Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics
Abstract
:1. Introduction
2. Currently Approved Treatments for Neurodegeneration
3. Link between Heterogeneity and Novel Disease Targets in Neurological Disorders
3.1. Genetic Heterogeneity
3.2. Publicly Available Repositories for Deciphering the Heterogeneity within Neurodegeneration
3.3. Computational Approaches to Stratifying Patients in Oncology
3.4. Applications of ML to Stratifying Patients with Neurodegeneration
4. Computational Approaches to Lead Discovery
4.1. Overview of ML in Lead Discovery
4.2. Binding Site and Protein Structure Prediction
4.3. Hit Identification via Virtual Screening
4.4. Lead Optimization Using ML
5. Industry Case Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berdigaliyev, N.; Aljofan, M. An Overview of Drug Discovery and Development. Future Med. Chem. 2020, 12, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Wouters, O.J.; McKee, M.; Luyten, J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009–2018. JAMA 2020, 323, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G. Automating Drug Discovery. Nat. Rev. Drug Discov. 2018, 17, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of Clinical Drug Development Fails and How to Improve It? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Siah, K.W.; Lo, A.W. Estimation of Clinical Trial Success Rates and Related Parameters. Biostatistics 2019, 20, 273–286. [Google Scholar] [CrossRef]
- Lamptey, R.N.L.; Chaulagain, B.; Trivedi, R.; Gothwal, A.; Layek, B.; Singh, J. A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022, 23, 1851. [Google Scholar] [CrossRef]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple Sclerosis. Nat. Rev. Dis. Primers 2018, 4, 43. [Google Scholar] [CrossRef]
- Alzheimer’s Disease Fact Sheet. Available online: https://www.nia.nih.gov/health/alzheimers-and-dementia/alzheimers-disease-fact-sheet (accessed on 27 December 2023).
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical Diagnosis of Alzheimer’s Disease: Report of the NINCDS-ADRDA Work Group under the Auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- Epperly, T.; Dunay, M.A.; Boice, J.L. Alzheimer Disease: Pharmacologic and Nonpharmacologic Therapies for Cognitive and Functional Symptoms. Am. Fam. Physician 2017, 95, 771–778. [Google Scholar]
- What Is ALS?—Amyotrophic Lateral Sclerosis|The ALS Association. Available online: https://www.als.org/understanding-als/what-is-als#:~:text=There%20are%20currently%20seven%20drugs,are%20ongoing%20around%20the%20world (accessed on 22 December 2023).
- Jiang, J.; Wang, Y.; Deng, M. New Developments and Opportunities in Drugs Being Trialed for Amyotrophic Lateral Sclerosis from 2020 to 2022. Front. Pharmacol. 2022, 13, 1054006. [Google Scholar] [CrossRef]
- Wong, C.; Stavrou, M.; Elliott, E.; Gregory, J.M.; Leigh, N.; Pinto, A.A.; Williams, T.L.; Chataway, J.; Swingler, R.; Parmar, M.K.B.; et al. Clinical Trials in Amyotrophic Lateral Sclerosis: A Systematic Review and Perspective. Brain Commun. 2021, 3, fcab242. [Google Scholar] [CrossRef]
- Jellinger, K.A. Recent Update on the Heterogeneity of the Alzheimer’s Disease Spectrum. J. Neural Transm. 2022, 129, 1–24. [Google Scholar] [CrossRef]
