Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity
Abstract
:1. Introduction
2. Results
2.1. Density and pH of CEO
2.2. Identification of Essential Oil Components
2.3. Development of Encapsulates
2.4. Freeze-Drying
2.5. Encapsulation Efficiency (EE%) and Moisture Content
2.6. Thermal Analysis (TGA/DSC)
2.7. Scanning Electron Microscopy (MEV)
2.8. FTIR
2.9. Degree of Swelling and Eugenol Release
2.10. Determination of Total Phenol Content
2.11. Antioxidant Activity (DPPH)
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Density and pH of CEO
4.3. Identification of Essential Oil Components
4.4. Development of Encapsulates
4.5. Freeze Drying
4.6. Encapsulation Efficiency
4.7. Moisture Content
4.8. Thermal Analysis
4.9. MEV
4.10. FT-IR Characterization
4.11. Degree of Swelling and Eugenol Release
4.12. Determination of Total Phenol Content
4.13. Antioxidant Activity (DPPH)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Ban, Q.; Wang, W.; Hou, J. Novel nano-encapsulated probiotic agents: Encapsulate materials, delivery, and encapsulation systems. J. Control. Release 2022, 349, 184–205. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fu, Y.; Xu, Y.; Niu, F.; Li, Z.; Ba, C.; Jin, B.; Chen, G.; Li, X. One-step assembly of zein/caseinate/alginate nanoparticles for encapsulation and improved bioaccessibility of própolis. Food Funct. 2019, 10, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Moura, S.C.S.R.; Schettini, G.N.; Garcia, A.O.; Gallina, D.A.; Alvim, I.D.; Hubinger, M.D. Stability of Hibiscus Extract Encapsulated by Ionic Gelation Incorporated in Yogurt. Food Bioprocess Technol. 2019, 12, 1500–1515. [Google Scholar] [CrossRef]
- Naranjo-Durán, A.M.; Quintero-Quiroz, J.; Rojas-Camargo, J.; Ciro-Gómez, G.L. Modified-release of encapsulated bioactive compounds from annatto seeds produced by optimized ionic gelation techniques. Sci. Rep. 2021, 11, 1317. [Google Scholar] [CrossRef] [PubMed]
- Moura, S.C.S.R.; Berling, C.L.; Garcia, A.O.; Queiroz, M.B.; Alvim, I.D.; Hubinger, M.D. Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Res. Int. 2019, 121, 542–552. [Google Scholar] [CrossRef]
- Córdoba, A.L.; Deladino, L.; Martino, M. Effect of starch filler on calcium-alginate hydrogels loaded with yerba mate antioxidants. Carbohydr. Polym. 2013, 95, 315–323. [Google Scholar] [CrossRef] [PubMed]
- Maes, C.; Bouquillon, S.; Fauconnier, M.L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019, 24, 2539. [Google Scholar] [CrossRef]
- Pina-Barrera, A.M.; Alvarez-Roman, R.; Baez-Gonzalez, J.G.; Amaya-Guerra, C.A.; Rivas-Morales, C.; Gallardo-Rivera, C.T.; Galindo-Rodriguez, S.A. Application of a Multisystem Coating Based on Polymeric Nanocapsules Containing Essential Oil of Thymus vulgaris L. to Increase the Shelf Life of Table Grapes (Vitis vinifera L.). IEEE Trans. Nanobiosci. 2019, 18, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Zari, A.T.; Zari, T.A.; Hakeem, K.R. Anticancer Properties of Eugenol: A Review. Molecules 2021, 26, 7407. [Google Scholar] [CrossRef]
- Vahedikia, N.; Garavand, F.; Tajeddin, B.; Cacciotti, I.; Jafari, S.M.; Omidi, T.; Zahedi, Z. Biodegradable zein film composites reinforced with chitosan nanoparticles and cinnamon essential oil: Physical, mechanical, structural and antimicrobial attributes. Colloids Surf. B Biointerfaces 2019, 177, 25–32. [Google Scholar] [CrossRef]
- Laccourreye, O.; Maisonneuve, H. Review: French scientific medical journals confronted by developments in medical writing and the transformation of the medical press. Eur. Ann. Otorhinolaryngol. Head. Neck. Dis. 2019, 136, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020, 142, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Biernasiuk, A.; Baj, T.; Malm, A. Clove Essential Oil and Its Main Constituent, Eugenol, as Potential Natural Antifungals against Candida spp. Alone or in Combination with Other Antimycotics Due to Synergistic Interactions. Molecules 2023, 28, 215. [Google Scholar] [CrossRef] [PubMed]
- Moemenbellah-Fard, M.D.; Abdollahi, A.; Ghanbariasad, A.; Osanloo, M. Antibacterial and leishmanicidal activities of Syzygium aromaticum essential oil versus its major ingredient, eugenol. Flavor. Fragr. J. 2020, 35, 534–540. [Google Scholar] [CrossRef]
- Manzoor, A.; Asif, M.; Khalid, S.H.; Khan, I.U.; Asghar, S. Nanosizing of Lavender, Basil, and Clove Essential Oils into Microemulsions for Enhanced Antioxidant Potential and Antibacterial and Antibiofilm Activities. ACS Omega 2023, 8, 40600–40612. [Google Scholar] [CrossRef]
