Comparison and Analysis of Antibiotic Consumption in Two Italian Hospital Settings in Relation to the Fight of Antimicrobial Resistance
Abstract
:1. Introduction
2. Results
2.1. Data Collection
2.2. Comparison 2022 vs. 2023
2.3. Number of Discharges and Hospitalisations
3. Discussion
Strengths and Limitations
4. Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Health Emergency Preparedness and Response Authority. 2023. Available online: https://health.ec.europa.eu/publications/hera-factsheet-health-union-identifying-top-3-priority-health-threats_it (accessed on 1 October 2023).
- European Centre for Disease Prevention and Control. 2022. Available online: https://www.ecdc.europa.eu/en (accessed on 1 October 2023).
- Italian Superior Institute of Health. 2019. Available online: https://www.iss.it/one-health (accessed on 1 October 2023).
- Consiglio Unione Europea Bruxelles 1 Giugno 2023—“Raccomandazione del Consiglio sul Potenziamento Delle Azioni dell’UE per Combattere la Resistenza Antimicrobica con un Approccio “One Health””. Available online: https://health.ec.europa.eu/antimicrobial-resistance/eu-action-antimicrobial-resistance_it (accessed on 1 October 2023).
- Italian Ministry of Health. 2022 “Piano Nazionale di Contrasto all’Antibiotico-Resistenza (PNCAR) 2022–2025”. Available online: https://www.salute.gov.it/imgs/C_17_pubblicazioni_3294_allegato.pdf (accessed on 1 October 2023).
- The Medicines Utilisation Monitoring Centre. National Report on Antibiotics Use in Italy; Italian Medicines Agency: Rome, Italy, 2023; ISBN 979-12-80335-28-9.
- Shalit, I.; Low, M.; Levy, E.; Chowers, M.; Zimhony, O.; Riesenberg, K.; Bishara, J.; Raz, R. Antibiotic use in 26 departments of internal medicine in 6 general hospitals in Israel: Variability and contributing factors. J. Antimicrob. Chemother. 2008, 62, 196–204. [Google Scholar] [CrossRef]
- Kuster, S.P.; Ruef, C.; Ledergerber, B.; Hintermann, A.; Deplazes, C.; Neuber, L.; Weber, R. Quantitative antibiotic use in hospitals: Comparison of measurements, literature review, and recommendations for a standard of reporting. Infection 2008, 36, 549–559. [Google Scholar] [CrossRef]
- Iosifidis, E.; Antachopoulos, C.; Tsivitanidou, M.; Katragkou, A.; Farmaki, E.; Tsiakou, M.; Kyriazi, T.; Roilides, D.S.E. Differential correlation between rates of antimicrobial drug consumption and prevalence of antimicrobial resistance in a tertiary care hospital in Greece. Infect. Control Hosp. Epidemiol. 2008, 29, 615–622. [Google Scholar] [CrossRef]
- Ricciardi, W.; Giubbini, G.; Laurenti, P. Surveillance and Control of Antibiotic Resistance in the Mediterranean Region. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016036. [Google Scholar] [CrossRef] [PubMed]
- Palma-Alvarez, R.F.; Duque-Yemail, J.; Ros-Cucurull, E.; Robles-Martínez, M.; Perea-Ortueta, M.; Grau-López, L.; Ramos-Quiroga, J.A. Quinolone-induced psychosis: An updated review. Actas Esp. Psiquiatr. 2020, 48, 126–137. [Google Scholar] [PubMed]
- Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossens, H.; Pringle, M. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC Infect. Dis. 2014, 14, 13. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Chae, J.; Kim, B.; Kim, D.S. Changes in antibiotic consumption patterns after the implementation of the National Action Plan according to the Access, Watch, Reserve (AWaRe) classification system. Int. J. Infect. Dis. 2022, 122, 345–351. [Google Scholar] [CrossRef] [PubMed]
