Unity Is Strength: The Mutual Alliance between CFTR and SLC26A6 as Therapeutic Opportunity in Cystic Fibrosis
Abstract
:1. Introduction
2. SLC26A6 and CFTR: A Mutual Alliance
3. Restoring SLC26A6 and CFTR Interaction in CF
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Bell, S.C.; Mall, M.A.; Gutierrez, H.; Macek, M.; Madge, S.; Davies, J.C.; Burgel, P.R.; Tullis, E.; Castanos, C.; Castellani, C.; et al. The future of cystic fibrosis care: A global perspective. Lancet Respir. Med. 2020, 8, 65–124. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Taylor-Cousar, J.L. Cystic Fibrosis Modulator Therapies. Annu. Rev. Med. 2023, 74, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Ticona, J.H.; Lapinel, N.; Wang, J. Future Comorbidities in an Aging Cystic Fibrosis Population. Life 2023, 13, 1305. [Google Scholar] [CrossRef] [PubMed]
- Calthorpe, R.J.; Goodchild, N.; Gleetus, V.; Premakumar, V.; Hayee, B.; Elliott, Z.; Evans, B.; Rowbotham, N.J.; Carr, S.B.; Barr, H.; et al. A grumbling concern: An international survey of gastrointestinal symptoms in cystic fibrosis in the modulator era. NIHR Open Res. 2023, 3, 18. [Google Scholar] [CrossRef]
- Riordan, J.R.; Rommens, J.M.; Kerem, B.; Alon, N.; Rozmahel, R.; Grzelczak, Z.; Zielenski, J.; Lok, S.; Plavsic, N.; Chou, J.L.; et al. Identification of the cystic fibrosis gene: Cloning and characterization of complementary DNA. Science 1989, 245, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Blotas, C.; Ferec, C.; Moisan, S. Tissue-Specific Regulation of CFTR Gene Expression. Int. J. Mol. Sci. 2023, 24, 10678. [Google Scholar] [CrossRef] [PubMed]
- Farinha, C.M.; Gentzsch, M. Revisiting CFTR Interactions: Old Partners and New Players. Int. J. Mol. Sci. 2021, 22, 13196. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, B.; Baatallah, N.; Najm, M.; Castanier, S.; Jung, V.; Pranke, I.; Golec, A.; Stoven, V.; Marullo, S.; Antigny, F.; et al. Differential CFTR-Interactome Proximity Labeling Procedures Identify Enrichment in Multiple SLC Transporters. Int. J. Mol. Sci. 2022, 23, 8937. [Google Scholar] [CrossRef]
- Lostao, A.; Lim, K.; Pallares, M.C.; Ptak, A.; Marcuello, C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale—A comprehensive review of AFM-based force spectroscopy. Int. J. Biol. Macromol. 2023, 238, 124089. [Google Scholar] [CrossRef]
- Murabito, A.; Bhatt, J.; Ghigo, A. It Takes Two to Tango! Protein-Protein Interactions behind cAMP-Mediated CFTR Regulation. Int. J. Mol. Sci. 2023, 24, 10538. [Google Scholar] [CrossRef]
- Schlessinger, A.; Zatorski, N.; Hutchinson, K.; Colas, C. Targeting SLC transporters: Small molecules as modulators and therapeutic opportunities. Trends Biochem. Sci. 2023, 48, 801–814. [Google Scholar] [CrossRef]
- Alper, S.L.; Sharma, A.K. The SLC26 gene family of anion transporters and channels. Mol. Aspects Med. 2013, 34, 494–515. [Google Scholar] [CrossRef]
- Ko, S.B.; Zeng, W.; Dorwart, M.R.; Luo, X.; Kim, K.H.; Millen, L.; Goto, H.; Naruse, S.; Soyombo, A.; Thomas, P.J.; et al. Gating of CFTR by the STAS domain of SLC26 transporters. Nat. Cell Biol. 2004, 6, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Lohi, H.; Kujala, M.; Kerkela, E.; Saarialho-Kere, U.; Kestila, M.; Kere, J. Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger. Genomics 2000, 70, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Waldegger, S.; Moschen, I.; Ramirez, A.; Smith, R.J.; Ayadi, H.; Lang, F.; Kubisch, C. Cloning and characterization of SLC26A6, a novel member of the solute carrier 26 gene family. Genomics 2001, 72, 43–50. [Google Scholar] [CrossRef]
