Aztreonam Combinations with Avibactam, Relebactam, and Vaborbactam as Treatment for New Delhi Metallo-β-Lactamase-Producing Enterobacterales Infections—In Vitro Susceptibility Testing
Abstract
:1. Introduction
2. Results
3. Discussion
Strengths and Limitations
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- KORLD. Dane Krajowego Ośrodka Referencyjnego ds. Lekowrażliwości Drobnoustrojów (KORLD), Dotyczące Pałeczek Enterobacterales Wytwarzających Karbapenemazy NDM, KPC, VIM i OXA-48 na Terenie Polski w Latach 2006–2018. Available online: https://korld.nil.gov.pl/pdf/Raport%20KORLD%202019_EL_2.pdf (accessed on 2 November 2023).
- Brauncajs, M.; Bielec, F.; Macieja, A.; Pastuszak-Lewandoska, D. Carbapenem-Resistant Gram-Negative Fermenting and Non-Fermenting Rods Isolated from Hospital Patients in Poland-What Are They Susceptible to? Biomedicines 2022, 10, 3049. [Google Scholar] [CrossRef] [PubMed]
- Hammoudi Halat, D.; Ayoub Moubareck, C. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics 2020, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Finberg, R.W.; Guharoy, R. Monobactam: Aztreonam. In Clinical Use of Anti-Infective Agents, 1st ed.; Finberg, R.W., Guharoy, R., Eds.; Springer: Cham, Switzerland, 2021; pp. 47–49. [Google Scholar]
- Fuchs, F.; Ahmadzada, A.; Plambeck, L.; Wille, T.; Hamprecht, A. Susceptibility of Clinical Enterobacterales Isolates With Common and Rare Carbapenemases to Mecillinam. Front. Microbiol. 2021, 11, 627267. [Google Scholar] [CrossRef] [PubMed]
- Zykov, I.N.; Frimodt-Møller, N.; Småbrekke, L.; Sundsfjord, A.; Samuelsen, Ø. Efficacy of mecillinam against clinical multidrug-resistant Escherichia coli in a murine urinary tract infection model. Int. J. Antimicrob. Agents 2020, 55, 105851. [Google Scholar] [CrossRef] [PubMed]
- Ract, P.; Compain, F.; Robin, F.; Decre, D.; Gallah, S.; Podglajen, I. Synergistic in vitro activity between aztreonam and amoxicillin-clavulanate against Enterobacteriaceae-producing class B and/or class D carbapenemases with or without extended-spectrum β-lactamases. J. Med. Microbiol. 2019, 68, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; van Duin, D. Novel Beta-Lactamase Inhibitors: Unlocking Their Potential in Therapy. Drugs 2017, 77, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef] [PubMed]
- Emeraud, C.; Escaut, L.; Boucly, A.; Fortineau, N.; Bonnin, R.A.; Naas, T.; Dortet, L. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2019, 63, e00010-19. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Breakpoint Tables for Interpretation of MICs and Zone Diameters, Ver. 13.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_13.0_Breakpoint_Tables.pdf (accessed on 2 November 2023).
- Bastidas-Caldes, C.; de Waard, J.H.; Salgado, M.S.; Villacís, M.J.; Coral-Almeida, M.; Yamamoto, Y.; Calvopiña, M. Worldwide Prevalence of mcr-mediated Colistin-Resistance Escherichia coli in Isolates of Clinical Samples, Healthy Humans, and Livestock-A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 659. [Google Scholar] [CrossRef] [PubMed]
- Maraki, S.; Mavromanolaki, V.E.; Moraitis, P.; Stafylaki, D.; Kasimati, A.; Magkafouraki, E.; Scoulica, E. Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1755–1759. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Boattini, M.; Comini, S.; Casale, R.; Iannaccone, M.; Cavallo, R.; Costa, C. Occurrence of multi-carbapenemases producers among carbapenemase-producing Enterobacterales and in vitro activity of combinations including cefiderocol, ceftazidime-avibactam, meropenem-vaborbactam, and aztreonam in the COVID-19 era. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhu, Z.; Jia, W.; Qu, F.; Huang, B.; Shan, B.; Yu, H.; Tang, Y.; Chen, L.; Du, H. In vitro activity of aztreonam-avibactam against metallo-β-lactamase-producing Enterobacteriaceae-A multicenter study in China. Int. J. Infect. Dis. 2020, 97, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.; Lee, M.; Wu, T.; Shajee, A.; Patel, S.; Deshpande, L.M.; Mendes, R.E.; Wenzler, E. Aztreonam in combination with imipenem-relebactam against clinical and isogenic strains of serine and metallo-β-lactamase-producing Enterobacterales. Diagn. Microbiol. Infect. Dis. 2022, 103, 115674. [Google Scholar] [CrossRef] [PubMed]