- Thangaraju, P.; Velmurugan, H.; Yella, S.S.T.; Venkatesan, S. Vigilance Needed in Treating Leprosy Patients in Accordance with WHO’s AWaRe. Recent Adv. Antiinfect. Drug Discov. 2022, 17, 95–102. [Google Scholar] [CrossRef] [PubMed]
- The Lancet Microbe. AMR is more complicated than a lack of drugs. Lancet Microbe 2023, 4, e851. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S565–S575. [Google Scholar] [CrossRef]
- Ferrara, F.; Zovi, A.; Nava, E.; Trama, U.; Vitiello, A. SARS-CoV-2 caused a surge in antibiotic consumption causing a silent pandemic inside the pandemic. A retrospective analysis of Italian data in the first half of 2022. Ann. Pharm. Fr. 2023, 81, 627–635. [Google Scholar] [CrossRef]
- Ferrara, F.; Zovi, A.; Nava, E.; Trama, U.; Sorrentino, S.; Vitiello, A. Il contrasto dell’antibiotico-resistenza: Serve una nuova linea di azione [Countering antibiotic resistance: A new course of action is needed]. Recenti Prog. Med. 2023, 114, 277–283. (In Italian) [Google Scholar] [CrossRef] [PubMed]
- Zavaleta, E.; Ferrara, F.; Zovi, A.; Díaz-Madriz, J.P.; Fallas-Mora, A.; Serrano-Arias, B.; Valentino, F.; Arguedas-Chacón, S.; Langella, R.; Trama, U.; et al. Antibiotic Consumption in Primary Care in Costa Rica and Italy: A Retrospective Cross-Country Analysis. Cureus 2023, 15, e41414. [Google Scholar] [CrossRef]
- Hussein, R.R.; Rabie, A.S.I.; Bin Shaman, M.; Shaaban, A.H.; Fahmy, A.M.; Sofy, M.R.; Lattyak, E.A.; Abuelhana, A.; Naguib, I.A.; Ashour, A.M.; et al. Antibiotic consumption in hospitals during COVID-19 pandemic: A comparative study. J. Infect. Dev. Ctries 2022, 16, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Grau, S.; Hernández, S.; Echeverría-Esnal, D.; Almendral, A.; Ferrer, R.; Limón, E.; Horcajada, J.P.; Catalan Infection Control and Antimicrobial Stewardship Program (VINCat-PROA). Antimicrobial Consumption among 66 Acute Care Hospitals in Catalonia: Impact of the COVID-19 Pandemic. Antibiotics 2021, 10, 943. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; Soucy, J.R.; Leung, V.; So, M.; Kwan, A.T.H.; Portnoff, J.S.; Bertagnolio, S.; Raybardhan, S.; MacFadden, D.R.; Daneman, N. Antibiotic resistance associated with the COVID-19 pandemic: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2023, 29, 302–309. [Google Scholar] [CrossRef]
- Ferrara, F.; Vitiello, A. Scientific Hypothesis for Treatment of COVID-19’s Lung Lesions by Adjusting ACE/ACE2 Imbalance. Cardiovasc. Toxicol. 2021, 21, 498–503. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S. A parallel and silent emerging pandemic: Antimicrobial resistance (AMR) amid COVID-19 pandemic. J. Infect. Public Health 2023, 16, 611–617. [Google Scholar] [CrossRef]
- Ferrara, F.; Mancaniello, C.; Nava, L.; Salierno, A.; Casillo, R.; Trama, U.; Nava, E.; Vitiello, A. Could Decreased Reporting of Suspected Adverse Reactions Generate Future Safety Concerns? Hosp. Pharm. 2022, 57, 419–421. [Google Scholar] [CrossRef]
- Vitiello, A.; Ferrara, F. A short focus, azithromycin in the treatment of respiratory viral infection COVID-19: Efficacy or inefficacy? Immunol. Res. 2022, 70, 129–133. [Google Scholar] [CrossRef]
