Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression
Abstract
:1. Introduction
2. Alteration of the AA Pathway in CF, from Precursors to Metabolites
2.1. n-3 and n-6 PUFA
2.2. Arachidonic Acid
2.3. Metabolites
2.3.1. The COX Pathway
2.3.2. The LOX Pathway
2.3.3. The CYP450 Pathway and Oxidative Stress
2.4. Role of CFTR Dysfunction in CF Abnormal Fatty Acid Metabolism
2.5. Therapeutic Strategies to Modulate AA Metabolism in CF
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cystic Fibrosis Mutation Database: Statistics. Available online: http://www.genet.sickkids.on.ca/StatisticsPage.html (accessed on 8 July 2024).
- Tousson, A.; Van Tine, B.A.; Naren, A.P.; Shaw, G.M.; Schwiebert, L.M. Characterization of CFTR Expression and Chloride Channel Activity in Human Endothelia. Am. J. Physiol. 1998, 275, C1555–C1564. [Google Scholar] [CrossRef]
- Painter, R.G.; Valentine, V.G.; Lanson, N.A.; Leidal, K.; Zhang, Q.; Lombard, G.; Thompson, C.; Viswanathan, A.; Nauseef, W.M.; Wang, G.; et al. CFTR Expression in Human Neutrophils and the Phagolysosomal Chlorination Defect in Cystic Fibrosis. Biochemistry 2006, 45, 10260–10269. [Google Scholar] [CrossRef] [PubMed]
- Porto, P.D.; Cifani, N.; Guarnieri, S.; Domenico, E.G.D.; Mariggiò, M.A.; Spadaro, F.; Guglietta, S.; Anile, M.; Venuta, F.; Quattrucci, S.; et al. Dysfunctional CFTR Alters the Bactericidal Activity of Human Macrophages against Pseudomonas Aeruginosa. PLoS ONE 2011, 6, e19970. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tertilt, C.; Krause, A.; Quadri, L.E.; Crystal, R.G.; Worgall, S. Influence of the Cystic Fibrosis Transmembrane Conductance Regulator on Expression of Lipid Metabolism-Related Genes in Dendritic Cells. Respir. Res. 2009, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- Mattoscio, D.; Evangelista, V.; De Cristofaro, R.; Recchiuti, A.; Pandolfi, A.; Di Silvestre, S.; Manarini, S.; Martelli, N.; Rocca, B.; Petrucci, G.; et al. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Expression in Human Platelets: Impact on Mediators and Mechanisms of the Inflammatory Response. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2010, 24, 3970–3980. [Google Scholar] [CrossRef] [PubMed]
- McDonald, T.V.; Nghiem, P.T.; Gardner, P.; Martens, C.L. Human Lymphocytes Transcribe the Cystic Fibrosis Transmembrane Conductance Regulator Gene and Exhibit CF-Defective cAMP-Regulated Chloride Current. J. Biol. Chem. 1992, 267, 3242–3248. [Google Scholar] [CrossRef]
- Grasemann, H.; Ratjen, F. Cystic Fibrosis. N. Engl. J. Med. 2023, 389, 1693–1707. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-Resolving Lipid Mediators Are Leads for Resolution Physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef]
- Recchiuti, A.; Mattoscio, D.; Isopi, E. Roles, Actions, and Therapeutic Potential of Specialized Pro-Resolving Lipid Mediators for the Treatment of Inflammation in Cystic Fibrosis. Front. Pharmacol. 2019, 10, 252. [Google Scholar] [CrossRef]
- Briottet, M.; Shum, M.; Urbach, V. The Role of Specialized Pro-Resolving Mediators in Cystic Fibrosis Airways Disease. Front. Pharmacol. 2020, 11, 1290. [Google Scholar] [CrossRef]
- Shum, M.; London, C.M.; Briottet, M.; Sy, K.A.; Baillif, V.; Philippe, R.; Zare, A.; Ghorbani-Dalini, S.; Remus, N.; Tarze, A.; et al. CF Patients’ Airway Epithelium and Sex Contribute to Biosynthesis Defects of Pro-Resolving Lipids. Front. Immunol. 2022, 13, 915261. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Caverly, L.J.; Riquelme, S.A.; Hisert, K.B. The Impact of Highly Effective Modulator Therapy on Cystic Fibrosis Microbiology and Inflammation. Clin. Chest Med. 2022, 43, 647–665. [Google Scholar] [CrossRef] [PubMed]
- Hisert, K.B.; Birket, S.E.; Clancy, J.P.; Downey, D.G.; Engelhardt, J.F.; Fajac, I.; Gray, R.D.; Lachowicz-Scroggins, M.E.; Mayer-Hamblett, N.; Thibodeau, P.; et al. Understanding and Addressing the Needs of People with Cystic Fibrosis in the Era of CFTR Modulator Therapy. Lancet Respir. Med. 2023, 11, 916–931. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 Fatty Acids and Inflammatory Processes: From Molecules to Man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, B. Arachidonic Acid Metabolism: Role in Inflammation. Z. Rheumatol. 1991, 50 (Suppl. S1), 3–6. [Google Scholar]
- Strandvik, B. Fatty Acid Metabolism in Cystic Fibrosis. Prostaglandins Leukot. Essent. Fat. Acids 2010, 83, 121–129. [Google Scholar] [CrossRef]
- Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism Pathways of Arachidonic Acids: Mechanisms and Potential Therapeutic Targets. Signal Transduct. Target. Ther. 2021, 6, 94. [Google Scholar] [CrossRef]