- Avelar-Pereira, B.; Belloy, M.E.; O’Hara, R.; Hosseini, S.M.H.; Alzheimer’s Disease Neuroimaging Initiative. Decoding the Heterogeneity of Alzheimer’s Disease Diagnosis and Progression Using Multilayer Networks. Mol. Psychiatry 2023, 28, 2423–2432. [Google Scholar] [CrossRef]
- Tijms, B.M.; Vromen, E.M.; Mjaavatten, O.; Holstege, H.; Reus, L.M.; van der Lee, S.; Wesenhagen, K.E.; Lorenzini, L.; Vermunt, L.; Venkatraghavan, V.; et al. Large-Scale Cerebrospinal Fluid Proteomic Analysis in Alzheimer’s Disease Patients Reveals Five Molecular Subtypes with Distinct Genetic Risk Profiles. medRxiv 2023. [Google Scholar] [CrossRef]
- Neff, R.A.; Wang, M.; Vatansever, S.; Guo, L.; Ming, C.; Wang, Q.; Wang, E.; Horgusluoglu-Moloch, E.; Song, W.-M.; Li, A.; et al. Molecular Subtyping of Alzheimer’s Disease Using RNA Sequencing Data Reveals Novel Mechanisms and Targets. Sci. Adv. 2021, 7, eabb5398. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.; Pereira, J.B.; Volpe, G.; Westman, E. Subtypes of Alzheimer’s Disease Display Distinct Network Abnormalities Extending Beyond Their Pattern of Brain Atrophy. Front. Neurol. 2019, 10, 524. [Google Scholar] [CrossRef] [PubMed]
- Goyal, N.A.; Berry, J.D.; Windebank, A.; Staff, N.P.; Maragakis, N.J.; van den Berg, L.H.; Genge, A.; Miller, R.; Baloh, R.H.; Kern, R.; et al. Addressing Heterogeneity in Amyotrophic Lateral Sclerosis CLINICAL TRIALS. Muscle Nerve 2020, 62, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E.; Mennini, T.; Bendotti, C.; Bigini, P.; Logroscino, G.; Chiò, A.; Hardiman, O.; Mitchell, D.; Swingler, R.; Traynor, B.J.; et al. The Heterogeneity of Amyotrophic Lateral Sclerosis: A Possible Explanation of Treatment Failure. Curr. Med. Chem. 2007, 14, 3185–3200. [Google Scholar] [CrossRef] [PubMed]
- Eshima, J.; O’Connor, S.A.; Marschall, E.; Bowser, R.; NYGC ALS Consortium; Plaisier, C.L.; Smith, B.S. Molecular Subtypes of ALS Are Associated with Differences in Patient Prognosis. Nat. Commun. 2023, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- Greenland, J.C.; Williams-Gray, C.H.; Barker, R.A. The Clinical Heterogeneity of Parkinson’s Disease and Its Therapeutic Implications. Eur. J. Neurosci. 2019, 49, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.; Borghammer, P.; Fereshtehnejad, S.-M.; Heinzel, S.; Horsager, J.; Schaeffer, E.; Postuma, R.B. Prodromal Parkinson Disease Subtypes—Key to Understanding Heterogeneity. Nat. Rev. Neurol. 2021, 17, 349–361. [Google Scholar] [CrossRef] [PubMed]
- Schalkamp, A.-K.; Rahman, N.; Monzón-Sandoval, J.; Sandor, C. Deep Phenotyping for Precision Medicine in Parkinson’s Disease. Dis. Model. Mech. 2022, 15, dmm049376. [Google Scholar] [CrossRef] [PubMed]
- Wattamwar, P.R.; Mathuranath, P.S. An Overview of Biomarkers in Alzheimer’s Disease. Ann. Indian Acad. Neurol. 2010, 13, S116–S123. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, H.; Liu, X.; Zhang, W.; Zhang, S.; Jiao, B. APP, PSEN1, and PSEN2 Variants in Alzheimer’s Disease: Systematic Re-Evaluation According to ACMG Guidelines. Front. Aging Neurosci. 2021, 13, 695808. [Google Scholar] [CrossRef] [PubMed]
- Aasly, J.O. Long-Term Outcomes of Genetic Parkinson’s Disease. J. Mov. Disord. 2020, 13, 81–96. [Google Scholar] [CrossRef]
- Sirkis, D.W.; Bonham, L.W.; Johnson, T.P.; La Joie, R.; Yokoyama, J.S. Dissecting the Clinical Heterogeneity of Early-Onset Alzheimer’s Disease. Mol. Psychiatry 2022, 27, 2674–2688. [Google Scholar] [CrossRef]