- Huemer, M.; Mairpady Shambat, S.; Brugger, S.D.; Zinkernagel, A.S. Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep. 2020, 21, e51034. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Eisenreich, W.; Rudel, T.; Heesemann, J.; Goebel, W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 900848. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H.; Yu, X.; Zhou, H.; Li, B.; Chen, G.; Ye, Z.; Wang, Y.; Cui, X.; Zheng, Y.; et al. Impact of antimicrobial stewardship managed by clinical pharmacists on antibiotic use and drug resistance in a Chinese hospital, 2010–2016: A retrospective observational study. BMJ Open 2019, 9, e026072. [Google Scholar] [CrossRef] [PubMed]
- Shawki, M.A.; AlSetohy, W.M.; Ali, K.A.; Ibrahim, M.R.; El-Husseiny, N.; Sabry, N.A. Antimicrobial stewardship solutions with a smart innovative tool. J. Am. Pharm. Assoc. 2021, 61, 581–588.e1. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Nava, L.; Trama, U.; Nava, E.; Vitiello, A. The Slow Path to Therapeutic Adherence. Hosp. Pharm. 2022, 57, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Abate, G.; Wang, G.; Frisby, J. Ceftaroline: Systematic Review of Clinical Uses and Emerging Drug Resistance. Ann. Pharmacother. 2022, 56, 1339–1348. [Google Scholar] [CrossRef]
- Collado, R.; Losa, J.E.; Álvaro, E.A.; Toro, P.; Moreno, L.; Pérez, M. Evaluación del consumo de antimicrobianos mediante DDD/100 estancias versus DDD/100 altas en la implantación de un Programa de Optimización del Uso de Antimicrobianos [Measurement of antimicrobial consumption using DDD per 100 bed-days versus DDD per 100 discharges after the implementation of an antimicrobial stewardship program]. Rev. Esp. Quimioter. 2015, 28, 317–321. [Google Scholar]
- Dickstein, Y.; Temkin, E.; Ben-David, D.; Carmeli, Y.; Schwaber, M.J. Antimicrobial use trends, Israel, 2012 to 2017. Eurosurveillance 2019, 24, 1900022. [Google Scholar] [CrossRef]
- Capuozzo, M.; Celotto, V.; Zovi, A.; Langella, R.; Ferrara, F. Recovery of suspended reimbursements of high-cost drugs subjected to monitoring registries and negotiated agreements (MEAs): A tool for governance and clinical appropriateness in the Italian reality. Eur. J. Health Econ. 2024, 25, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, F.; Trama, U.; Nava, E.; Capuozzo, M.; Zovi, A.; Valentino, F.; Langella, R. Atrial fibrillation therapy with new oral anticoagulants: A real-world evidence study. Int. J. Healthc. Manag. 2023, 1, 1–4. [Google Scholar] [CrossRef]
- Ferrara, F.; Zovi, A.; Langella, R.; Cavallaro, F.; Nava, E.; Trama, U.; Vitiello, A. New drugs for type 2 diabetes mellitus: The challenge of the health care sustainability combined with a better patient care access. Int. J. Healthc. Manag. 2023, 1, 1–6. [Google Scholar] [CrossRef]
AO Policlinico Umberto 1 | ASL Napoli 3 South | ||||
---|---|---|---|---|---|
Indicator | Description Indicator | DDD per 100 Regular Hospitalization Days 1H 2023 | Indicator | DDD per 100 Regular Hospitalization Days 1H 2023 | Indicator |
A1 | rates of J01 per 100 hospital days in ordinary regimen | 312,828.70 | 211.30 | 63,671.86 | 118.20 |
A2 | J01 rates per 100 ordinary discharges | 312,828.70 | 2063.90 | 63,671.86 | 868.65 |
A3 | tetracycline rates (J01A) per 100 hospital days | 5628.00 | 3.80 | 346.50 | 0.64 |
A4 | rates of penicillins and betalactams (J01C) per 100 hospital days | 84,013.70 | 56.70 | 15,781.48 | 29.30 |
A5 | rates of other betalactams (J01D) per 100 hospital days | 91,294.90 | 61.70 | 23,509.25 | 43.64 |
A6 | rates of cephalosporins (J01DD) per 100 hospital days | 32,099.40 | 21.70 | 14,531.58 | 26.98 |
A7 | rates of carbapenems (J01DH) per 100 hospital days | 28,768.90 | 19.40 | 2331.00 | 4.33 |