- Harayama, T.; Riezman, H. Understanding the Diversity of Membrane Lipid Composition. Nat. Rev. Mol. Cell Biol. 2018, 19, 281–296. [Google Scholar] [CrossRef]
- Chase, H.P.; Dupont, J. Abnormal Levels of Prostaglandins and Fatty Acids in Blood of Children with Cystic Fibrosis. Lancet 1978, 2, 236–238. [Google Scholar] [CrossRef]
- Lloyd-Still, J.; Johnson, S.; Holman, R. Essential Fatty Acid Status and Fluidity of Plasma Phospholipids in Cystic Fibrosis Infants. Am. J. Clin. Nutr. 1991, 54, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Uc, A.; Strandvik, B.; Yao, J.; Liu, X.; Yi, Y.; Sun, X.; Welti, R.; Engelhardt, J.F.; Norris, A.W. The Fatty Acid Imbalance of Cystic Fibrosis Exists at Birth Independent of Feeding in Pig and Ferret Models. Clin. Sci. 2022, 136, 1773–1791. [Google Scholar] [CrossRef] [PubMed]
- Farrell, P.M.; Mischler, E.H.; Engle, M.J.; Jeannette Brown, D.; Lau, S.-M. Fatty Acid Abnormalities in Cystic Fibrosis. Pediatr. Res. 1985, 19, 104–109. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Vanbillemont, G.; Van Biervliet, J.-P.; Declercq, D.; Robberecht, E.; Christophe, A. Relation between Fatty Acid Composition and Clinical Status or Genotype in Cystic Fibrosis Patients. Ann. Nutr. Metab. 2007, 51, 541–549. [Google Scholar] [CrossRef]
- Roulet, M.; Frascarolo, P.; Rappaz, I.; Pilet, M. Essential Fatty Acid Deficiency in Well Nourished Young Cystic Fibrosis Patients. Eur. J. Pediatr. 1997, 156, 952–956. [Google Scholar] [CrossRef]
- Seegmiller, A. Abnormal Unsaturated Fatty Acid Metabolism in Cystic Fibrosis: Biochemical Mechanisms and Clinical Implications. IJMS 2014, 15, 16083–16099. [Google Scholar] [CrossRef]
- Strandvik, B.; O’Neal, W.K.; Ali, M.A.; Hammar, U. Low Linoleic and High Docosahexaenoic Acids in a Severe Phenotype of Transgenic Cystic Fibrosis Mice. Exp. Biol. Med. 2018, 243, 496–503. [Google Scholar] [CrossRef]
- Rubin, D.; Laposata, M. Cellular Interactions between N-6 and n-3 Fatty Acids: A Mass Analysis of Fatty Acid Elongation/Desaturation, Distribution among Complex Lipids, and Conversion to Eicosanoids. J. Lipid Res. 1992, 33, 1431–1440. [Google Scholar] [CrossRef] [PubMed]
- Freedman, S.D.; Blanco, P.G.; Zaman, M.M.; Shea, J.C.; Ollero, M.; Hopper, I.K.; Weed, D.A.; Gelrud, A.; Regan, M.M.; Laposata, M.; et al. Association of Cystic Fibrosis with Abnormalities in Fatty Acid Metabolism. N. Engl. J. Med. 2004, 350, 560–569. [Google Scholar] [CrossRef]
- Shrestha, N.; Rout-Pitt, N.; McCarron, A.; Jackson, C.A.; Bulmer, A.C.; McAinch, A.J.; Donnelley, M.; Parsons, D.W.; Hryciw, D.H. Changes in Essential Fatty Acids and Ileal Genes Associated with Metabolizing Enzymes and Fatty Acid Transporters in Rodent Models of Cystic Fibrosis. IJMS 2023, 24, 7194. [Google Scholar] [CrossRef]
- Freedman, S.D.; Katz, M.H.; Parker, E.M.; Laposata, M.; Urman, M.Y.; Alvarez, J.G. A Membrane Lipid Imbalance Plays a Role in the Phenotypic Expression of Cystic Fibrosis in Cftr−/− Mice. Proc. Natl. Acad. Sci. USA 1999, 96, 13995–14000. [Google Scholar] [CrossRef]
- Njoroge, S.W.; Laposata, M.; Katrangi, W.; Seegmiller, A.C. DHA and EPA Reverse Cystic Fibrosis-Related FA Abnormalities by Suppressing FA Desaturase Expression and Activity. J. Lipid Res. 2012, 53, 257–265. [Google Scholar] [CrossRef]
- Van Biervliet, S.; Devos, M.; Delhaye, T.; Van Biervliet, J.P.; Robberecht, E.; Christophe, A. Oral DHA Supplementation in ΔF508 Homozygous Cystic Fibrosis Patients. Prostaglandins Leukot. Essent. Fat. Acids 2008, 78, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, S.W.; Seegmiller, A.C.; Katrangi, W.; Laposata, M. Increased Δ5- and Δ6-Desaturase, Cyclooxygenase-2, and Lipoxygenase-5 Expression and Activity Are Associated with Fatty Acid and Eicosanoid Changes in Cystic Fibrosis. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2011, 1811, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Al-Turkmani, M.R.; Savaille, J.E.; Alturkmani, R.; Katrangi, W.; Cluette-Brown, J.E.; Zaman, M.M.; Laposata, M.; Freedman, S.D. Cell Culture Models Demonstrate That CFTR Dysfunction Leads to Defective Fatty Acid Composition and Metabolism. J. Lipid Res. 2008, 49, 1692–1700. [Google Scholar] [CrossRef]
- Das, U.N. Essential Fatty Acids and Their Metabolites in the Pathobiology of Inflammation and Its Resolution. Biomolecules 2021, 11, 1873. [Google Scholar] [CrossRef] [PubMed]
- Gilljam, H.; Strandvik, B.; Ellin, Á.; Wiman, L.-. Gös. Increased Mole Fraction of Arachidonic Acid in Bronchial Phospholipids in Patients with Cystic Fibrosis. Scand. J. Clin. Lab. Investig. 1986, 46, 511–518. [Google Scholar] [CrossRef]