- Biagi, M.; Wu, T.; Lee, M.; Patel, S.; Butler, D.; Wenzler, E. Searching for the Optimal Treatment for Metallo- and Serine-β-Lactamase Producing Enterobacteriaceae: Aztreonam in Combination with Ceftazidime-avibactam or Meropenem-vaborbactam. Antimicrob. Agents Chemother. 2019, 63, e01426-19. [Google Scholar] [CrossRef] [PubMed]
- Belati, A.; Bavaro, D.F.; Diella, L.; De Gennaro, N.; Di Gennaro, F.; Saracino, A. Meropenem/Vaborbactam Plus Aztreonam as a Possible Treatment Strategy for Bloodstream Infections Caused by Ceftazidime/Avibactam-Resistant Klebsiella pneumoniae: A Retrospective Case Series and Literature Review. Antibiotics 2022, 11, 373. [Google Scholar] [CrossRef] [PubMed]
- Frimodt-Møller, N.; Bjerrum, L. Treating urinary tract infections in the era of antibiotic resistance. Expert. Rev. Anti-Infect. Ther. 2023, 21, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Boel, J.B.; Antsupova, V.; Knudsen, J.D.; Jarløv, J.O.; Arpi, M.; Holzknecht, B.J. Intravenous mecillinam compared with other β-lactams as targeted treatment for Escherichia coli or Klebsiella spp. bacteraemia with urinary tract focus. J. Antimicrob. Chemother. 2021, 76, 206–211. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance, Ver. 2.0. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/EUCAST_detection_of_resistance_mechanisms_170711.pdf (accessed on 2 November 2023).
MIC Range [mg/L] | MIC90 [mg/L] | MIC50 [mg/L] | MIC Change Range vs. AZT | % of AZT Susceptiblity Restoration | |
---|---|---|---|---|---|
AZT | 8–>256 | >256 | 96 | ||
AZT/AVI | 0.047–48 | 8 | 0.19 | 0–11 | 80.95 |
AZT/REL | 0.19–128 | 8 | 4 | 0.7–4 | 61.90 |
AZT/VAB | 0.094–48 | 16 | 6 | 1.4–9.4 | 47.62 |
Box–Cox Lambda | Mean | Standard Deviation | Mean Difference | t | df | p | CI95% | Power | |
---|---|---|---|---|---|---|---|---|---|
AZT | 0.159 | 6.26 | 1.78 | ||||||
AZT/AVI | −0.461 | −2.05 | 2.14 | 8.31 | 15.83 | 20 | <0.001 | 7.21–9.40 | 1 |
AZT/REL | −0.030 | 0.95 | 1.46 | 5.30 | 15.85 | 20 | <0.001 | 4.61–6.00 | 1 |
AZT/VAB | 0.147 | 1.50 | 1.81 | 4.76 | 12.80 | 20 | <0.001 | 3.98–5.53 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brauncajs, M.; Bielec, F.; Malinowska, M.; Pastuszak-Lewandoska, D. Aztreonam Combinations with Avibactam, Relebactam, and Vaborbactam as Treatment for New Delhi Metallo-β-Lactamase-Producing Enterobacterales Infections—In Vitro Susceptibility Testing. Pharmaceuticals 2024, 17, 383. https://doi.org/10.3390/ph17030383
Brauncajs M, Bielec F, Malinowska M, Pastuszak-Lewandoska D. Aztreonam Combinations with Avibactam, Relebactam, and Vaborbactam as Treatment for New Delhi Metallo-β-Lactamase-Producing Enterobacterales Infections—In Vitro Susceptibility Testing. Pharmaceuticals. 2024; 17(3):383. https://doi.org/10.3390/ph17030383
Chicago/Turabian StyleBrauncajs, Małgorzata, Filip Bielec, Marlena Malinowska, and Dorota Pastuszak-Lewandoska. 2024. "Aztreonam Combinations with Avibactam, Relebactam, and Vaborbactam as Treatment for New Delhi Metallo-β-Lactamase-Producing Enterobacterales Infections—In Vitro Susceptibility Testing" Pharmaceuticals 17, no. 3: 383. https://doi.org/10.3390/ph17030383
APA StyleBrauncajs, M., Bielec, F., Malinowska, M., & Pastuszak-Lewandoska, D. (2024). Aztreonam Combinations with Avibactam, Relebactam, and Vaborbactam as Treatment for New Delhi Metallo-β-Lactamase-Producing Enterobacterales Infections—In Vitro Susceptibility Testing. Pharmaceuticals, 17(3), 383. https://doi.org/10.3390/ph17030383