A8 | carbapenemi (J01DH) rates per 100 discharges | 28,768.90 | 189.80 | 2331.00 | 31.80 |
A9 | rates of sulphonamides and trimethoprim (J01EE) per 100 hospital days | 5010.00 | 3.40 | 126.99 | 0.24 |
A9BIS | rates of cephalosporins IV gen. (J01DE) per 100 hospital days | 5466.50 | 3.70 | 185.00 | 0.34 |
A10 | rates of macrolides, lincosamides and streprogramins (J01F) per 100 hospital days | 23,407.30 | 15.80 | 7790.17 | 14.46 |
A11 | rates of quinolones (J01M) per 100 hospital days | 3990.50 | 2.70 | 9091.50 | 16.88 |
A12 | fluoroquinolone (J01MA) rates per 100 hospital days | 16,133.00 | 10.90 | 9091.50 | 16.88 |
A13 | rates of fluoroquinolones (J01MA) per 100 discharges | 16,133.00 | 106.40 | 9091.50 | 124.03 |
A14 | glycopeptide rates (J01XA) per 100 hospital days | 18,704.50 | 12.60 | 1092.50 | 2.03 |
A15 | colistin rates (J01XB01) per 100 hospital days | 9792.50 | 6.60 | 398.64 | 0.74 |
AO Policlinico Umberto 1 | ASL Napoli 3 South | ||||||
---|---|---|---|---|---|---|---|
Indicator | Description Indicator | Indicator | Indicator | ∆% | Indicator | Indicator | ∆% |
1H 2022 | 1H 2023 | 1H 2022 | 1H 2023 | ||||
A1 | rates OF J01 per 100 hospital days in ordinary regimen | 207.90 | 211.3 | 1.60% | 83.62 | 118.20 | 29% |
A2 | J01 rates per 100 ordinary discharges | 2228.10 | 2063.90 | −7.40% | 624.68 | 868.65 | 28% |
A3 | tetracycline rates (J01A) per 100 hospital days | 4.80 | 3.80 | −21.60% | 0.99 | 0.64 | −54% |
A4 | rates of penicillins and betalactams (J01C) per 100 hospital days | 52.80 | 56.70 | 7.50% | 10.60 | 29.30 | 64% |
A5 | rates of other betalactams (J01D) per 100 hospital days | 56 | 61.70 | 10.10% | 25.44 | 43.64 | 42% |
A6 | rates of cephalosporins (J01DD) per 100 hospital days | 18.80 | 21.70 | 15.50% | 22.17 | 26.98 | 18% |
A7 | rates of carbapenems (J01DH) per 100 hospital days | 19 | 19.40 | 2.30% | 2.96 | 4.33 | 32% |
A8 | carbapenemi (J01DH) rates per 100 discharges | 203.50 | 189.80 | −6.70% | 22.08 | 31.80 | 31% |
A9 | rates of sulphonamides and trimethoprim (J01EE) per 100 hospital days | 3.20 | 3.40 | 5.90% | 0.48 | 0.24 | −103% |
A9BIS | rates of cephalosporins IV gen. (J01DE) per 100 hospital days | 2.80 | 3.70 | 30.40% | 0.26 | 0.34 | 26% |
A10 | rates of macrolides, lincosamides and streprogramins (J01F) per 100 hospital days | 15.90 | 15.80 | −0.60% | 21.68 | 14.46 | −50% |
A11 | rates of quinolones (J01M) per 100 hospital days | 3.40 | 2.70 | −19.60% | 15.30 | 16.88 | 9% |
A12 | fluoroquinolone (J01MA) rates per 100 hospital days | 11 | 10.90 | −0.70% | 15.30 | 16.88 | 9% |
A13 | rates of fluoroquinolones (J01MA) per 100 discharges | 117.60 | 106.40 | −9.50% | 114.30 | 124.03 | 8% |
A14 | glycopeptide rates (J01XA) per 100 hospital days | 14.50 | 12.60 | −12.70% | 1.76 | 2.03 | 13% |
A15 | colistin rates (J01XB01) per 100 hospital days | 9.50 | 6.60 | −30.70% | 0.83 | 0.74 | −13% |
Departments | 1H 2022 (Indicator) | 1H 2023 (Indicator) | |||
---|---|---|---|---|---|
n. Resigned | GG Hospitalisation | n. Resigned | GG Hospitalisation | ||
A | Laparoscopic, orthopedic and trauma, plastic and breast surgery | 1881 | 11,965 | 2327 | 14,285 |
B | Cardiology, vascular surgery, NICU, cardiac surgery | 1707 | 17,982 | 2041 | 18,078 |
C | Anaesthesia and resuscitation, intensive care, and emergency surgery | 1262 | 23,513 | 1271 | 22,066 |
D | Haematology, oncology, and dermatology | 366 | 5892 | 334 | 6072 |
E | Infectious diseases, diabetes, pulmonology, and cystic fibrosis | 1358 | 24,694 | 1421 | 24,325 |