- Carlstedt-Duke, J.; Brönnegård, M.; Strandvik, B. Pathological Regulation of Arachidonic Acid Release in Cystic Fibrosis: The Putative Basic Defect. Proc. Natl. Acad. Sci. USA 1986, 83, 9202–9206. [Google Scholar] [CrossRef]
- Dif, F.; Wu, Y.-Z.; Burgel, P.-R.; Ollero, M.; Leduc, D.; Aarbiou, J.; Borot, F.; Garcia-Verdugo, I.; Martin, C.; Chignard, M.; et al. Critical Role of Cytosolic Phospholipase A2 in Bronchial Mucus Hypersecretion in CFTR-Deficient Mice. Eur. Respir. J. 2010, 36, 1120–1130. [Google Scholar] [CrossRef]
- Borot, F.; Vieu, D.-L.; Faure, G.; Fritsch, J.; Colas, J.; Moriceau, S.; Baudouin-Legros, M.; Brouillard, F.; Ayala-Sanmartin, J.; Touqui, L.; et al. Eicosanoid Release Is Increased by Membrane Destabilization and CFTR Inhibition in Calu-3 Cells. PLoS ONE 2009, 4, e7116. [Google Scholar] [CrossRef]
- Bensalem, N.; Ventura, A.P.; Vallee, B.; Lipecka, J.; Tondelier, D.; Davezac, N.; Dos Santos, A.; Perretti, M.; Fajac, A.; Sermet-Gaudelus, I.; et al. Down-Regulation of the Anti-Inflammatory Protein Annexin A1 in Cystic Fibrosis Knock-out Mice and Patients. Mol. Cell. Proteomics 2005, 4, 1591–1601. [Google Scholar] [CrossRef]
- Dalli, J.; Rosignoli, G.; Hayhoe, R.P.G.; Edelman, A.; Perretti, M. CFTR Inhibition Provokes an Inflammatory Response Associated with an Imbalance of the Annexin A1 Pathway. Am. J. Pathol. 2010, 177, 176–186. [Google Scholar] [CrossRef]
- Meves, H. Arachidonic Acid and Ion Channels: An Update. Br. J. Pharmacol. 2008, 155, 4–16. [Google Scholar] [CrossRef]
- Linsdell, P. Inhibition of Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channel Currents by Arachidonic Acid. Can. J. Physiol. Pharmacol. 2000, 78, 490–499. [Google Scholar] [CrossRef]
- Zhou, J.-J.; Linsdell, P. Molecular Mechanism of Arachidonic Acid Inhibition of the CFTR Chloride Channel. Eur. J. Pharmacol. 2007, 563, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Dei Cas, M.; Zulueta, A.; Mingione, A.; Caretti, A.; Ghidoni, R.; Signorelli, P.; Paroni, R. An Innovative Lipidomic Workflow to Investigate the Lipid Profile in a Cystic Fibrosis Cell Line. Cells 2020, 9, 1197. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Obeid, L.M. Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Chiang, N.; Serhan, C.N. Specialized Pro-Resolving Mediator Network: An Update on Production and Actions. Essays Biochem. 2020, 64, 443–462. [Google Scholar] [CrossRef]
- Lin, L.L.; Lin, A.Y.; Knopf, J.L. Cytosolic Phospholipase A2 Is Coupled to Hormonally Regulated Release of Arachidonic Acid. Proc. Natl. Acad. Sci. USA 1992, 89, 6147–6151. [Google Scholar] [CrossRef]
- Horati, H.; Janssens, H.M.; Margaroli, C.; Veltman, M.; Stolarczyk, M.; Kilgore, M.B.; Chou, J.; Peng, L.; Tiddens, H.A.M.W.; Chandler, J.D.; et al. Airway Profile of Bioactive Lipids Predicts Early Progression of Lung Disease in Cystic Fibrosis. J. Cyst. Fibros. 2020, 19, 902–909. [Google Scholar] [CrossRef]
- Serhan, C.N.; Savill, J. Resolution of Inflammation: The Beginning Programs the End. Nat. Immunol. 2005, 6, 1191–1197. [Google Scholar] [CrossRef]
- Owens, J.M.; Shroyer, K.R.; Kingdom, T.T. Expression of Cyclooxygenase and Lipoxygenase Enzymes in Sinonasal Mucosa of Patients with Cystic Fibrosis. Arch. Otolaryngol. Head Neck Surg. 2008, 134, 825–831. [Google Scholar] [CrossRef]
- Roca-Ferrer, J.; Pujols, L.; Gartner, S.; Moreno, A.; Pumarola, F.; Mullol, J.; Cobos, N.; Picado, C. Upregulation of COX-1 and COX-2 in Nasal Polyps in Cystic Fibrosis. Thorax 2006, 61, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Eiserich, J.P.; Cross, C.E.; Morrissey, B.M.; Hammock, B.D. Metabolomic Profiling of Regulatory Lipid Mediators in Sputum from Adult Cystic Fibrosis Patients. Free Radic. Biol. Med. 2012, 53, 160–171. [Google Scholar] [CrossRef]
- Strandvik, B.; Svensson, E.; Seyberth, H.W. Prostanoid Biosynthesis in Patients with Cystic Fibrosis. Prostaglandins Leukot. Essent. Fat. Acids 1996, 55, 419–425. [Google Scholar] [CrossRef]
- Zakrzewski, J.T.; Barnes, N.C.; Piper, P.J.; Costello, J.F. Detection of Sputum Eicosanoids in Cystic Fibrosis and in Normal Saliva by Bioassay and Radioimmunoassay. Br. J. Clin. Pharmacol. 1987, 23, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Rigas, B.; Korenberg, J.R.; Merrill, W.W.; Levine, L. Prostaglandins E2 and E2 Alpha Are Elevated in Saliva of Cystic Fibrosis Patients. Am. J. Gastroenterol. 1989, 84, 1408–1412. [Google Scholar] [PubMed]
- Jabr, S.; Gartner, S.; Milne, G.L.; Roca-Ferrer, J.; Casas, J.; Moreno, A.; Gelpí, E.; Picado, C. Quantification of Major Urinary Metabolites of PGE2 and PGD2 in Cystic Fibrosis: Correlation with Disease Severity. Prostaglandins Leukot. Essent. Fat. Acids 2013, 89, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Gartner, S.; Roca-Ferrer, J.; Fernandez-Alvarez, P.; Lima, I.; Rovira-Amigo, S.; García-Arumi, E.; Tizzano, E.F.; Picado, C. Elevated Prostaglandin E2 Synthesis Is Associated with Clinical and Radiological Disease Severity in Cystic Fibrosis. J. Clin. Med. 2024, 13, 2050. [Google Scholar] [CrossRef]
