A Review of Current and Pipeline Drugs for Treatment of Melanoma
Abstract
:1. Introduction
2. Current Treatment Landscape for Melanoma
3. Targeted Therapies
4. Immunotherapies
4.1. Adoptive Cell Transfer Therapies
4.2. Immune Checkpoint Inhibitors
4.3. Interleukin-2 and Other Cytokines
4.4. Oncolytic Virus Therapy
5. Combination Approaches
6. Emerging Therapies and Future Directions
7. Limitations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACT | Adoptive Cell Transfer |
CAR | Chimeric Antigen Receptor |
CPI | Immune Checkpoint Inhibitors |
CTLA | Cytotoxic T-Lymphocyte-Associated Antigen 4 |
CSPG4 | Chondroitin Sulfate Proteoglycan 4 |
DC | Dendritic Cells |
G-CSF | Granulocyte Colony-stimulating Factor |
GM-CSF | Granulocyte–Macrophage Colony-Stimulating Factor |
ICAM-1 | Intercellular Adhesion Molecule-1 |
IL-2 | Interleukin-2 |
OV | Oncolytic Virus |
PD-1 | Programmed Cell Death Protein 1 |
TIL | Tumor-infiltrating Lymphocytes |
T-VEC | Talimogene Laherparecpvec |
References
- Ahmed, B.; Qadir, M.I.; Ghafoor, S. Malignant Melanoma: Skin Cancer-Diagnosis, Prevention, and Treatment. Crit. Rev. Eukaryot. Gene Expr. 2020, 30, 291–297. [Google Scholar] [CrossRef]
- Gilchrest, B.A.; Eller, M.S.; Geller, A.C.; Yaar, M. The pathogenesis of melanoma induced by ultraviolet radiation. N. Engl. J. Med. 1999, 340, 1341–1348. [Google Scholar] [CrossRef]
- Leonardi, G.C.; Falzone, L.; Salemi, R.; Zanghì, A.; Spandidos, D.A.; Mccubrey, J.A.; Candido, S.; Libra, M. Cutaneous melanoma: From pathogenesis to therapy (Review). Int. J. Oncol. 2018, 52, 1071–1080. [Google Scholar] [CrossRef]
- Karimkhani, C.; Green, A.C.; Nijsten, T.; Weinstock, M.A.; Dellavalle, R.P.; Naghavi, M.; Fitzmaurice, C. The global burden of melanoma: Results from the Global Burden of Disease Study 2015. Br. J. Dermatol. 2017, 177, 134–140. [Google Scholar] [CrossRef]
- Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet 2018, 392, 971–984. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef] [PubMed]
- Curti, B.D.; Faries, M.B. Recent Advances in the Treatment of Melanoma. N. Engl. J. Med. 2021, 384, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Heistein, J.B.; Acharya, U.; Mukkamalla, S.K.R. Malignant Melanoma. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK470409/ (accessed on 7 April 2023).
