptidic Agents for Bispecific EGFR and Integrin Avβ3 Targeting. ACS Omega 2023, 8, 2793–2807. [Google Scholar] [CrossRef]
- Gai, Y.; Xiang, G.; Ma, X.; Hui, W.; Ouyang, Q.; Sun, L.; Ding, J.; Sheng, J.; Zeng, D. Universal Molecular Scaffold for Facile Construction of Multivalent and Multimodal Imaging Probes. Bioconjug Chem. 2016, 27, 515–520. [Google Scholar] [CrossRef]
- Gai, Y.; Sun, L.; Xiang, G.; Ma, X.; Zeng, D. Optimized Peptide Heterodimer for uPAR-Avβ3 Dual-Targeted Cancer Imaging. J. Nucl. Med. 2016, 57, 1064. [Google Scholar]
- Gai, Y.; Sun, L.; Xiang, G.; Ma, X.; Zeng, D. PET Imaging of Pancreatic Cancer Using uPAR-Avβ3 Dual-Targeted Heterodimer. J. Nucl. Med. 2016, 57, 1149. [Google Scholar]
- Cheng, X.; Hübner, R.; von Kiedrowski, V.; Fricker, G.; Schirrmacher, R.; Wängler, C.; Wängler, B. Design, Synthesis, In Vitro and In Vivo Evaluation of Heterobivalent SiFAlin-Modified Peptidic Radioligands Targeting Both Integrin Avβ3 and the MC1 Receptor—Suitable for the Specific Visualization of Melanomas? Pharmaceuticals 2021, 14, 547. [Google Scholar] [CrossRef] [PubMed]
- PubChem GRPR—Gastrin Releasing Peptide Receptor (Human). Available online: https://pubchem.ncbi.nlm.nih.gov/gene/GRPR/human (accessed on 27 August 2024).
- Pooja, D.; Gunukula, A.; Gupta, N.; Adams, D.J.; Kulhari, H. Bombesin Receptors as Potential Targets for Anticancer Drug Delivery and Imaging. Int. J. Biochem. Cell Biol. 2019, 114, 105567. [Google Scholar] [CrossRef] [PubMed]
- Echavidre, W.; Fagret, D.; Faraggi, M.; Picco, V.; Montemagno, C. Recent Pre-Clinical Advancements in Nuclear Medicine: Pioneering the Path to a Limitless Future. Cancers 2023, 15, 4839. [Google Scholar] [CrossRef] [PubMed]
- Theodoropoulou, M.; Stalla, G.K. Somatostatin Receptors: From Signaling to Clinical Practice. Front. Neuroendocrinol. 2013, 34, 228–252. [Google Scholar] [CrossRef]
- Kumar, U. Somatostatin and Somatostatin Receptors in Tumour Biology. Int. J. Mol. Sci. 2024, 25, 436. [Google Scholar] [CrossRef]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef]
- Aashiq, M.; Silverman, D.A.; Na’ara, S.; Takahashi, H.; Amit, M. Radioiodine-Refractory Thyroid Cancer: Molecular Basis of Redifferentiation Therapies, Management, and Novel Therapies. Cancers 2019, 11, 1382. [Google Scholar] [CrossRef]
- Dziadek, S.; Kraxner, A.; Cheng, W.-Y.; Ou Yang, T.-H.; Flores, M.; Theiss, N.; Tsao, T.-S.; Andersson, E.; Harring, S.V.; Bröske, A.-M.E.; et al. Comprehensive Analysis of Fibroblast Activation Protein Expression across 23 Tumor Indications: Insights for Biomarker Development in Cancer Immunotherapies. Front. Immunol. 2024, 15, 1352615. [Google Scholar] [CrossRef]
- Sidrak, M.M.A.; De Feo, M.S.; Corica, F.; Gorica, J.; Conte, M.; Filippi, L.; Schillaci, O.; De Vincentis, G.; Frantellizzi, V. Fibroblast Activation Protein Inhibitor (FAPI)-Based Theranostics—Where We Are at and Where We Are Heading: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 3863. [Google Scholar] [CrossRef]