- Ciabattoni, G.; Davì, G.; Collura, M.; Iapichino, L.; Pardo, F.; Ganci, A.; Romagnoli, R.; Maclouf, J.; Patrono, C. In Vivo Lipid Peroxidation and Platelet Activation in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2000, 162, 1195–1201. [Google Scholar] [CrossRef]
- Patrono, C.; Rocca, B. Measurement of Thromboxane Biosynthesis in Health and Disease. Front. Pharmacol. 2019, 10, 1244. [Google Scholar] [CrossRef]
- Goetzl, E.J.; Brash, A.R.; Tauber, A.I.; Oates, J.A.; Hubbard, W.C. Modulation of Human Neutrophil Function by Monohydroxy-Eicosatetraenoic Acids. Immunology 1980, 39, 491–501. [Google Scholar] [PubMed]
- Takata, S.; Papayianni, A.; Matsubara, M.; Jimenez, W.; Pronovost, P.H.; Brady, H.R. 15-Hydroxyeicosatetraenoic Acid Inhibits Neutrophil Migration across Cytokine-Activated Endothelium. Am. J. Pathol. 1994, 145, 541–549. [Google Scholar]
- Gabbs, M.; Leng, S.; Devassy, J.G.; Monirujjaman, M.; Aukema, H.M. Advances in Our Understanding of Oxylipins Derived from Dietary PUFAs. Adv. Nutr. 2015, 6, 513–540. [Google Scholar] [CrossRef]
- Hamberg, M.; Hedqvist, P.; Rådegran, K. Identification of 15-Hydroxy-5,8,11,13-Eicosatetraenoic Acid (15-HETE) as a Major Metabolite of Arachidonic Acid in Human Lung. Acta Physiol. Scand. 1980, 110, 219–221. [Google Scholar] [CrossRef]
- Dennis, E.A.; Norris, P.C. Eicosanoid Storm in Infection and Inflammation. Nat. Rev. Immunol. 2015, 15, 511–523. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R.; Zampolli, A. From Asthma to Atherosclerosis--5-Lipoxygenase, Leukotrienes, and Inflammation. N. Engl. J. Med. 2004, 350, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Holgate, S.T.; Peters-Golden, M.; Panettieri, R.A.; Henderson, W.R. Roles of Cysteinyl Leukotrienes in Airway Inflammation, Smooth Muscle Function, and Remodeling. J. Allergy Clin. Immunol. 2003, 111, S18–S34; discussion S34–S36. [Google Scholar] [CrossRef]
- Haeggström, J.Z.; Funk, C.D. Lipoxygenase and Leukotriene Pathways: Biochemistry, Biology, and Roles in Disease. Chem. Rev. 2011, 111, 5866–5898. [Google Scholar] [CrossRef]
- Greally, P.; Hussein, M.J.; Cook, A.J.; Sampson, A.P.; Piper, P.J.; Price, J.F. Sputum Tumour Necrosis Factor-Alpha and Leukotriene Concentrations in Cystic Fibrosis. Arch. Dis. Child. 1993, 68, 389–392. [Google Scholar] [CrossRef]
- Konstan, M.W.; Walenga, R.W.; Hilliard, K.A.; Hilliard, J.B. Leukotriene B4 Markedly Elevated in the Epithelial Lining Fluid of Patients with Cystic Fibrosis. Am. Rev. Respir. Dis. 1993, 148, 896–901. [Google Scholar] [CrossRef]
- Sampson, A.; Spencer, D.; Green, C.; Piper, P.; Price, J. Leukotrienes in the Sputum and Urine of Cystic Fibrosis Children. Br. J. Clin. Pharmacol. 1990, 30, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Romano, M. Lipoxin and Aspirin-Triggered Lipoxins. Sci. World J. 2010, 10, 458217. [Google Scholar] [CrossRef]
- Romano, M.; Serhan, C.N. Lipoxin Generation by Permeabilized Human Platelets. Biochemistry 1992, 31, 8269–8277. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.; Chen, X.S.; Takahashi, Y.; Yamamoto, S.; Funk, C.D.; Serhan, C.N. Lipoxin Synthase Activity of Human Platelet 12-Lipoxygenase. Biochem. J. 1993, 296, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Claria, J.; Serhan, C.N. Aspirin Triggers Previously Undescribed Bioactive Eicosanoids by Human Endothelial Cell-Leukocyte Interactions. Proc. Natl. Acad. Sci. USA 1995, 92, 9475–9479. [Google Scholar] [CrossRef] [PubMed]
- Claria, J.; Lee, M.H.; Serhan, C.N. Aspirin-Triggered Lipoxins (15-Epi-LX) Are Generated by the Human Lung Adenocarcinoma Cell Line (A549)-Neutrophil Interactions and Are Potent Inhibitors of Cell Proliferation. Mol. Med. 1996, 2, 583. [Google Scholar] [CrossRef]
- Titos, E.; Chiang, N.; Serhan, C.N.; Romano, M.; Gaya, J.; Pueyo, G.; Clària, J. Hepatocytes Are a Rich Source of Novel Aspirin-Triggered 15-Epi-Lipoxin A(4). Am. J. Physiol. 1999, 277, C870–C877. [Google Scholar] [CrossRef]
- Serhan, C.N.; Sheppard, K.A. Lipoxin Formation during Human Neutrophil-Platelet Interactions. Evidence for the Transformation of Leukotriene A4 by Platelet 12-Lipoxygenase in Vitro. J. Clin. Investig. 1990, 85, 772–780. [Google Scholar] [CrossRef]
- Romano, M.; Cianci, E.; Simiele, F.; Recchiuti, A. Lipoxins and Aspirin-Triggered Lipoxins in Resolution of Inflammation. Eur. J. Pharmacol. 2015, 760, 49–63. [Google Scholar] [CrossRef]