- Henley, S.J.; Ward, E.M.; Scott, S.; Ma, J.; Anderson, R.N.; Firth, A.U.; Thomas, C.C.; Islami, F.; Weir, H.K.; Lewis, D.R.; et al. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer 2020, 126, 2225–2249. [Google Scholar] [CrossRef] [PubMed]
- Massand, S.; Neves, R.I. Emerging Therapies in the Treatment of Advanced Melanoma. Clin. Plast. Surg. 2021, 48, 713–733. [Google Scholar] [CrossRef] [PubMed]
- Ralli, M.; Botticelli, A.; Visconti, I.C.; Angeletti, D.; Fiore, M.; Marchetti, P.; Lambiase, A.; de Vincentiis, M.; Greco, A. Immunotherapy in the Treatment of Metastatic Melanoma: Current Knowledge and Future Directions. J. Immunol. Res. 2020, 2020, 9235638. [Google Scholar] [CrossRef] [PubMed]
- Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014. [Google Scholar] [CrossRef]
- Sabag, N.; Yakobson, A.; Silberstein, E. Recent Changes and Innovations in Melanoma Treatment: A Review. Isr. Med. Assoc. J. IMAJ 2020, 11, 704–710. [Google Scholar]
- Ernst, M.; Giubellino, A. The Current State of Treatment and Future Directions in Cutaneous Malignant Melanoma. Biomedicines 2022, 10, 822. [Google Scholar] [CrossRef]
- Steininger, J.; Gellrich, F.F.; Schulz, A.; Westphal, D.; Beissert, S.; Meier, F. Systemic Therapy of Metastatic Melanoma: On the Road to Cure. Cancers 2021, 13, 1430. [Google Scholar] [CrossRef]
- Jenkins, R.W.; Fisher, D.E. Treatment of Advanced Melanoma in 2020 and Beyond. J. Investig. Dermatol. 2021, 141, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Joyce, K.M. Surgical Management of Melanoma. In Cutaneous Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, AU, USA, 2017. [Google Scholar]
- Eddy, K.; Chen, S. Overcoming Immune Evasion in Melanoma. Int. J. Mol. Sci. 2020, 21, 8984. [Google Scholar] [CrossRef] [PubMed]
- Sood, S.; Jayachandiran, R.; Pandey, S. Current Advancements and Novel Strategies in the Treatment of Metastatic Melanoma. Integr. Cancer Ther. 2021, 20, 1534735421990078. [Google Scholar] [CrossRef] [PubMed]
- Lazaroff, J.; Bolotin, D. Targeted Therapy and Immunotherapy in Melanoma. Dermatol. Clin. 2023, 41, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Teixido, C.; Castillo, P.; Martinez-Vila, C.; Arance, A.; Alos, L. Molecular Markers and Targets in Melanoma. Cells 2021, 10, 2320. [Google Scholar] [CrossRef] [PubMed]
- Trager, M.H.; Geskin, L.J.; Saenger, Y.M. Oncolytic Viruses for the Treatment of Metastatic Melanoma. Curr. Treat. Options Oncol. 2020, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Gutzmer, R.; Stroyakovskiy, D.; Gogas, H.; Robert, C.; Lewis, K.; Protsenko, S.; Pereira, R.P.; Eigentler, T.; Rutkowski, P.; Demidov, L.; et al. Atezolizumab, vemurafenib, and cobimetinib as first-line treatment for unresectable advanced BRAFV600 mutation-positive melanoma (IMspire150): Primary analysis of the randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2020, 395, 1835–1844. [Google Scholar] [CrossRef] [PubMed]
- Pala, L.; De Pas, T.; Pagan, E.; Minucci, S.; Catania, C.; Digiacomo, N.; Cocorocchio, E.; Laszlo, D.; Di Muzio, A.; Barigazzi, C.; et al. Improved outcomes in women with BRAF-mutant melanoma treated with BRAF/MEK-targeted therapy across randomized clinical trials. A systematic review and meta-analysis. Semin. Oncol. 2023, 50, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Vellano, C.P.; White, M.G.; Andrews, M.C.; Chelvanambi, M.; Witt, R.G.; Daniele, J.R.; Titus, M.; McQuade, J.L.; Conforti, F.; Burton, E.M.; et al. Androgen receptor blockade promotes response to BRAF/MEK-targeted therapy. Nature 2022, 606, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Thiem, A.; Mashhadiakbar, P.; Cussigh, C.; Hassel, J.C.; Grimmelmann, I.; Gutzmer, R.; Schlaak, M.; Heppt, M.V.; Dücker, P.; Hüning, S.; et al. Immune checkpoint inhibition and targeted therapy for melanoma: A patient-oriented cross-sectional comparative multicentre study. J. Eur. Acad. Dermatol. Venereol. JEADV 2023, 37, 884–893. [Google Scholar] [CrossRef] [PubMed]