- Knauf, F.; Yang, C.L.; Thomson, R.B.; Mentone, S.A.; Giebisch, G.; Aronson, P.S. Identification of a chloride-formate exchanger expressed on the brush border membrane of renal proximal tubule cells. Proc. Natl. Acad. Sci. USA 2001, 98, 9425–9430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Petrovic, S.; Mann, E.; Soleimani, M. Identification of an apical Cl−/HCO3− exchanger in the small intestine. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 282, G573–G579. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, S.; Wang, Z.; Ma, L.; Seidler, U.; Forte, J.G.; Shull, G.E.; Soleimani, M. Colocalization of the apical Cl−/HCO3− exchanger PAT1 and gastric H-K-ATPase in stomach parietal cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G1207–G1216. [Google Scholar] [CrossRef] [PubMed]
- Petrovic, S.; Ma, L.; Wang, Z.; Soleimani, M. Identification of an apical Cl−/HCO3− exchanger in rat kidney proximal tubule. Am. J. Physiol. Cell Physiol. 2003, 285, C608–C617. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Grichtchenko, I.I.; Boron, W.F.; Aronson, P.S. Specificity of anion exchange mediated by mouse Slc26a6. J. Biol. Chem. 2002, 277, 33963–33967. [Google Scholar] [CrossRef]
- Xie, Q.; Welch, R.; Mercado, A.; Romero, M.F.; Mount, D.B. Molecular characterization of the murine Slc26a6 anion exchanger: Functional comparison with Slc26a1. Am. J. Physiol. Renal Physiol. 2002, 283, F826–F838. [Google Scholar] [CrossRef]
- Chernova, M.N.; Jiang, L.; Friedman, D.J.; Darman, R.B.; Lohi, H.; Kere, J.; Vandorpe, D.H.; Alper, S.L. Functional comparison of mouse slc26a6 anion exchanger with human SLC26A6 polypeptide variants: Differences in anion selectivity, regulation, and electrogenicity. J. Biol. Chem. 2005, 280, 8564–8580. [Google Scholar] [CrossRef]
- Clark, J.S.; Vandorpe, D.H.; Chernova, M.N.; Heneghan, J.F.; Stewart, A.K.; Alper, S.L. Species differences in Cl− affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis. J. Physiol. 2008, 586, 1291–1306. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, T.; Petrovic, S.; Tuo, B.; Riederer, B.; Barone, S.; Lorenz, J.N.; Seidler, U.; Aronson, P.S.; Soleimani, M. Renal and intestinal transport defects in Slc26a6-null mice. Am. J. Physiol. Cell Physiol. 2005, 288, C957–C965. [Google Scholar] [CrossRef]
- Simpson, J.E.; Schweinfest, C.W.; Shull, G.E.; Gawenis, L.R.; Walker, N.M.; Boyle, K.T.; Soleimani, M.; Clarke, L.L. PAT-1 (Slc26a6) is the predominant apical membrane Cl−/HCO3− exchanger in the upper villous epithelium of the murine duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1079–G1088. [Google Scholar] [CrossRef]
- Freel, R.W.; Hatch, M.; Green, M.; Soleimani, M. Ileal oxalate absorption and urinary oxalate excretion are enhanced in Slc26a6 null mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G719–G728. [Google Scholar] [CrossRef]
- Jiang, Z.; Asplin, J.R.; Evan, A.P.; Rajendran, V.M.; Velazquez, H.; Nottoli, T.P.; Binder, H.J.; Aronson, P.S. Calcium oxalate urolithiasis in mice lacking anion transporter Slc26a6. Nat. Genet. 2006, 38, 474–478. [Google Scholar] [CrossRef]
- Ishiguro, H.; Namkung, W.; Yamamoto, A.; Wang, Z.; Worrell, R.T.; Xu, J.; Lee, M.G.; Soleimani, M. Effect of Slc26a6 deletion on apical Cl−/HCO3− exchanger activity and cAMP-stimulated bicarbonate secretion in pancreatic duct. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G447–G455. [Google Scholar] [CrossRef]
- Greeley, T.; Shumaker, H.; Wang, Z.; Schweinfest, C.W.; Soleimani, M. Downregulated in adenoma and putative anion transporter are regulated by CFTR in cultured pancreatic duct cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281, G1301–G1308. [Google Scholar] [CrossRef]