- Watabe, T.; Liu, Y.; Kaneda-Nakashima, K.; Shirakami, Y.; Lindner, T.; Ooe, K.; Toyoshima, A.; Nagata, K.; Shimosegawa, E.; Haberkorn, U.; et al. Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma: 64Cu- and 225Ac-Labeled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models. J. Nucl. Med. 2020, 61, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhou, H.; Alhaskawi, A.; Wang, Z.; Lai, J.; Yao, C.; Liu, Z.; Hasan Abdullah Ezzi, S.; Goutham Kota, V.; Hasan Abdulla Hasan Abdulla, M.; et al. The Superiority of Fibroblast Activation Protein Inhibitor (FAPI) PET/CT Versus FDG PET/CT in the Diagnosis of Various Malignancies. Cancers 2023, 15, 1193. [Google Scholar] [CrossRef] [PubMed]
- Queisser, A.; Hagedorn, S.A.; Braun, M.; Vogel, W.; Duensing, S.; Perner, S. Comparison of Different Prostatic Markers in Lymph Node and Distant Metastases of Prostate Cancer. Mod. Pathol. 2015, 28, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, B.; Guo, C.; Neeb, A.; Paschalis, A.; Sandhu, S.; de Bono, J.S. Prostate-Specific Membrane Antigen Biology in Lethal Prostate Cancer and Its Therapeutic Implications. Eur. Urol. Focus 2022, 8, 1157–1168. [Google Scholar] [CrossRef]
- Conway, R.E.; Petrovic, N.; Li, Z.; Heston, W.; Wu, D.; Shapiro, L.H. Prostate-Specific Membrane Antigen Regulates Angiogenesis by Modulating Integrin Signal Transduction. Mol. Cell Biol. 2006, 26, 5310–5324. [Google Scholar] [CrossRef]
- Mokoala, K.; Lawal, I.; Lengana, T.; Kgatle, M.; Giesel, F.L.; Vorster, M.; Sathekge, M. PSMA Theranostics: Science and Practice. Cancers 2021, 13, 3904. [Google Scholar] [CrossRef]
- Ahmadzadehfar, H.; Seifert, R.; Afshar-Oromieh, A.; Kratochwil, C.; Rahbar, K. Prostate Cancer Theranostics With 177Lu-PSMA. Semin. Nucl. Med. 2024, 54, 581–590. [Google Scholar] [CrossRef]
- Mattana, F.; Muraglia, L.; Barone, A.; Colandrea, M.; Saker Diffalah, Y.; Provera, S.; Cascio, A.S.; Omodeo Salè, E.; Ceci, F. Prostate-Specific Membrane Antigen-Targeted Therapy in Prostate Cancer: History, Combination Therapies, Trials, and Future Perspective. Cancers 2024, 16, 1643. [Google Scholar] [CrossRef]
- Lendeckel, U.; Karimi, F.; Al Abdulla, R.; Wolke, C. The Role of the Ectopeptidase APN/CD13 in Cancer. Biomedicines 2023, 11, 724. [Google Scholar] [CrossRef]
- Guo, Q.; Li, X.; Cui, M.-N.; Sun, J.-L.; Ji, H.-Y.; Ni, B.-B.; Yan, M.-X. CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy. Oncol. Res. 2020, 28, 533–540. [Google Scholar] [CrossRef]
- Dumond, A.; Pagès, G. Neuropilins, as Relevant Oncology Target: Their Role in the Tumoral Microenvironment. Front. Cell Dev. Biol. 2020, 8, 662. [Google Scholar] [CrossRef] [PubMed]
- Herzog, B.; Pellet-Many, C.; Britton, G.; Hartzoulakis, B.; Zachary, I.C. VEGF Binding to NRP1 Is Essential for VEGF Stimulation of Endothelial Cell Migration, Complex Formation between NRP1 and VEGFR2, and Signaling via FAK Tyr407 Phosphorylation. Mol. Biol. Cell 2011, 22, 2766–2776. [Google Scholar] [CrossRef] [PubMed]
- Chuckran, C.A.; Liu, C.; Bruno, T.C.; Workman, C.J.; Vignali, D.A. Neuropilin-1: A Checkpoint Target with Unique Implications for Cancer Immunology and Immunotherapy. J. Immunother. Cancer 2020, 8, e000967. [Google Scholar] [CrossRef]
- Liu, Q.; Cai, S.; Ye, J.; Xie, Q.; Liu, R.; Qiu, L.; Lin, J. Preclinical Evaluation of 68 Ga-Labeled Peptide CK2 for PET Imaging of NRP-1 Expression in Vivo. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1826–1840. [Google Scholar] [CrossRef]
- Thoreau, F.; Vanwonterghem, L.; Henry, M.; Coll, J.-L.; Boturyn, D. Design of RGD-ATWLPPR Peptide Conjugates for the Dual Targeting of αVβ3 Integrin and Neuropilin-1. Org. Biomol. Chem. 2018, 16, 4101–4107. [Google Scholar] [CrossRef]