- Villani, A.; Potestio, L.; Fabbrocini, G.; Troncone, G.; Malapelle, U.; Scalvenzi, M. The Treatment of Advanced Melanoma: Therapeutic Update. Int. J. Mol. Sci. 2022, 23, 6388. [Google Scholar] [CrossRef] [PubMed]
- Shimu, A.S.; Wei, H.-X.; Li, Q.; Zheng, X.; Li, B. The new progress in cancer immunotherapy. Clin. Exp. Med. 2023, 23, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015, 348, 62–68. [Google Scholar] [CrossRef]
- Hirai, I.; Funakoshi, T.; Kamijuku, H.; Fukuda, K.; Mori, M.; Sakurai, M.; Koda, Y.; Kato, J.; Mori, T.; Watanabe, N.; et al. Adoptive cell therapy using tumor-infiltrating lymphocytes for melanoma refractory to immune-checkpoint inhibitors. Cancer Sci. 2021, 112, 3163–3172. [Google Scholar] [CrossRef]
- Levi, S.T.; Copeland, A.R.; Nah, S.; Crystal, J.S.; Ivey, G.D.; Lalani, A.; Jafferji, M.; White, B.S.; Parikh, N.B.; Leko, V.; et al. Neoantigen Identification and Response to Adoptive Cell Transfer in Anti-PD-1 Naïve and Experienced Patients with Metastatic Melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 3042–3052. [Google Scholar] [CrossRef]
- Sarnaik, A.A.; Hamid, O.; Khushalani, N.I.; Lewis, K.D.; Medina, T.; Kluger, H.M.; Thomas, S.S.; Domingo-Musibay, E.; Pavlick, A.C.; Whitman, E.D.; et al. Lifileucel, a Tumor-Infiltrating Lymphocyte Therapy, in Metastatic Melanoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 2656–2666. [Google Scholar] [CrossRef]
- Evgin, L.; Huff, A.L.; Wongthida, P.; Thompson, J.; Kottke, T.; Tonne, J.; Schuelke, M.; Ayasoufi, K.; Driscoll, C.B.; Shim, K.G.; et al. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat. Commun. 2020, 11, 3187. [Google Scholar] [CrossRef]
- Mo, F.; Yu, Z.; Li, P.; Oh, J.; Spolski, R.; Zhao, L.; Glassman, C.R.; Yamamoto, T.N.; Chen, Y.; Golebiowski, F.M.; et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature 2021, 597, 544–548. [Google Scholar] [CrossRef]
- Bear, A.S.; Fraietta, J.A.; Narayan, V.K.; O’Hara, M.; Haas, N.B. Adoptive Cellular Therapy for Solid Tumors. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Kaptein, P.; Jacoberger-Foissac, C.; Dimitriadis, P.; Voabil, P.; de Bruijn, M.; Brokamp, S.; Reijers, I.; Versluis, J.; Nallan, G.; Triscott, H.; et al. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci. Transl. Med. 2022, 14, eabj9779. [Google Scholar] [CrossRef]
- Sun, Y.; Revach, O.-Y.; Anderson, S.; Kessler, E.A.; Wolfe, C.H.; Jenney, A.; Mills, C.E.; Robitschek, E.J.; Davis, T.G.R.; Kim, S.; et al. Targeting TBK1 to overcome resistance to cancer immunotherapy. Nature 2023, 615, 158–167. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2,3-dioxygenase (IDO) inhibitors and cancer immunotherapy. Cancer Treat. Rev. 2022, 110, 102461. [Google Scholar] [CrossRef]
- Chen, X.-Y.; Li, Y.-D.; Xie, Y.; Cao, L.-Q.; Ashby, C.R.; Zhao, H.; Chen, Z.-S. Nivolumab and relatlimab for the treatment of melanoma. Drugs Today 2023, 59, 91–104. [Google Scholar] [CrossRef]
- Raeber, M.E.; Rosalia, R.A.; Schmid, D.; Karakus, U.; Boyman, O. Interleukin-2 signals converge in a lymphoid-dendritic cell pathway that promotes anticancer immunity. Sci. Transl. Med. 2020, 12, eaba5464. [Google Scholar] [CrossRef]