- Ko, S.B.; Shcheynikov, N.; Choi, J.Y.; Luo, X.; Ishibashi, K.; Thomas, P.J.; Kim, J.Y.; Kim, K.H.; Lee, M.G.; Naruse, S.; et al. A molecular mechanism for aberrant CFTR-dependent HCO3− transport in cystic fibrosis. EMBO J. 2002, 21, 5662–5672. [Google Scholar] [CrossRef]
- Lohi, H.; Lamprecht, G.; Markovich, D.; Heil, A.; Kujala, M.; Seidler, U.; Kere, J. Isoforms of SLC26A6 mediate anion transport and have functional PDZ interaction domains. Am. J. Physiol. Cell Physiol. 2003, 284, C769–C779. [Google Scholar] [CrossRef]
- Gray, M.A. Bicarbonate secretion: It takes two to tango. Nat. Cell Biol. 2004, 6, 292–294. [Google Scholar] [CrossRef]
- Steward, M.C.; Ishiguro, H.; Case, R.M. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu. Rev. Physiol. 2005, 67, 377–409. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Wang, H.; Tuo, B. Physiological and Pathological Functions of SLC26A6. Front. Med. 2020, 7, 618256. [Google Scholar] [CrossRef]
- Yang, D.; Shcheynikov, N.; Zeng, W.; Ohana, E.; So, I.; Ando, H.; Mizutani, A.; Mikoshiba, K.; Muallem, S. IRBIT coordinates epithelial fluid and HCO3− secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J. Clin. Investig. 2009, 119, 193–202. [Google Scholar] [CrossRef]
- Song, Y.; Ishiguro, H.; Yamamoto, A.; Jin, C.X.; Kondo, T. Effects of Slc26a6 deletion and CFTR inhibition on HCO3− secretion by mouse pancreatic duct. J. Med. Investig. 2009, 56, 332–335. [Google Scholar] [CrossRef]
- Simpson, J.E.; Gawenis, L.R.; Walker, N.M.; Boyle, K.T.; Clarke, L.L. Chloride conductance of CFTR facilitates basal Cl−/HCO3− exchange in the villous epithelium of intact murine duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 2005, 288, G1241–G1251. [Google Scholar] [CrossRef]
- Singh, A.K.; Riederer, B.; Chen, M.; Xiao, F.; Krabbenhoft, A.; Engelhardt, R.; Nylander, O.; Soleimani, M.; Seidler, U. The switch of intestinal Slc26 exchangers from anion absorptive to HCO3− secretory mode is dependent on CFTR anion channel function. Am. J. Physiol. Cell Physiol. 2010, 298, C1057–C1065. [Google Scholar] [CrossRef]
- Singh, A.K.; Sjoblom, M.; Zheng, W.; Krabbenhoft, A.; Riederer, B.; Rausch, B.; Manns, M.P.; Soleimani, M.; Seidler, U. CFTR and its key role in in vivo resting and luminal acid-induced duodenal HCO3− secretion. Acta Physiol. 2008, 193, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Ermer, T.; Nazzal, L.; Tio, M.C.; Waikar, S.; Aronson, P.S.; Knauf, F. Oxalate homeostasis. Nat. Rev. Nephrol. 2023, 19, 123–138. [Google Scholar] [CrossRef]
- Knauf, F.; Thomson, R.B.; Heneghan, J.F.; Jiang, Z.; Adebamiro, A.; Thomson, C.L.; Barone, C.; Asplin, J.R.; Egan, M.E.; Alper, S.L.; et al. Loss of Cystic Fibrosis Transmembrane Regulator Impairs Intestinal Oxalate Secretion. J. Am. Soc. Nephrol. 2017, 28, 242–249. [Google Scholar] [CrossRef]
- Moryousef, J.; Kwong, J.; Kishibe, T.; Ordon, M. Systematic Review of the Prevalence of Kidney Stones in Cystic Fibrosis. J. Endourol. 2021, 35, 1693–1700. [Google Scholar] [CrossRef]
- Wright, J.F.; Craig, W.Y.; Lucas, F.L.; Goldfarb, D.S.; Zuckerman, J.B.; Taylor, E.N. Urinary stone disease prevalence and associations in cystic fibrosis. Urolithiasis 2021, 49, 415–423. [Google Scholar] [CrossRef]
- Lai, S.; Mazzaferro, S.; Mitterhofer, A.P.; Bonci, E.; Marotta, P.G.; Pelligra, F.; Murciano, M.; Celani, C.; Troiani, P.; Cimino, G.; et al. Renal involvement and metabolic alterations in adults patients affected by cystic fibrosis. J. Transl. Med. 2019, 17, 388. [Google Scholar] [CrossRef]