- Karp, C.L.; Flick, L.M.; Park, K.W.; Softic, S.; Greer, T.M.; Keledjian, R.; Yang, R.; Uddin, J.; Guggino, W.B.; Atabani, S.F.; et al. Defective Lipoxin-Mediated Anti-Inflammatory Activity in the Cystic Fibrosis Airway. Nat. Immunol. 2004, 5, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Jeanson, L.; Guerrera, I.C.; Papon, J.-F.; Chhuon, C.; Zadigue, P.; Prulière-Escabasse, V.; Amselem, S.; Escudier, E.; Coste, A.; Edelman, A. Proteomic Analysis of Nasal Epithelial Cells from Cystic Fibrosis Patients. PLoS ONE 2014, 9, e108671. [Google Scholar] [CrossRef] [PubMed]
- Ringholz, F.C.; Buchanan, P.J.; Clarke, D.T.; Millar, R.G.; McDermott, M.; Linnane, B.; Harvey, B.J.; McNally, P.; Urbach, V. Reduced 15-Lipoxygenase 2 and Lipoxin A4/Leukotriene B4 Ratio in Children with Cystic Fibrosis. Eur. Respir. J. 2014, 44, 394–404. [Google Scholar] [CrossRef]
- Pierdomenico, A.M.; Patruno, S.; Codagnone, M.; Simiele, F.; Mari, V.C.; Plebani, R.; Recchiuti, A.; Romano, M. microRNA-181b Is Increased in Cystic Fibrosis Cells and Impairs Lipoxin A4 Receptor-Dependent Mechanisms of Inflammation Resolution and Antimicrobial Defense. Sci. Rep. 2017, 7, 13519. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Y.; Schmelzer, K.; Lee, T.-S.; Fang, X.; Zhu, Y.; Spector, A.A.; Gill, S.; Morisseau, C.; Hammock, B.D.; et al. The Antiinflammatory Effect of Laminar Flow: The Role of PPARgamma, Epoxyeicosatrienoic Acids, and Soluble Epoxide Hydrolase. Proc. Natl. Acad. Sci. USA 2005, 102, 16747–16752. [Google Scholar] [CrossRef] [PubMed]
- Campbell, W.B. New Role for Epoxyeicosatrienoic Acids as Anti-Inflammatory Mediators. Trends Pharmacol. Sci. 2000, 21, 125–127. [Google Scholar] [CrossRef]
- Tooker, B.C.; Kandel, S.E.; Work, H.M.; Lampe, J.N. Pseudomonas Aeruginosa Cytochrome P450 CYP168A1 Is a Fatty Acid Hydroxylase That Metabolizes Arachidonic Acid to the Vasodilator 19-HETE. J. Biol. Chem. 2022, 298, 101629. [Google Scholar] [CrossRef]
- Malhotra, S.; Hayes, D.; Wozniak, D.J. Cystic Fibrosis and Pseudomonas Aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019, 32. [Google Scholar] [CrossRef]
- Tunaru, S.; Chennupati, R.; Nüsing, R.M.; Offermanns, S. Arachidonic Acid Metabolite 19(S)-HETE Induces Vasorelaxation and Platelet Inhibition by Activating Prostacyclin (IP) Receptor. PLoS ONE 2016, 11, e0163633. [Google Scholar] [CrossRef]
- Galli, F.; Battistoni, A.; Gambari, R.; Pompella, A.; Bragonzi, A.; Pilolli, F.; Iuliano, L.; Piroddi, M.; Dechecchi, M.C.; Cabrini, G.; et al. Oxidative Stress and Antioxidant Therapy in Cystic Fibrosis. Biochim. Biophys. Acta 2012, 1822, 690–713. [Google Scholar] [CrossRef]
- Thomson, E.; Brennan, S.; Senthilmohan, R.; Gangell, C.L.; Chapman, A.L.; Sly, P.D.; Kettle, A.J.; Australian Respiratory Early Surveillance Team for Cystic Fibrosis (AREST CF); Balding, E.; Berry, L.J.; et al. Identifying Peroxidases and Their Oxidants in the Early Pathology of Cystic Fibrosis. Free Radic. Biol. Med. 2010, 49, 1354–1360. [Google Scholar] [CrossRef] [PubMed]
- Kettle, A.J.; Chan, T.; Osberg, I.; Senthilmohan, R.; Chapman, A.L.P.; Mocatta, T.J.; Wagener, J.S. Myeloperoxidase and Protein Oxidation in the Airways of Young Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2004, 170, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Rada, B.; Leto, T.L. Oxidative Innate Immune Defenses by Nox/Duox Family NADPH Oxidases. Contrib. Microbiol. 2008, 15, 164–187. [Google Scholar] [CrossRef] [PubMed]
- Roum, J.H.; Buhl, R.; McElvaney, N.G.; Borok, Z.; Crystal, R.G. Systemic Deficiency of Glutathione in Cystic Fibrosis. J. Appl. Physiol. (1985) 1993, 75, 2419–2424. [Google Scholar] [CrossRef] [PubMed]
- Bochkov, V.N.; Oskolkova, O.V.; Birukov, K.G.; Levonen, A.-L.; Binder, C.J.; Stöckl, J. Generation and Biological Activities of Oxidized Phospholipids. Antioxid. Redox Signal 2010, 12, 1009–1059. [Google Scholar] [CrossRef] [PubMed]
- Dias, I.H.K.; Milic, I.; Heiss, C.; Ademowo, O.S.; Polidori, M.C.; Devitt, A.; Griffiths, H.R. Inflammation, Lipid (Per)Oxidation, and Redox Regulation. Antioxid. Redox Signal 2020, 33, 166–190. [Google Scholar] [CrossRef]
- Janssen, L.J. Isoprostanes: An Overview and Putative Roles in Pulmonary Pathophysiology. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2001, 280, L1067–L1082. [Google Scholar] [CrossRef]
- Janssen, L.J.; Catalli, A.; Helli, P. The Pulmonary Biology of Isoprostanes. Antioxid. Redox Signal 2005, 7, 244–255. [Google Scholar] [CrossRef]
- Freigang, S. The Regulation of Inflammation by Oxidized Phospholipids. Eur. J. Immunol. 2016, 46, 1818–1825. [Google Scholar] [CrossRef]