- Jack, C.R.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.; Whitwell, J.L.; Ward, C.; et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI Methods. J. Magn. Reson. Imaging 2008, 27, 685–691. [Google Scholar] [CrossRef]
- Toga, A.W.; Phatak, M.; Pappas, I.; Thompson, S.; McHugh, C.P.; Clement, M.H.S.; Bauermeister, S.; Maruyama, T.; Gallacher, J. The Pursuit of Approaches to Federate Data to Accelerate Alzheimer’s Disease and Related Dementia Research: GAAIN, DPUK, and ADDI. Front. Neuroinform. 2023, 17, 1175689. [Google Scholar] [CrossRef]
- Bennett, D.A.; Buchman, A.S.; Boyle, P.A.; Barnes, L.L.; Wilson, R.S.; Schneider, J.A. Religious Orders Study and Rush Memory and Aging Project. J. Alzheimers Dis. 2018, 64, S161–S189. [Google Scholar] [CrossRef] [PubMed]
- Hodes, R.J.; Buckholtz, N. Accelerating Medicines Partnership: Alzheimer’s Disease (AMP-AD) Knowledge Portal Aids Alzheimer’s Drug Discovery through Open Data Sharing. Expert. Opin. Ther. Targets 2016, 20, 389–391. [Google Scholar] [CrossRef] [PubMed]
- Marek, K.; Chowdhury, S.; Siderowf, A.; Lasch, S.; Coffey, C.S.; Caspell-Garcia, C.; Simuni, T.; Jennings, D.; Tanner, C.M.; Trojanowski, J.Q.; et al. The Parkinson’s Progression Markers Initiative (PPMI)—Establishing a PD Biomarker Cohort. Ann. Clin. Transl. Neurol. 2018, 5, 1460–1477. [Google Scholar] [CrossRef]
- Baxi, E.G.; Thompson, T.; Li, J.; Kaye, J.A.; Lim, R.G.; Wu, J.; Ramamoorthy, D.; Lima, L.; Vaibhav, V.; Matlock, A.; et al. Answer ALS, a Large-Scale Resource for Sporadic and Familial ALS Combining Clinical and Multi-Omics Data from Induced Pluripotent Cell Lines. Nat. Neurosci. 2022, 25, 226–237. [Google Scholar] [CrossRef]
- Target ALS. Available online: https://www.targetals.org/resource/genomic-datasets/ (accessed on 26 December 2023).
- Malhotra, R.; Seth, I.; Lehnert, E.; Zhao, J.; Kaushik, G.; Williams, E.H.; Sethi, A.; Davis-Dusenbery, B.N. Using the Seven Bridges Cancer Genomics Cloud to Access and Analyze Petabytes of Cancer Data. Curr. Protoc. Bioinform. 2017, 60, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Kong, D.; Liu, J.; Zhan, L.; Luo, L.; Zheng, W.; Zheng, Q.; Chen, C.; Sun, S. Breast Cancer Heterogeneity and Its Implication in Personalized Precision Therapy. Exp. Hematol. Oncol. 2023, 12, 3. [Google Scholar] [CrossRef] [PubMed]
- Arakelyan, A.; Melkonyan, A.; Hakobyan, S.; Boyarskih, U.; Simonyan, A.; Nersisyan, L.; Nikoghosyan, M.; Filipenko, M.; Binder, H. Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers. Int. J. Mol. Sci. 2021, 22, 1266. [Google Scholar] [CrossRef] [PubMed]
- Petersen, I. The Morphological and Molecular Diagnosis of Lung Cancer. Dtsch. Ärzteblatt Int. 2011, 108, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Surendra, A.; McComb, S.; Pan, Y.; Hill, J.J. Identification of Transcriptional Subtypes in Lung Adenocarcinoma and Squamous Cell Carcinoma through Integrative Analysis of Microarray and RNA Sequencing Data. Sci. Rep. 2021, 11, 8709. [Google Scholar] [CrossRef] [PubMed]
- Søkilde, R.; Persson, H.; Ehinger, A.; Pirona, A.C.; Fernö, M.; Hegardt, C.; Larsson, C.; Loman, N.; Malmberg, M.; Rydén, L.; et al. Refinement of Breast Cancer Molecular Classification by miRNA Expression Profiles. BMC Genom. 2019, 20, 503. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A Class Discovery Tool with Confidence Assessments and Item Tracking. Bioinformatics 2010, 26, 1572–1573. [Google Scholar] [CrossRef]