F | Dialysis and nephrology, geriatrics, rheumatology, and internal medicine | 1240 | 22,646 | 1254 | 20,754 |
G | Urology, gynaecology and obstetrics, paediatrics, and gastroenterology | 3630 | 18,364 | 3960 | 20,299 |
H | Neurosurgery, neurology, and psychiatry | 1229 | 15,157 | 1532 | 17,337 |
I | Otolaryngology, ophthalmology, dentistry, maxillo-facial surgery | 762 | 3753 | 1017 | 4852 |
Total | 12,673 | 143,966 | 15,157 | 148,068 |
Hospital | 1H 2022 (Indicator) | 1H 2023 (Indicator) | ||
---|---|---|---|---|
n. Resigned | GG Hospitalisation | n. Resigned | GG Hospitalisation | |
Area Stabiese | 2158 | 16,455 | 2259 | 17,036 |
Torre del Greco | 640 | 6014 | 470 | 4565 |
Boscotrecase | 663 | 9130 | 837 | 7638 |
Penisola Sorrentina | 1494 | 10,678 | 1628 | 11,080 |
Area Nolana | 2407 | 12,781 | 2136 | 13,548 |
Total | 7213 | 53,884 | 7330 | 53,867 |
Cod. Indicator | Description Indicator |
---|---|
A1 | rates of J01 per 100 hospital days in ordinary regimen |
A2 | J01 rates per 100 ordinary discharges |
A3 | tetracycline rates (J01A) per 100 hospital days |
A4 | rates of penicillins and betalactams (J01C) per 100 hospital days |
A5 | rates of other betalactams (J01D) per 100 hospital days |
A6 | rates of cephalosporins (J01DD) per 100 hospital days |
A7 | rates of carbapenems (J01DH) per 100 hospital days |
A8 | carbapenemi (J01DH) rates per 100 discharges |
A9 | rates of sulphonamides and trimethoprim (J01EE) per 100 hospital days |
A9BIS | rates of cephalosporins IV gen. (J01DE) per 100 hospital days |
A10 | rates of macrolides, lincosamides and streprogramins (J01F) per 100 hospital days |
A11 | rates of quinolones (J01M) per 100 hospital days |
A12 | fluoroquinolone (J01MA) rates per 100 hospital days |
A13 | rates of fluoroquinolones (J01MA) per 100 discharges |
A14 | glycopeptide rates (J01XA) per 100 hospital days |
A15 | colistin rates (J01XB01) per 100 hospital days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrara, F.; Pasquinucci, R.; Capuozzo, M.; Polito, G.; Bagaglini, G.; Vaccaro, M.; Coluccia, A.; Langella, R.; Trama, U.; Nava, E.; et al. Comparison and Analysis of Antibiotic Consumption in Two Italian Hospital Settings in Relation to the Fight of Antimicrobial Resistance. Pharmaceuticals 2024, 17, 183. https://doi.org/10.3390/ph17020183
Ferrara F, Pasquinucci R, Capuozzo M, Polito G, Bagaglini G, Vaccaro M, Coluccia A, Langella R, Trama U, Nava E, et al. Comparison and Analysis of Antibiotic Consumption in Two Italian Hospital Settings in Relation to the Fight of Antimicrobial Resistance. Pharmaceuticals. 2024; 17(2):183. https://doi.org/10.3390/ph17020183
Chicago/Turabian StyleFerrara, Francesco, Roberta Pasquinucci, Maurizio Capuozzo, Giacomo Polito, Gabriele Bagaglini, Marcello Vaccaro, Adriana Coluccia, Roberto Langella, Ugo Trama, Eduardo Nava, and et al. 2024. "Comparison and Analysis of Antibiotic Consumption in Two Italian Hospital Settings in Relation to the Fight of Antimicrobial Resistance" Pharmaceuticals 17, no. 2: 183. https://doi.org/10.3390/ph17020183
APA StyleFerrara, F., Pasquinucci, R., Capuozzo, M., Polito, G., Bagaglini, G., Vaccaro, M., Coluccia, A., Langella, R., Trama, U., Nava, E., & Zovi, A. (2024). Comparison and Analysis of Antibiotic Consumption in Two Italian Hospital Settings in Relation to the Fight of Antimicrobial Resistance. Pharmaceuticals, 17(2), 183. https://doi.org/10.3390/ph17020183