- Galiniak, S.; Mołoń, M.; Rachel, M. Links between Disease Severity, Bacterial Infections and Oxidative Stress in Cystic Fibrosis. Antioxidants 2022, 11, 887. [Google Scholar] [CrossRef]
- Wood, L.G.; Fitzgerald, D.A.; Gibson, P.G.; Cooper, D.M.; Garg, M.L. Increased Plasma Fatty Acid Concentrations after Respiratory Exacerbations Are Associated with Elevated Oxidative Stress in Cystic Fibrosis Patients. Am. J. Clin. Nutr. 2002, 75, 668–675. [Google Scholar] [CrossRef]
- Reid, D.W.; Misso, N.; Aggarwal, S.; Thompson, P.J.; Walters, E.H. Oxidative Stress and Lipid-Derived Inflammatory Mediators during Acute Exacerbations of Cystic Fibrosis. Respirology 2007, 12, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Taccetti, G.; Campana, S.; Neri, A.S.; Boni, V.; Festini, F. Antibiotic Therapy against Pseudomonas Aeruginosa in Cystic Fibrosis. J. Chemother. 2008, 20, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.E.; Quaggiotto, P.; Wood, L.; O’Loughlin, E.V.; Henty, R.L.; Garg, M.L. Elevated Plasma Levels of F2α Isoprostane in Cystic Fibrosis. Lipids 1999, 34, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Hammond, V.J.; Morgan, A.H.; Lauder, S.; Thomas, C.P.; Brown, S.; Freeman, B.A.; Lloyd, C.M.; Davies, J.; Bush, A.; Levonen, A.-L.; et al. Novel Keto-Phospholipids Are Generated by Monocytes and Macrophages, Detected in Cystic Fibrosis, and Activate Peroxisome Proliferator-Activated Receptor-γ. J. Biol. Chem. 2012, 287, 41651–41666. [Google Scholar] [CrossRef]
- Gartner, S.; Fernandez-Alvarez, P.; Lima, I.; Rovira, S.; Picado, C.; Garcia-Arumí, E.; Mir, I.D.; Torrent, A.; Moreno, A.; Iglesias, I.; et al. Inflammation in Cystic Fibrosis Patients: Study of the Eicosanoid Pathway and Severity Correlations. Eur. Respir. J. 2021, 58, PA2106. [Google Scholar] [CrossRef]
- Strandvik, B.; Gronowitz, E.; Enlund, F.; Martinsson, T.; Wahlström, J. Essential Fatty Acid Deficiency in Relation to Genotype in Patients with Cystic Fibrosis. J. Pediatr. 2001, 139, 650–655. [Google Scholar] [CrossRef]
- Stubbs, C.D.; Smith, A.D. The Modification of Mammalian Membrane Polyunsaturated Fatty Acid Composition in Relation to Membrane Fluidity and Function. Biochim. Biophys. Acta 1984, 779, 89–137. [Google Scholar] [CrossRef]
- Bae, H.; Kim, B.R.; Jung, S.; Le, J.; Heide, D.M. van der; Yu, W.; Park, S.H.; Hilkin, B.M.; Gansemer, N.D.; Powers, L.S.; et al. Arteriovenous Metabolomics in Pigs Reveals CFTR Regulation of Metabolism in Multiple Organs. Available online: https://www.jci.org/articles/view/174500/pdf (accessed on 27 June 2024).
- Bhura-Bandali, F.N.; Suh, M.; Man, S.F.P.; Clandinin, M.T. The ΔF508 Mutation in the Cystic Fibrosis Transmembrane Conductance Regulator Alters Control of Essential Fatty Acid Utilization in Epithelial Cells. J. Nutr. 2000, 130, 2870–2875. [Google Scholar] [CrossRef]
- Xu, Y.; Clark, J.C.; Aronow, B.J.; Dey, C.R.; Liu, C.; Wooldridge, J.L.; Whitsett, J.A. Transcriptional Adaptation to Cystic Fibrosis Transmembrane Conductance Regulator Deficiency. J. Biol. Chem. 2003, 278, 7674–7682. [Google Scholar] [CrossRef]
- Moliteo, E.; Sciacca, M.; Palmeri, A.; Papale, M.; Manti, S.; Parisi, G.F.; Leonardi, S. Cystic Fibrosis and Oxidative Stress: The Role of CFTR. Molecules 2022, 27, 5324. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Dohna, M.; Graeber, S.Y.; Sommerburg, O.; Renz, D.M.; Pallenberg, S.T.; Voskrebenzev, A.; Schütz, K.; Hansen, G.; Doellinger, F.; et al. Impact of Elexacaftor/Tezacaftor/Ivacaftor Therapy on Lung Clearance Index and Magnetic Resonance Imaging in Children with Cystic Fibrosis and One or Two F508del Alleles. Eur. Respir. J. 2024, 2400004. [Google Scholar] [CrossRef] [PubMed]
- Szabo, M.M.; Foushee, S.E.; McPheeters, C.M.; O’Hagan, A.R.; Ramirez, A.M.; O’Reilly, E.A. Impact of Elexacaftor/Tezacaftor/Ivacaftor on Respiratory Colonization in an Adult Cystic Fibrosis Clinic. Am. J. Med. Sci. 2024, 367, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Liessi, N.; Pesce, E.; Braccia, C.; Bertozzi, S.M.; Giraudo, A.; Bandiera, T.; Pedemonte, N.; Armirotti, A. Distinctive Lipid Signatures of Bronchial Epithelial Cells Associated with Cystic Fibrosis Drugs, Including Trikafta. JCI Insight 2020, 5, e138722. [Google Scholar] [CrossRef]
- O’Connor, M.G.; Seegmiller, A. The Effects of Ivacaftor on CF Fatty Acid Metabolism: An Analysis from the GOAL Study. J. Cyst. Fibros. 2017, 16, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Veltman, M.; De Sanctis, J.B.; Stolarczyk, M.; Klymiuk, N.; Bähr, A.; Brouwer, R.W.; Oole, E.; Shah, J.; Ozdian, T.; Liao, J.; et al. CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but Not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells. Front. Physiol. 2021, 12, 619442. [Google Scholar] [CrossRef]