- Verhaak, R.G.W.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; et al. Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010, 17, 98–110. [Google Scholar] [CrossRef]
- Hayes, D.N.; Monti, S.; Parmigiani, G.; Gilks, C.B.; Naoki, K.; Bhattacharjee, A.; Socinski, M.A.; Perou, C.; Meyerson, M. Gene Expression Profiling Reveals Reproducible Human Lung Adenocarcinoma Subtypes in Multiple Independent Patient Cohorts. J. Clin. Oncol. 2006, 24, 5079–5090. [Google Scholar] [CrossRef]
- Tam, O.H.; Rozhkov, N.V.; Shaw, R.; Kim, D.; Hubbard, I.; Fennessey, S.; Propp, N.; Fagegaltier, D.; Harris, B.T.; Ostrow, L.W.; et al. Postmortem Cortex Samples Identify Distinct Molecular Subtypes of ALS: Retrotransposon Activation, Oxidative Stress, and Activated Glia. Cell Rep. 2019, 29, 1164–1177. [Google Scholar] [CrossRef]
- Abe, K.; Ohkubo, T.; Yokota, T. TDP-43 in the Skin of Amyotrophic Lateral Sclerosis Patients. J. Med. Dent. Sci. 2017, 64, 9–17. [Google Scholar] [CrossRef]
- Rao, M.; McDuffie, E.; Sachs, C. Artificial Intelligence/Machine Learning-Driven Small Molecule Repurposing via Off-Target Prediction and Transcriptomics. Toxics 2023, 11, 875. [Google Scholar] [CrossRef]
- Eisenstein, M. Active Machine Learning Helps Drug Hunters Tackle Biology. Nat. Biotechnol. 2020, 38, 512–514. [Google Scholar] [CrossRef]
- Schneider, M.; Belsom, A.; Rappsilber, J. Protein Tertiary Structure by Crosslinking/Mass Spectrometry. Trends Biochem. Sci. 2018, 43, 157–169. [Google Scholar] [CrossRef]
- Lill, M.A.; Danielson, M.L. Computer-Aided Drug Design Platform Using PyMOL. J. Comput. Aided Mol. Des. 2011, 25, 13–19. [Google Scholar] [CrossRef]
- Life Science: SiteMap. Available online: https://newsite.schrodinger.com/platform/products/sitemap/ (accessed on 19 December 2023).
- Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An Open Source Platform for Ligand Pocket Detection. BMC Bioinform. 2009, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A Web Server for Automatic Binding Site Prediction, Analysis and Druggability Assessment. Bioinformatics 2012, 28, 2074–2075. [Google Scholar] [CrossRef] [PubMed]
- Laurie, A.T.; Jackson, R.M. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005, 21, 1908–1916. [Google Scholar] [CrossRef] [PubMed]
- Di Pietro, O.; Juárez-Jiménez, J.; Muñoz-Torrero, D.; Laughton, C.A.; Luque, F.J. Unveiling a Novel Transient Druggable Pocket in BACE-1 through Molecular Simulations: Conformational Analysis and Binding Mode of Multisite Inhibitors. PLoS ONE 2017, 12, e0177683. [Google Scholar] [CrossRef]
- De Luca, L.; Vittorio, S.; Peña-Díaz, S.; Pitasi, G.; Fornt-Suñé, M.; Bucolo, F.; Ventura, S.; Gitto, R. Ligand-Based Discovery of a Small Molecule as Inhibitor of α-Synuclein Amyloid Formation. Int. J. Mol. Sci. 2022, 23, 14844. [Google Scholar] [CrossRef]
- Silva, G.M.; Borges, R.S.; Santos, K.L.B.; Federico, L.B.; Francischini, I.A.G.; Gomes, S.Q.; Barcelos, M.P.; Silva, R.C.; Santos, C.B.R.; Silva, C.H.T.P. Revisiting the Proposition of Binding Pockets and Bioactive Poses for GSK-3β Allosteric Modulators Addressed to Neurodegenerative Diseases. Int. J. Mol. Sci. 2021, 22, 8252. [Google Scholar] [CrossRef]
- Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A.S.; De Fabritiis, G. DeepSite: Protein-Binding Site Predictor Using 3D-Convolutional Neural Networks. Bioinformatics 2017, 33, 3036–3042. [Google Scholar] [CrossRef]
- Desaphy, J.; Bret, G.; Rognan, D.; Kellenberger, E. Sc-PDB: A 3D-Database of Ligandable Binding Sites—10 Years On. Nucleic Acids Res. 2015, 43, D399–D404. [Google Scholar] [CrossRef]
- Casiraghi, A.; Longhena, F.; Faustini, G.; Ribaudo, G.; Suigo, L.; Camacho-Hernandez, G.A.; Bono, F.; Brembati, V.; Newman, A.H.; Gianoncelli, A.; et al. Methylphenidate Analogues as a New Class of Potential Disease-Modifying Agents for Parkinson’s Disease: Evidence from Cell Models and Alpha-Synuclein Transgenic Mice. Pharmaceutics 2022, 14, 1595. [Google Scholar] [CrossRef] [PubMed]
- Longhena, F.; Faustini, G.; Varanita, T.; Zaltieri, M.; Porrini, V.; Tessari, I.; Poliani, P.L.; Missale, C.; Borroni, B.; Padovani, A.; et al. Synapsin III Is a Key Component of A-synuclein Fibrils in Lewy Bodies of PD Brains. Brain Pathol. 2018, 28, 875–888. [Google Scholar] [CrossRef] [PubMed]
- Szymczyna, B.R.; Taurog, R.E.; Young, M.J.; Snyder, J.C.; Johnson, J.E.; Williamson, J.R. Synergy of NMR, Computation, and X-Ray Crystallography for Structural Biology. Structure 2009, 17, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; et al. Accurate Prediction of Protein Structures and Interactions Using a Three-Track Neural Network. Science 2021, 373, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. I-TASSER Server for Protein 3D Structure Prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-Based Force Field. Proteins 2012, 80, 1715–1735. [Google Scholar] [CrossRef]
- Pandey, M.; Fernandez, M.; Gentile, F.; Isayev, O.; Tropsha, A.; Stern, A.C.; Cherkasov, A. The Transformational Role of GPU Computing and Deep Learning in Drug Discovery. Nat. Mach. Intell. 2022, 4, 211–221. [Google Scholar] [CrossRef]
- Unke, O.T.; Chmiela, S.; Sauceda, H.E.; Gastegger, M.; Poltavsky, I.; Schütt, K.T.; Tkatchenko, A.; Müller, K.-R. Machine Learning Force Fields. Chem. Rev. 2021, 121, 10142–10186. [Google Scholar] [CrossRef]
- Quinn, P.M.J.; Moreira, P.I.; Ambrósio, A.F.; Alves, C.H. PINK1/PARKIN Signalling in Neurodegeneration and Neuroinflammation. Acta Neuropathol. Commun. 2020, 8, 189. [Google Scholar] [CrossRef]
- Kakade, P.; Ojha, H.; Raimi, O.G.; Shaw, A.; Waddell, A.D.; Ault, J.R.; Burel, S.; Brockmann, K.; Kumar, A.; Ahangar, M.S.; et al. Mapping of a N-Terminal α-Helix Domain Required for Human PINK1 Stabilization, Serine228 Autophosphorylation and Activation in Cells. Open Biol. 2022, 12, 210264. [Google Scholar] [CrossRef]
- Misra, A.; Chakrabarti, S.S.; Gambhir, I.S. New Genetic Players in Late-Onset Alzheimer’s Disease: Findings of Genome-Wide Association Studies. Indian J. Med. Res. 2018, 148, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Liu, X.; Xia, W.; Zhang, Y.; Wang, C. Targeting Amyloidogenic Processing of APP in Alzheimer’s Disease. Front. Mol. Neurosci. 2020, 13, 137. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Painter, M.M.; Bu, G.; Kanekiyo, T. Apolipoprotein E as a Therapeutic Target in Alzheimer’s Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs 2016, 30, 773–789. [Google Scholar] [CrossRef]