- Bazzazi, H.; Zhang, Y.; Jafarnejad, M.; Popel, A.S. Computational Modeling of Synergistic Interaction between αVβ3 Integrin and VEGFR2 in Endothelial Cells: Implications for the Mechanism of Action of Angiogenesis-Modulating Integrin-Binding Peptides. J. Theor. Biol. 2018, 455, 212–221. [Google Scholar] [CrossRef]
- Metrangolo, V.; Ploug, M.; Engelholm, L.H. The Urokinase Receptor (uPAR) as a “Trojan Horse” in Targeted Cancer Therapy: Challenges and Opportunities. Cancers 2021, 13, 5376. [Google Scholar] [CrossRef]
- Mun, Y.; Kim, W.; Shin, D. Melanocortin 1 Receptor (MC1R): Pharmacological and Therapeutic Aspects. Int. J. Mol. Sci. 2023, 24, 12152. [Google Scholar] [CrossRef] [PubMed]
- Guida, S.; Guida, G.; Goding, C.R. MC1R Functions, Expression, and Implications for Targeted Therapy. J. Investig. Dermatol. 2022, 142, 293–302.e1. [Google Scholar] [CrossRef]
- Huang, A.-H.; Han, S.-P.; Lu, Y.-P.; Ma, R.; Zheng, H.-S.; Li, F.-Z. [Preparation and in vitro evaluation of arsenic trioxide glioma targeting drug delivery system loaded by PAMAM dendrimers co-modified with RGDyC and PEG]. Zhongguo Zhong Yao Za Zhi 2018, 43, 1618–1625. [Google Scholar] [CrossRef]
- Lu, Y.; Han, S.; Zheng, H.; Ma, R.; Ping, Y.; Zou, J.; Tang, H.; Zhang, Y.; Xu, X.; Li, F. A Novel RGDyC/PEG Co-Modified PAMAM Dendrimer-Loaded Arsenic Trioxide of Glioma Targeting Delivery System. Int. J. Nanomed. 2018, 13, 5937–5952. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ma, R.; Lu, Y.; Cheng, Y.; Fan, X.; Zou, J.; Zheng, H.; Li, F.; Piao, J.-G. iRGD and TGN Co-Modified PAMAM for Multi-Targeted Delivery of ATO to Gliomas. Biochem. Biophys. Res. Commun. 2020, 527, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Q.; Liu, Y.; Zhang, X.; Shan, W.; Ye, S.; Zhou, X.; Ge, Y.; Wang, X.; Ren, L. Nanoparticle-Based Co-Delivery of siRNA and Paclitaxel for Dual-Targeting of Glioblastoma. Nanomedicine 2020, 15, 1391–1409. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, M.; Sonali; Shekhar, S.; Yadav, B.; Garg, V.; Dutt, R.; Mehata, A.K.; Goswami, P.; Koch, B.; Muthu, M.S.; et al. AS1411 Aptamer/RGD Dual Functionalized Theranostic Chitosan-PLGA Nanoparticles for Brain Cancer Treatment and Imaging. Biomater. Adv. 2024, 160, 213833. [Google Scholar] [CrossRef]
- Fu, Q.; Zhao, Y.; Yang, Z.; Yue, Q.; Xiao, W.; Chen, Y.; Yang, Y.; Guo, L.; Wu, Y. Liposomes Actively Recognizing the Glucose Transporter GLUT1 and Integrin Av Β3 for Dual-Targeting of Glioma. Arch. Pharm. 2019, 352, e1800219. [Google Scholar] [CrossRef]
Radiotracers | Application | Tumor Type | Clinical Trial | References |
---|---|---|---|---|
18F-Galacto-RGD | PET imaging | GBM, HNSCC, prostate cancer | Phase I | [64,65,66] |
18F-Alfatide | PET imaging | Lung cancer, GBM | Phase I | [67,68,69,70] |
68Ga-NOTA-PRGD2 | PET imaging | Lung cancer, gliomas | Phase I | [71,72,73] |
68Ga-DOTA-RGD2 | PET imaging | HSNCC, breast, thyroid cancer, and chondrosarcoma | Phase I and Case report | [74,75,76] |
68Ga-NODAGA-E[c(RGDyK)]2 | PET imaging | Breast, neuroendocrine tumors, and thyroid cancers | Phases I and II | [77,78,79] |
99mTc-3PRGD2 | SPECT imaging | Lung cancer | Phase III | NCT04233476 |
68Ga-cycratide | PET imaging | Pancreatic cancer | First in human | [80] |
18F-αvβ6-BP | PET imaging | Pancreatic cancer | First in human | [81] |