- Teopompi, E.; Risé, P.; Pisi, R.; Buccellati, C.; Aiello, M.; Pisi, G.; Tripodi, C.; Fainardi, V.; Clini, E.; Chetta, A.; et al. Arachidonic Acid and Docosahexaenoic Acid Metabolites in the Airways of Adults With Cystic Fibrosis: Effect of Docosahexaenoic Acid Supplementation. Front. Pharmacol. 2019, 10, 938. [Google Scholar] [CrossRef]
- Ayats-Vidal, R.; Bosque-García, M.; Cordobilla, B.; Asensio-De la Cruz, O.; García-González, M.; Castro-Marrero, J.; López-Rico, I.; Domingo, J.C. Changes of Erythrocyte Fatty Acids after Supplementation with Highly Concentrated Docosahexaenoic Acid (DHA) in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. J. Clin. Med. 2023, 12, 3704. [Google Scholar] [CrossRef]
- López-Neyra, A.; Suárez, L.; Muñoz, M.; de Blas, A.; Ruiz de Valbuena, M.; Garriga, M.; Calvo, J.; Ribes, C.; Girón Moreno, R.; Máiz, L.; et al. Long-Term Docosahexaenoic Acid (DHA) Supplementation in Cystic Fibrosis Patients: A Randomized, Multi-Center, Double-Blind, Placebo-Controlled Trial. Prostaglandins Leukot. Essent. Fat. Acids 2020, 162, 102186. [Google Scholar] [CrossRef]
- Watson, H.; Stackhouse, C. Omega-3 Fatty Acid Supplementation for Cystic Fibrosis. Cochrane Database Syst. Rev. 2020, 2020, CD002201. [Google Scholar] [CrossRef]
- Ayats-Vidal, R.; Bosque-García, M.; Cordobilla, B.; Asensio-De la Cruz, O.; García-González, M.; Loureda-Pérez, S.; Fernández-López, E.; Robert-Barriocanal, E.; Valiente-Planas, A.; Domingo, J.C. Impact of 1-Year Supplementation with High-Rich Docosahexaenoic Acid (DHA) on Clinical Variables and Inflammatory Biomarkers in Pediatric Cystic Fibrosis: A Randomized Double-Blind Controlled Trial. Nutrients 2024, 16, 970. [Google Scholar] [CrossRef]
- Vij, N. Linoleic Acid Supplement in Cystic Fibrosis: Friend or Foe? Am. J. Physiol. Lung Cell Mol. Physiol. 2010, 299, L597–L598. [Google Scholar] [CrossRef]
- Konstan, M.W.; Byard, P.J.; Hoppel, C.L.; Davis, P.B. Effect of High-Dose Ibuprofen in Patients with Cystic Fibrosis. N. Engl. J. Med. 1995, 332, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Carlile, G.W.; Robert, R.; Goepp, J.; Matthes, E.; Liao, J.; Kus, B.; Macknight, S.D.; Rotin, D.; Hanrahan, J.W.; Thomas, D.Y. Ibuprofen Rescues Mutant Cystic Fibrosis Transmembrane Conductance Regulator Trafficking. J. Cyst. Fibros. 2015, 14, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.N.; Shah, K.N.; Smolen, J.A.; Tagaev, J.A.; Torrealba, J.; Zhou, L.; Zhang, S.; Zhang, F.; Wagers, P.O.; Panzner, M.J.; et al. A Novel in Vitro Metric Predicts in Vivo Efficacy of Inhaled Silver-Based Antimicrobials in a Murine Pseudomonas Aeruginosa Pneumonia Model. Sci. Rep. 2018, 8, 6376. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Ilanga, M.; Simbassa, S.B.; Chirra, B.; Shah, K.N.; Cannon, C.L. Synergistic Antimicrobial Effects of Ibuprofen Combined with Standard-of-Care Antibiotics against Cystic Fibrosis Pathogens. Biomedicines 2023, 11, 2936. [Google Scholar] [CrossRef] [PubMed]
- Funk, C.D.; FitzGerald, G.A. COX-2 Inhibitors and Cardiovascular Risk. J. Cardiovasc. Pharmacol. 2007, 50, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.M. New Mechanisms for Effects of Anti-Inflammatory Glucocorticoids. Biofactors 1991, 3, 97–102. [Google Scholar]
- Dezateux, C.; Walters, S.; Balfour-Lynn, I. Inhaled Corticosteroids for Cystic Fibrosis. Cochrane Database Syst. Rev. 2000, 2000, CD001915. [Google Scholar] [CrossRef]
- Okuno, T.; Yokomizo, T.; Hori, T.; Miyano, M.; Shimizu, T. Leukotriene B4 Receptor and the Function of Its Helix 8*. J. Biol. Chem. 2005, 280, 32049–32052. [Google Scholar] [CrossRef]
- Schmitt-Grohé, S.; Zielen, S. Leukotriene Receptor Antagonists in Children with Cystic Fibrosis Lung Disease: Anti-Inflammatory and Clinical Effects. Paediatr. Drugs 2005, 7, 353–363. [Google Scholar] [CrossRef]
- Elborn, J.; Horsley, A.; MacGregor, G.; Bilton, D.; Grosswald, R.; Ahuja, S.; Springman, E. Phase I Studies of Acebilustat: Biomarker Response and Safety in Patients with Cystic Fibrosis. Clin. Transl. Sci. 2017, 10, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Elborn, J.S.; Konstan, M.W.; Taylor-Cousar, J.L.; Fajac, I.; Horsley, A.; Sutharsan, S.; Aaron, S.D.; Daines, C.L.; Uluer, A.; Downey, D.G.; et al. Empire-CF Study: A Phase 2 Clinical Trial of Leukotriene A4 Hydrolase Inhibitor Acebilustat in Adult Subjects with Cystic Fibrosis. J. Cyst. Fibros. 2021, 20, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.F. The Cysteinyl Leukotriene Receptors. Prostaglandins Leukot. Essent. Fat. Acids 2003, 69, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Morice, A.H.; Kastelik, J.A.; Aziz, I. Montelukast Sodium in Cystic Fibrosis. Thorax 2001, 56, 244–245. [Google Scholar] [CrossRef]