- Singh, H.; Rai, V.; Nooti, S.K.; Agrawal, D.K. Novel Ligands and Modulators of Triggering Receptor Expressed on Myeloid Cells Receptor Family: 2015-2020 Updates. Expert Opin. Ther. Pat. 2021, 31, 549–561. [Google Scholar] [CrossRef]
- Serneels, L.; Narlawar, R.; Perez-Benito, L.; Municoy, M.; Guallar, V.; T’Syen, D.; Dewilde, M.; Bischoff, F.; Fraiponts, E.; Tresadern, G.; et al. Selective Inhibitors of the PSEN1-Gamma-Secretase Complex. J. Biol. Chem. 2023, 299, 104794. [Google Scholar] [CrossRef]
- Zhang, Y.; Skolnick, J. TM-Align: A Protein Structure Alignment Algorithm Based on the TM-Score. Nucleic Acids Res. 2005, 33, 2302–2309. [Google Scholar] [CrossRef]
- Efraimidis, E.; Krokidis, M.G.; Exarchos, T.P.; Lazar, T.; Vlamos, P. In Silico Structural Analysis Exploring Conformational Folding of Protein Variants in Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 13543. [Google Scholar] [CrossRef]
- Subramaniam, S.; Mehrotra, M.; Gupta, D. Virtual High Throughput Screening (vHTS)—A Perspective. Bioinformation 2008, 3, 14–17. [Google Scholar] [CrossRef] [PubMed]
- Mayr, L.M.; Bojanic, D. Novel Trends in High-Throughput Screening. Curr. Opin. Pharmacol. 2009, 9, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Kimber, T.B.; Chen, Y.; Volkamer, A. Deep Learning in Virtual Screening: Recent Applications and Developments. Int. J. Mol. Sci. 2021, 22, 4435. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, S.; Prema, K.V.; Balaji, S.; Shah, R. Deep Learning-Based Modeling of Drug–Target Interaction Prediction Incorporating Binding Site Information of Proteins. Interdiscip. Sci. 2023, 15, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Bragina, M.E.; Daina, A.; Perez, M.A.S.; Michielin, O.; Zoete, V. The SwissSimilarity 2021 Web Tool: Novel Chemical Libraries and Additional Methods for an Enhanced Ligand-Based Virtual Screening Experience. Int. J. Mol. Sci. 2022, 23, 811. [Google Scholar] [CrossRef] [PubMed]
- Peña-Díaz, S.; Pujols, J.; Ventura, S. Small Molecules to Prevent the Neurodegeneration Caused by α-Synuclein Aggregation. Neural Regen. Res. 2020, 15, 2260–2261. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. Application of the SwissDrugDesign Online Resources in Virtual Screening. Int. J. Mol. Sci. 2019, 20, 4612. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, Y.; Ding, M. Repositioning Drugs to the Mitochondrial Fusion Protein 2 by Three-Tunnel Deep Neural Network for Alzheimer’s Disease. Front. Genet. 2021, 12, 638330. [Google Scholar] [CrossRef]
- Engelhart, E.A.; Hoppins, S. A Catalytic Domain Variant of Mitofusin Requiring a Wildtype Paralog for Function Uncouples Mitochondrial Outer-Membrane Tethering and Fusion. J. Biol. Chem. 2019, 294, 8001–8014. [Google Scholar] [CrossRef] [PubMed]
- Stepniewska-Dziubinska, M.M.; Zielenkiewicz, P.; Siedlecki, P. Improving Detection of Protein-Ligand Binding Sites with 3D Segmentation. Sci. Rep. 2020, 10, 5035. [Google Scholar] [CrossRef] [PubMed]
- Pitt, D.; Werner, P.; Raine, C.S. Glutamate Excitotoxicity in a Model of Multiple Sclerosis. Nat. Med. 2000, 6, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Zhai, D.; Yan, S.; Samsom, J.; Wang, L.; Su, P.; Jiang, A.; Zhang, H.; Jia, Z.; Wallach, I.; Heifets, A.; et al. Small-Molecule Targeting AMPA-Mediated Excitotoxicity Has Therapeutic Effects in Mouse Models for Multiple Sclerosis. Sci. Adv. 2023, 9, eadj6187. [Google Scholar] [CrossRef]