- Overwijk, W.W.; Tagliaferri, M.A.; Zalevsky, J. Engineering IL-2 to Give New Life to T Cell Immunotherapy. Annu. Rev. Med. 2021, 72, 281–311. [Google Scholar] [CrossRef]
- Paganelli, A.; Garbarino, F.; Toto, P.; Martino, G.D.; D’Urbano, M.; Auriemma, M.; Giovanni, P.D.; Panarese, F.; Staniscia, T.; Amerio, P.; et al. Serological landscape of cytokines in cutaneous melanoma. Cancer Biomark. 2019, 26, 333–342. [Google Scholar] [CrossRef]
- Fang, S.; Xu, T.; Xiong, M.; Zhou, X.; Wang, Y.; Haydu, L.E.; Ross, M.I.; Gershenwald, J.E.; Prieto, V.G.; Cormier, J.N.; et al. Role of Immune Response, Inflammation, and Tumor Immune Response-Related Cytokines/Chemokines in Melanoma Progression. J. Investig. Dermatol. 2019, 139, 2352–2358.e3. [Google Scholar] [CrossRef] [PubMed]
- Karapetyan, L.; AbuShukair, H.M.; Li, A.; Knight, A.; Al Bzour, A.N.; MacFawn, I.P.; Thompson, Z.J.; Chen, A.; Yang, X.; Dadey, R.; et al. Expression of lymphoid structure-associated cytokine/chemokine gene transcripts in tumor and protein in serum are prognostic of melanoma patient outcomes. Front. Immunol. 2023, 14, 1171978. [Google Scholar] [CrossRef] [PubMed]
- Samson, A.; West, E.J.; Carmichael, J.; Scott, K.J.; Turnbull, S.; Kuszlewicz, B.; Dave, R.V.; Peckham-Cooper, A.; Tidswell, E.; Kingston, J.; et al. Neoadjuvant Intravenous Oncolytic Vaccinia Virus Therapy Promotes Anticancer Immunity in Patients. Cancer Immunol. Res. 2022, 10, 745–756. [Google Scholar] [CrossRef] [PubMed]
- Evgin, L.; Kottke, T.; Tonne, J.; Thompson, J.; Huff, A.L.; van Vloten, J.; Moore, M.; Michael, J.; Driscoll, C.; Pulido, J.; et al. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci. Transl. Med. 2022, 14, eabn2231. [Google Scholar] [CrossRef]
- Zhu, W.; Lv, J.; Xie, X.; Tian, C.; Liu, J.; Zhou, H.; Sun, C.; Li, J.; Hu, Z.; Li, X. The oncolytic virus VT09X optimizes immune checkpoint therapy in low immunogenic melanoma. Immunol. Lett. 2022, 241, 15–22. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef]
- Robinson, C.; Xu, M.M.; Nair, S.K.; Beasley, G.M.; Rhodin, K.E. Oncolytic viruses in melanoma. Front. Biosci. Landmark Ed. 2022, 27, 63. [Google Scholar] [CrossRef]
- Shoushtari, A.N.; Olszanski, A.J.; Nyakas, M.; Hornyak, T.J.; Wolchok, J.D.; Levitsky, V.; Kuryk, L.; Hansen, T.B.; Jäderberg, M. Pilot Study of ONCOS-102 and Pembrolizumab: Remodeling of the Tumor Microenvironment and Clinical Outcomes in Anti-PD-1-Resistant Advanced Melanoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 100–109. [Google Scholar] [CrossRef]
- Curti, B.D.; Richards, J.; Hyngstrom, J.R.; Daniels, G.A.; Faries, M.; Feun, L.; Margolin, K.A.; Hallmeyer, S.; Grose, M.; Zhang, Y.; et al. Intratumoral oncolytic virus V937 plus ipilimumab in patients with advanced melanoma: The phase 1b MITCI study. J. Immunother. Cancer 2022, 10, e005224. [Google Scholar] [CrossRef]
- Fernandes GNC. Immunomodulatory Drugs in Melanoma Brain Metastases. Discoveries 2019, 7, e93. [Google Scholar] [CrossRef] [PubMed]
- Chesney, J.; Lewis, K.D.; Kluger, H.; Hamid, O.; Whitman, E.; Thomas, S.; Wermke, M.; Cusnir, M.; Domingo-Musibay, E.; Phan, G.Q.; et al. Efficacy and safety of lifileucel, a one-time autologous tumor-infiltrating lymphocyte (TIL) cell therapy, in patients with advanced melanoma after progression on immune checkpoint inhibitors and targeted therapies: Pooled analysis of consecutive cohorts of the C-144-01 study. J. Immunother. Cancer 2022, 10, e005755. [Google Scholar] [CrossRef]
- Gracia-Hernandez, M.; Munoz, Z.; Villagra, A. Enhancing Therapeutic Approaches for Melanoma Patients Targeting Epigenetic Modifiers. Cancers 2021, 13, 6180. [Google Scholar] [CrossRef] [PubMed]