- Schmitt-Grohé, S.; Eickmeier, O.; Schubert, R.; Bez, C.; Zielen, S. Anti-Inflammatory Effects of Montelukast in Mild Cystic Fibrosis. Ann. Allergy Asthma Immunol. 2002, 89, 599–605. [Google Scholar] [CrossRef]
- Stelmach, I.; Korzeniewska, A.; Stelmach, W.; Majak, P.; Grzelewski, T.; Jerzynska, J. Effects of Montelukast Treatment on Clinical and Inflammatory Variables in Patients with Cystic Fibrosis. Ann. Allergy Asthma Immunol. 2005, 95, 372–380. [Google Scholar] [CrossRef]
- Schmitt-Grohé, S.; Eickmeier, O.; Naujoks, C.; Schubert, R.; Lentze, M.J.; Zielen, S.; Rietschel, E. Effects of Long-Term Treatment with Montelukast in Mild Cystic Fibrosis: (Long Term Treatment with Montelukast in Cystic Fibrosis). Respir. Med. 2007, 101, 684. [Google Scholar] [CrossRef]
- Conway, S.P.; Etherington, C.; Peckham, D.G.; Whitehead, A. A Pilot Study of Zafirlukast as an Anti-Inflammatory Agent in the Treatment of Adults with Cystic Fibrosis. J. Cyst. Fibros. 2003, 2, 25–28. [Google Scholar] [CrossRef]
- Hartl, D.; Starosta, V.; Maier, K.; Beck-Speier, I.; Rebhan, C.; Becker, B.F.; Latzin, P.; Fischer, R.; Ratjen, F.; Huber, R.M.; et al. Inhaled Glutathione Decreases PGE2 and Increases Lymphocytes in Cystic Fibrosis Lungs. Free. Radic. Biol. Med. 2005, 39, 463–472. [Google Scholar] [CrossRef]
- Schett, G.; Neurath, M.F. Resolution of Chronic Inflammatory Disease: Universal and Tissue-Specific Concepts. Nat. Commun. 2018, 9, 3261. [Google Scholar] [CrossRef] [PubMed]
Strategy | Target | Clinical Outcome | Ref. |
---|---|---|---|
Ivacaftor | Patients with CF carrying at least one G551D CFTR mutation (n = 40). | AA and PGE2 levels decrease, but no effects on LA and DHA deficiency. | [117] |
CF pediatric patients (mean age = 11.7 years) (n = 11), for 12 months. | Reduced AA/EPA and AA/DHA ratios on red blood cell membranes. | [120] | |
DHA | Patients with CF (range 20–40 years) (n = 15), for 6 months. | Increased DHA and 17-OH DHA levels. Reduction in LTB4, 15-HETE and PGE2 levels, but no improvements of FEV1 and FVC. | [120] |
Five randomized controlled trials (n = 106). | Low DHA benefits and relatively low side effects. | [123] | |
CF pediatric patients (Mean age = 11.7 years) (n = 22) for 12 months. | Improved FVC and FEV1, but PMN elastase, resolvin D1, IL-8, and TNF-alpha remained unaffected. | [124] | |
Ibuprofen | Patients with CF with mild lung disease (range 5–39 years) (n = 85), for 4 years. | Slowed lung disease progression, risk of GI bleeding. | [125] |
Steroids (aerosol) | 13 trials with patients with CF (range 6–55 years) (n = 506). | Modest general benefits. | [130] |
BLT1 antagonist | CF pediatric patients (range 6–17 years) and adult patients (>18 years) with mild-to-moderate lung disease, for 24 weeks. | Serious pulmonary adverse effects. | [133] |
Acebilustat | Adult patients with CF (range 28–55 years) (n = 17) with mild-to-moderate lung disease for 15 days. | Reduced sputum PMN and elastase. Trend toward reduction in serum C-reactive protein and sputum DNA. | [135] |
Adult patients with CF (range 18–35 years) (n = 199) for 48 weeks. | Absence of improvement in pulmonary function (FEV1) and pulmonary exacerbations. Trend toward reduced exacerbations in people with early lung disease. | [136] | |
Montelukast | Patients with CF (range 5–18 years) (n = 16), for 21 days. | Reduced eosinophilic inflammation, improved exercise tolerance, cough, and wheezing, decreased IL-8 and myeloperoxidase levels. | [137,138,139,140] |
Zafirlukast | Patients with CF (range 20–32 years) (n = 25), for 4 months. | Benefits in chest radiograph appearance and physical examination without any improvement in respiratory functions. | [141] |
Inhaled GSH | Patients with CF (range 18–39 years) (n = 17), for 14 days. | Reduced PGE2 levels, increased CD4+ and CD8+ T-cells levels. 8-isoprostanes levels remained unchanged. | [142] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Orazio, S.; Mattoscio, D. Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals 2024, 17, 1185. https://doi.org/10.3390/ph17091185
D’Orazio S, Mattoscio D. Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals. 2024; 17(9):1185. https://doi.org/10.3390/ph17091185
Chicago/Turabian StyleD’Orazio, Simona, and Domenico Mattoscio. 2024. "Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression" Pharmaceuticals 17, no. 9: 1185. https://doi.org/10.3390/ph17091185
APA StyleD’Orazio, S., & Mattoscio, D. (2024). Dysregulation of the Arachidonic Acid Pathway in Cystic Fibrosis: Implications for Chronic Inflammation and Disease Progression. Pharmaceuticals, 17(9), 1185. https://doi.org/10.3390/ph17091185