- Salpietro, V.; Dixon, C.L.; Guo, H.; Bello, O.D.; Vandrovcova, J.; Efthymiou, S.; Maroofian, R.; Heimer, G.; Burglen, L.; Valence, S.; et al. AMPA Receptor GluA2 Subunit Defects Are a Cause of Neurodevelopmental Disorders. Nat. Commun. 2019, 10, 3094. [Google Scholar] [CrossRef]
- Wyatt, P.G.; Gilbert, I.H.; Read, K.D.; Fairlamb, A.H. Target Validation: Linking Target and Chemical Properties to Desired Product Profile. Curr. Top. Med. Chem. 2011, 11, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Rees, S.; Kalindjian, S.; Philpott, K. Principles of Early Drug Discovery. Br. J. Pharmacol. 2011, 162, 1239–1249. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, A.; Alexiou, A.; Bilgrami, A.L.; Kamal, M.A.; Ashraf, G.M. DeePred-BBB: A Blood Brain Barrier Permeability Prediction Model With Improved Accuracy. Front. Neurosci. 2022, 16, 858126. [Google Scholar] [CrossRef]
- Li, J.; Jiang, X. Mol-BERT: An Effective Molecular Representation with BERT for Molecular Property Prediction. Wirel. Commun. Mob. Comput. 2021, 2021, 7181815. [Google Scholar] [CrossRef]
- Verge Genomics. Available online: https://www.vergegenomics.com (accessed on 26 December 2023).
- Corporation, I. Immuneering Enters Collaboration with Astex Pharmaceuticals to Identify Novel Therapeutic Targets in Central Nervous System Disorder Using Disease Cancelling Technology. Available online: https://www.globenewswire.com/en/news-release/2020/06/25/2053543/0/en/Immuneering-Enters-Collaboration-with-Astex-Pharmaceuticals-to-Identify-Novel-Therapeutic-Targets-in-Central-Nervous-System-Disorder-Using-Disease-Cancelling-Technology.html (accessed on 26 December 2023).
- Making Medicines Differently. Available online: https://www.insitro.com/ (accessed on 26 December 2023).
- Evotec Reaches First Milestone and Receives Success Payment in Alzheimer’s Disease Collaboration with Takeda—Evotec. Available online: https://www.evotec.com/en/investor-relations/news/p/evotec-reaches-first-milestone-and-receives-success-payment-in-alzheimers-disease-collaboration-with-takeda-4533 (accessed on 26 December 2023).
- Welcome to InveniAI. Available online: https://www.inveniai.com/ (accessed on 26 December 2023).
- Recursion Recursion Announces Transformational Collaboration with Roche and Genentech in Neuroscience and Oncology, Advancing Novel Medicines to Patients Using Machine Learning and High Content Screening Methods at Scale to Map Complex Biology. Available online: https://www.prnewswire.com/news-releases/recursion-announces-transformational-collaboration-with-roche-and-genentech-in-neuroscience-and-oncology-advancing-novel-medicines-to-patients-using-machine-learning-and-high-content-screening-methods-at-scale-to-map-complex-biol-301438560.html (accessed on 26 December 2023).
- Hale, C. JPM23: Schrödinger Expands Neuroscience Work with BMS, Otsuka Partnerships. Available online: https://www.fiercebiotech.com/medtech/jpm23-schrodinger-expands-neuroscience-work-bms-otsuka-partnerships (accessed on 26 December 2023).
- Our Team—WaveBreak. Available online: https://wavebreaktx.com/our-team/ (accessed on 26 December 2023).
- End-to-End Drug Discovery. Available online: https://www.benevolent.com/benevolent-platform/end-end-drug-discovery/ (accessed on 26 December 2023).