- Haist, M.; Stege, H.; Kuske, M.; Bauer, J.; Klumpp, A.; Grabbe, S.; Bros, M. Combination of immune-checkpoint inhibitors and targeted therapies for melanoma therapy: The more, the better? Cancer Metastasis Rev. 2023, 42, 481–505. [Google Scholar] [CrossRef]
- Amaria, R.N.; Postow, M.; Burton, E.M.; Tetzlaff, M.T.; Ross, M.I.; Torres-Cabala, C.; Glitza, I.C.; Duan, F.; Milton, D.R.; Busam, K.; et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 2022, 611, 155–160. [Google Scholar] [CrossRef]
- Patel, S.P.; Othus, M.; Chen, Y.; Wright, G.P., Jr.; Yost, K.J.; Hyngstrom, J.R.; Hu-Lieskovan, S.; Lao, C.D.; Fecher, L.A.; Truong, T.G.; et al. Neoadjuvant-Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. N. Engl. J. Med. 2023, 388, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Elshiaty, M.; Schindler, H.; Christopoulos, P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer. Int. J. Mol. Sci. 2021, 22, 5632. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Huang, S.; Huang, C.; Fay, N.S.; Wang, Y.; Putrevu, S.; Wright, K.; Zaman, M.S.; Cai, W.; Huang, B.; et al. Fc-competent multispecific PDL-1/TIGIT/LAG-3 antibodies potentiate superior anti-tumor T cell response. Sci. Rep. 2023, 13, 9865. [Google Scholar] [CrossRef]
- McCulloch, J.A.; Davar, D.; Rodrigues, R.R.; Badger, J.H.; Fang, J.R.; Cole, A.M.; Balaji, A.K.; Vetizou, M.; Prescott, S.M.; Fernandes, M.R.; et al. Intestinal microbiota signatures of clinical response and immune-related adverse events in melanoma patients treated with anti-PD-1. Nat. Med. 2022, 28, 545–556. [Google Scholar] [CrossRef]
- Baruch, E.N.; Youngster, I.; Ben-Betzalel, G.; Ortenberg, R.; Lahat, A.; Katz, L.; Adler, K.; Dick-Necula, D.; Raskin, S.; Bloch, N.; et al. Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science 2021, 371, 602–609. [Google Scholar] [CrossRef]
- Davar, D.; Dzutsev, A.K.; McCulloch, J.A.; Rodrigues, R.R.; Chauvin, J.M.; Morrison, R.M.; Deblasio, R.N.; Menna, C.; Ding, Q.; Pagliano, O.; et al. Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science 2021, 371, 595–602. [Google Scholar] [CrossRef]
Author (Year) | Major Results |
---|---|
Gutzmer et al., (2020) [23] | Combination therapy with vemurafenib and cobimetinib was superior to individual therapies in patients with BRAF V600-mutated melanoma, offering an improved progression-free survival of 15.1 months compared to 10.6 months with individual therapies. |
Jenkins et al., (2021) [16] | A single-agent PD-1 blockade along with BRAF/MEK inhibitor combination therapy demonstrated a 5-year overall survival benefit of 30–40%. |
Vellano et al., (2022) [25] | In a murine model of melanoma, mice treated with an androgen receptor blockade had significantly improved responses to BRAF-MEK-targeted therapy (p = 0.018 and p = 0.003). |
Pala et al., (2023) [24] | BRAF and MEK inhibitor combination therapy reduced the risk of progression or death in women compared to monotherapy, with a progression-free survival and overall survival hazard ratio of 0.50 (95% CI 0.41–0.61). In men, the hazard ratio was 0.63 (95% CI 0.54–0.74). The study suggests a hormonal influence on the signaling pathways involved in BRAF and MEK inhibition. |
Thiem et al., (2023) [26] | Targeted therapy patients reported a significant drop in quality of life compared to immune checkpoint inhibitor patients (p = 0.02). Adverse events were 1.9 times higher for patients on targeted therapy (p = 0.01), suggesting a decrease in quality of life and a higher risk of adverse events compared to immunotherapy. |