18F-FP-R01-MG-F2 | PET imaging | Pancreatic cancer | Phase I | [82] |
Targets | RGD-Based Molecule | Radioisotope | Application | Tumor Model (In Vivo) | Clinical Trial | References |
---|---|---|---|---|---|---|
GRPR and αvβ3 | NOTA-BBN-RGD | 68Ga | PET imaging | PC3 mice | Prostate (First in human(FIH)) and breast cancer (Phase I) | [111,112,113], NCT02749019 |
RGD-Glu-[DO3A]-6-Ahx-RM2 | 86Y/90Y | PET imaging and therapy | PC3 mice | / | [114] | |
RM26-RGD (LNC1015) | 68Ga | PET imaging | PC3 mice | Breast (FIH), brain (Phase I), and prostate cancer (Phase I) | [115,116], NCT05549024 | |
SSTR and αvβ3 | NOTA-3P-TATE-RGD | 68Ga | PET imaging | H69 and A549 mice | SCLC and NSCLC (Phase I), GEP-NETs (Phase I), and RAIR-TC (Phase I) | [117,118,119,120] |
FAP and αvβ3 | FAPI-RGD (LNC1007) | 68Ga | PET imaging | Panc02 mice | Various solid tumors (Phases I/II) | [121,122,123,124,125,126] |
AlF-LNC1007 | 18F | PET imaging | U87MG mice | Breast cancer (Phase I) | [127,128], NCT06471712 | |
DOTA-FAPI-RGD | 68Ga/177Lu | PET/SPECT imaging and therapy | U87MG mice | / | [129] | |
FAP-RGD | 68Ga/177Lu | PET/SPECT imaging and therapy | HT1080-FAP and U87MG mice | / | [130] | |
DOTA-EB-FAPI-RGD (LNC1009) | 177Lu | SPECT imaging and therapy | U87MG mice | / | [131] | |
PSMA and αvβ3 | iPSMA-RGD | 177Lu | SPECT imaging and therapy | / | / | [132] |
225Ac | Therapy | HCT116 mice | / | [133] | ||
APN/CD13 and αvβ3 | NGR-RGD (HX01) | 68Ga | PET imaging | Various tumor models | Solid tumors (Phase I) | [134,135,136], NCT06416774 |
HX01-L6 | 68Ga/177Lu | PET/SPECT imaging and therapy | BxPC-3 mice | / | [137] | |
NRP-1 and αvβ3 | AlF-NOTA-RGD-ATWLPPR | 18F | PET imaging | U87MG mice | / | [138] |
DOTA-RGD-A7R | 68Ga | PET imaging | MCF-7 mice | / | [139,140] | |
VEGFR and αvβ3 | iRGD-C6-lys-C6-DA7R | 211At | Therapy | U87MG mice | / | [141] |
EGFR and αvβ3 | NOTA-RGD-GE11 NODA-GA-PEG3-GE11-PEG3-RGD | 68Ga | PET imaging | NCI-H292 mice | / | [142] |
64Cu | PET imaging | BxPC3 mice | / | [143] | ||
68Ga | PET imaging | A431 mice | / | [144] | ||
uPAR and αvβ3 | AE105-NOTA-RGD | 68Ga/64Cu | PET imaging | U87MG mice | / | [145] |
AE105-PEG8-NOTA-PEG4-RGD | 68Ga/64Cu | PET imaging | U87MG and PANC-1 mice | / | [146,147] | |
MC1R and αvβ3 | SiFAlin-GG-Nle-c(DHfRWK)-PEG8-RGD | 18F | PET imaging | B16F1 mice | / | [148] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdanović, B.; Fagret, D.; Ghezzi, C.; Montemagno, C. Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine–Glycine–Aspartate) Strategies. Pharmaceuticals 2024, 17, 1556. https://doi.org/10.3390/ph17111556
Bogdanović B, Fagret D, Ghezzi C, Montemagno C. Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine–Glycine–Aspartate) Strategies. Pharmaceuticals. 2024; 17(11):1556. https://doi.org/10.3390/ph17111556
Chicago/Turabian StyleBogdanović, Bojana, Daniel Fagret, Catherine Ghezzi, and Christopher Montemagno. 2024. "Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine–Glycine–Aspartate) Strategies" Pharmaceuticals 17, no. 11: 1556. https://doi.org/10.3390/ph17111556
APA StyleBogdanović, B., Fagret, D., Ghezzi, C., & Montemagno, C. (2024). Integrin Targeting and Beyond: Enhancing Cancer Treatment with Dual-Targeting RGD (Arginine–Glycine–Aspartate) Strategies. Pharmaceuticals, 17(11), 1556. https://doi.org/10.3390/ph17111556