- Merck KGaA Taps BenevolentAI, Exscientia for AI Drug Discovery. Available online: https://www.fiercebiotech.com/biotech/merck-kgaa-doubles-ai-partners-tapping-benevolentai-and-exscientia-drug-discovery-push (accessed on 26 December 2023).
- Vincere Biosciences Inc. Available online: https://vincerebio.com/ (accessed on 26 December 2023).
- Alleo Labs. Available online: https://www.alleolabs.com (accessed on 27 December 2023).
- AbbVie Partners with BigHat to Develop Antibody Therapies. Available online: https://www.pharmaceutical-technology.com/news/abbvie-partners-with-bighat-to-develop-antibody-therapies (accessed on 26 December 2023).
- Technology. Available online: https://www.bighatbio.com/technology (accessed on 26 December 2023).
- Verge Genomics Announces Positive Safety and Tolerability Data from the Phase 1 Clinical Trial of VRG50635, a Potential Best-in-Class Therapeutic for All Forms of ALS. Available online: https://www.biospace.com/article/verge-genomics-announces-positive-safety-and-tolerability-data-from-the-phase-1-clinical-trial-of-vrg50635-a-potential-best-in-class-therapeutic-for-all-forms-of-als/ (accessed on 26 December 2023).
- NeuBio. Available online: https://www.neu.bio (accessed on 26 December 2023).
- Home. Available online: https://www.perceiv.ai/ (accessed on 26 December 2023).
- Rune Labs. Available online: https://www.runelabs.io/ (accessed on 26 December 2023).
- Home—LinusBio. Available online: https://linusbio.com/ (accessed on 26 December 2023).
- Inception Program for Startups|NVIDIA. Available online: https://www.nvidia.com/en-us/startups/ (accessed on 26 December 2023).
Data Repository | Disease Area | Data Types | Reference |
---|---|---|---|
Alzheimer’s Disease Neuroimaging Initiative | AD | Brain magnetic resonance imaging, positron emission tomography, multi-omics, clinical, fluid biomarkers | [29] |
Alzheimer’s Disease Data Initiative | AD | Multi-omics, clinical trial readouts | [30] |
Religious Orders Study and Rush Memory and Aging Project | AD | Multi-omics, brain magnetic resonance imaging, neuropathology, clinical, fluid biomarkers | [31] |
Accelerating Medicines Partnership Program for Alzheimer’s Disease | AD, PD, other NDDs | Multi-omics, brain magnetic resonance imaging electrophysiology | [32] |
Parkinson’s Progression Markers Initiative | PD | Multi-omics, brain magnetic resonance imaging, clinical | [33] |
Answer ALS Project | ALS | Multi-omics, clinical | [34] |
Target ALS Project | ALS | Multi-omics, clinical | [35] |
Drug Discovery Application | Algorithm Examples | CNS Target Examples |
---|---|---|
Protein binding site prediction | SiteMap, Fpocket, DoGSiteScorer, Q-SiteFinder, DeepSite | Synapsin III |
Protein structure prediction | RoseTTAFold, I-TASSER, AlphaFold, QUARK | PINK1, PSEN1, APP, APOE, TREM2 |
Ligand-based virtual screening | SwissSimilarity | α-synuclein |
Structure-based virtual screening | DeepDTA, GraphDTA, DeepGS, 3-Tunnel DNN, AtomNet | Mfn2, GluA2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cha, Y.; Kagalwala, M.N.; Ross, J. Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics. Pharmaceuticals 2024, 17, 158. https://doi.org/10.3390/ph17020158
Cha Y, Kagalwala MN, Ross J. Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics. Pharmaceuticals. 2024; 17(2):158. https://doi.org/10.3390/ph17020158
Chicago/Turabian StyleCha, Yoonjeong, Mohamedi N. Kagalwala, and Jermaine Ross. 2024. "Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics" Pharmaceuticals 17, no. 2: 158. https://doi.org/10.3390/ph17020158
APA StyleCha, Y., Kagalwala, M. N., & Ross, J. (2024). Navigating the Frontiers of Machine Learning in Neurodegenerative Disease Therapeutics. Pharmaceuticals, 17(2), 158. https://doi.org/10.3390/ph17020158