Treatment | How They Work | Categories | Examples | Adverse Effects |
---|---|---|---|---|
Adoptive Cell Transfer Therapies (ACT) | Collection and modification of a patient’s immune cells to amplify their tumor-targeting capability | CAR T cells, Tumor-infiltrating lymphocytes (TILs) | Lifileucel | Thrombocytopenia, anemia, febrile neutropenia |
Immune Checkpoint Inhibitors (CPI) | Restoration and enhancement of immune response for recognizing and eliminating cancerous cells | CTLA-4 PD-1 | Ipilimumab, Penbrolizumab | Fatigue, diarrhea, itching, rash; Fatigue, cough, nausea, rash, itching, joint pain |
Interleukin 2 (IL-2) | Activation of the cytotoxic function of natural killer (NK) cells, T lymphocytes, and monocytes | Aldesleukin | Chills, fever, fatigue, nausea, vomiting, diarrhea | |
Oncologic Virus Therapy (OV) | Use of viruses to target, infect, and kill cancer cells | Talimogene laherparepvec (T-VEC) | Flu-like symptoms, fatigue, chills, nausea |
Benefits | Challenges | |
---|---|---|
Surgical Excision | -High cure rate for thin, non-invasive tumors | -May require lymph node dissection for more advanced cases -Not curative for metastatic disease |
Radiation Therapy | -May be used when localized surgery is not feasible -Can foster reduced recurrence following surgery | -Limited efficacy in metastatic melanoma -Mostly utilized for palliative purposes and symptomatic relief |
Systemic Chemotherapy | -Can be used in metastatic disease | -Melanoma can develop resistance, leading to disease recurrence and progression -Side effects due to non-specific action on healthy cells, including fatigue, nausea, and hair loss |
Targeted Therapy | -Targets specific mutations or molecules, reducing systemic side effects | -Melanoma can develop resistance, leading to disease recurrence and progression -BRAF inhibitors are associated with cutaneous toxicities, such as skin rashes and keratocanthomas -MEK inhibitors are associated with gastrointestinal and ocular side effects |
Immunotherapy | -Efficacy has been demonstrated in disease cases resistant to other treatment modalities -Augments immune response | -Adoptive cell transfer is less effective for solid tumors due to poor homing, proliferation, and survival of transferred cells -Resistance to immune checkpoint inhibitor blockade can develop -Does not work equitably in all patients, requiring further delineation of patient and tumor characteristics that predict efficacy -Access and affordability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natarelli, N.; Aleman, S.J.; Mark, I.M.; Tran, J.T.; Kwak, S.; Botto, E.; Aflatooni, S.; Diaz, M.J.; Lipner, S.R. A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals 2024, 17, 214. https://doi.org/10.3390/ph17020214
Natarelli N, Aleman SJ, Mark IM, Tran JT, Kwak S, Botto E, Aflatooni S, Diaz MJ, Lipner SR. A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals. 2024; 17(2):214. https://doi.org/10.3390/ph17020214
Chicago/Turabian StyleNatarelli, Nicole, Sarah J. Aleman, Isabella M. Mark, Jasmine T. Tran, Sean Kwak, Elizabeth Botto, Shaliz Aflatooni, Michael J. Diaz, and Shari R. Lipner. 2024. "A Review of Current and Pipeline Drugs for Treatment of Melanoma" Pharmaceuticals 17, no. 2: 214. https://doi.org/10.3390/ph17020214
APA StyleNatarelli, N., Aleman, S. J., Mark, I. M., Tran, J. T., Kwak, S., Botto, E., Aflatooni, S., Diaz, M. J., & Lipner, S. R. (2024). A Review of Current and Pipeline Drugs for Treatment of Melanoma. Pharmaceuticals, 17(2), 214. https://doi.org/10.3390/ph17020214