- Sato, Y.; Thomas, D.Y.; Hanrahan, J.W. The anion transporter SLC26A9 localizes to tight junctions and is degraded by the proteasome when co-expressed with F508del-CFTR. J. Biol. Chem. 2019, 294, 18269–18284. [Google Scholar] [CrossRef]
- Needham, P.G.; Goeckeler-Fried, J.L.; Zhang, C.; Sun, Z.; Wetzel, A.R.; Bertrand, C.A.; Brodsky, J.L. SLC26A9 is selected for endoplasmic reticulum associated degradation (ERAD) via Hsp70-dependent targeting of the soluble STAS domain. Biochem. J. 2021, 478, 4203–4220. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zacharias, M. What Makes a Good Protein-Protein Interaction Stabilizer: Analysis and Application of the Dual-Binding Mechanism. ACS Cent. Sci. 2023, 9, 969–979. [Google Scholar] [CrossRef]
- Rosser, M.F.; Grove, D.E.; Chen, L.; Cyr, D.M. Assembly and misassembly of cystic fibrosis transmembrane conductance regulator: Folding defects caused by deletion of F508 occur before and after the calnexin-dependent association of membrane spanning domain (MSD) 1 and MSD2. Mol. Biol. Cell 2008, 19, 4570–4579. [Google Scholar] [CrossRef]
- Fiedorczuk, K.; Chen, J. Molecular structures reveal synergistic rescue of Delta508 CFTR by Trikafta modulators. Science 2022, 378, 284–290. [Google Scholar] [CrossRef]
- Thiel, P.; Kaiser, M.; Ottmann, C. Small-molecule stabilization of protein-protein interactions: An underestimated concept in drug discovery? Angew. Chem. Int. Ed. Engl. 2012, 51, 2012–2018. [Google Scholar] [CrossRef]
- Zarzycka, B.; Kuenemann, M.A.; Miteva, M.A.; Nicolaes, G.A.F.; Vriend, G.; Sperandio, O. Stabilization of protein-protein interaction complexes through small molecules. Drug Discov. Today 2016, 21, 48–57. [Google Scholar] [CrossRef]
- Holzinger, A. Influencing the Actin Dynamics in Plant Cells by Jasplakinolide, Chondramides, Phalloidin, Cytochalasins, and Latrunculins. Methods Mol. Biol. 2022, 2364, 177–198. [Google Scholar] [CrossRef]
- Sheng, C.; Dong, G.; Miao, Z.; Zhang, W.; Wang, W. State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors. Chem. Soc. Rev. 2015, 44, 8238–8259. [Google Scholar] [CrossRef]
- Lucero, B.; Francisco, K.R.; Liu, L.J.; Caffrey, C.R.; Ballatore, C. Protein-protein interactions: Developing small-molecule inhibitors/stabilizers through covalent strategies. Trends Pharmacol. Sci. 2023, 44, 474–488. [Google Scholar] [CrossRef]
- Konstantinidou, M.; Li, J.; Zhang, B.; Wang, Z.; Shaabani, S.; Ter Brake, F.; Essa, K.; Domling, A. PROTACs—A game-changing technology. Expert. Opin. Drug Discov. 2019, 14, 1255–1268. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pariano, M.; Antognelli, C.; Romani, L.; Costantini, C. Unity Is Strength: The Mutual Alliance between CFTR and SLC26A6 as Therapeutic Opportunity in Cystic Fibrosis. Pharmaceuticals 2024, 17, 367. https://doi.org/10.3390/ph17030367
Pariano M, Antognelli C, Romani L, Costantini C. Unity Is Strength: The Mutual Alliance between CFTR and SLC26A6 as Therapeutic Opportunity in Cystic Fibrosis. Pharmaceuticals. 2024; 17(3):367. https://doi.org/10.3390/ph17030367
Chicago/Turabian StylePariano, Marilena, Cinzia Antognelli, Luigina Romani, and Claudio Costantini. 2024. "Unity Is Strength: The Mutual Alliance between CFTR and SLC26A6 as Therapeutic Opportunity in Cystic Fibrosis" Pharmaceuticals 17, no. 3: 367. https://doi.org/10.3390/ph17030367
APA StylePariano, M., Antognelli, C., Romani, L., & Costantini, C. (2024). Unity Is Strength: The Mutual Alliance between CFTR and SLC26A6 as Therapeutic Opportunity in Cystic Fibrosis. Pharmaceuticals, 17(3), 367. https://doi.org/10.3390/ph17030367