- Teles, A.M.; Silva-Silva, J.V.; Fernandes, J.M.P.; Abreu-Silva, A.L.; Calabrese, K.S.; Mendes Filho, N.E.; Mouchrek, A.N.; Almeida-Souza, F. GC-MS Characterization of Antibacterial, Antioxidant, and Antitrypanosomal Activity of Syzygium aromaticum Essential Oil and Eugenol. Evid.-Based Complement. Altern. Med. 2021, 1, 12. [Google Scholar] [CrossRef] [PubMed]
- Kuck, L.S.; Noreña, C.P.Z. Microencapsulation of grape (Vitis labrusca var. Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem. 2016, 194, 569–576. [Google Scholar] [CrossRef]
- Reis, A.A.; Santos, J.M.; Fanchiotti, F.E.; Silva, A.G.; Constant, P.B.L. Encapsulação por gelificação iônica: Uma revisão narrativa. In Ciência e Tecnologia de Alimentos: Pesquisa e Práticas Contemporâneas; Cordeiro, C.A.M., Silva, E.M., Barreto, N.S.E., Eds.; Editoral Científica Digital: Guarujá, Brazil, 2021; Volume 2, pp. 503–516. [Google Scholar] [CrossRef]
- Olabisi, R. Cell microencapsulation with synthetic polymers. J. Biomed. Mater. Res. 2014, 103, 846–859. [Google Scholar] [CrossRef]
- Milivojević, M.; Popović, A.; Pajić-Lijaković, I.; Šoštarić, I.; Kolašinac, S.; Stevanović, Z.D. Alginate Gel-Based Carriers for Encapsulation of Carotenoids: On Challenges and Applications. Gels 2023, 9, 620. [Google Scholar] [CrossRef]
- Łętocha, A.; Miastkowska, M.; Sikora, E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers 2022, 14, 3834. [Google Scholar] [CrossRef]
- Rajmohan, D.; Bellmer, D. Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation. Int. J. Food Sci. 2019, 2019, 7101279. [Google Scholar] [CrossRef] [PubMed]
- Seyedain-Ardabili, M.; Sharifan, A.; Tarzi, B.G. The Production of Synbiotic Bread by Microencapsulation. Food Technol. Biotech. 2016, 54, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Sabikhi, L.; Babu, R.; Thompkinson, D.K.; Kapila, S. Resistance of Microencapsulated Lactobacillus acidophilus LA1 to Processing Treatments and Simulated Gut Conditions. Food Bioprocess. Technol. 2010, 3, 586–593. [Google Scholar] [CrossRef]
- Muthukumarasamy, P.; Allan-Wojtas, P.; Holley, R.A. Stability of Lactobacillus reuteri in Different Types of Microcapsules. J. Food Sci. 2006, 71, 15. [Google Scholar] [CrossRef]
- Shafizadeh, A.; Golestan, L.; Ahmadi, M.; Darjani, P.; Ghorbani, A. Encapsulation of Lactobacillus Casei in Alginate Microcapsules: Improvement of the Bacterial Viability under Simulated Gastrointestinal Conditions Using Flaxseed Mucilage. J. Food Meas. Charact. 2020, 14, 1901–1908. [Google Scholar] [CrossRef]
- Mandal, S.; Puniya, A.K.; Singh, K. Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy. J. 2006, 16, 1190–1195. [Google Scholar] [CrossRef]
- Larisch, B.C.; Poncelet, D.; Champagne, C.P.; Neufeld, R.J. Microencapsulation of Lactococcus lactis subsp. cremoris. J. Microencapsul. 1994, 11, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Wissam, Z.; Samer, H. Encapsulation of flaxseed oil extract in alginate-salep system by ionic gelation. Braz. J. Pharm. Sci. 2019, 55, e00261. [Google Scholar] [CrossRef]
- Hosseini, S.; Hosseini, H.; Mohammadifar, M.; Mortazavian, A.; Mohammadi, A.; Khosravi-darani, K.; Shojaee-Aliabadi, S.; Dehghan, S.; Khaksar, R. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int. J. Biol. Macromol. 2013, 62, 582–588. [Google Scholar] [CrossRef]
- Reddy, O.S.; Subha, M.C.S.; Jithendra, T.; Madhavi, C.; Rao, K.C. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. J. Pharm. Anal. 2021, 11, 191–199. [Google Scholar] [CrossRef]
- Sahlan, M.; Lestari, S.F.; Indrawati, T.; Pratami, D.K.; Wijarnako, A.; Hermansyah, H.; Lischer, K.; Rabbani, A.N. Microencapsulation of clove oil using spray dry with casein encapsulator and activity test towards Streptococcus mutans. AIP Conf. Proc. 2019, 1, 2193. [Google Scholar] [CrossRef]
- Cortes-Rojas, D.F.; Souza, C.R.F.; Chen, M.J.; Hochhaus, G.; Oliveira, W.P. Effects of lipid formulations on clove extract spray dried powders: Comparison of physicochemical properties, storage stability and in vitro intestinal permeation. Pharm. Dev. Technol. 2018, 23, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Veiga, R.D.S.D.; Silva-Buzanello, R.A.; Corso, M.P.; Canan, C. Essential oils microencapsulated obtained by spray drying: A review. J. Essent. Oil Res. 2019, 31, 457–473. [Google Scholar] [CrossRef]
- Mohammed, N.; Tan, C.; Manap, Y.; Muhialdin, B.; Hussin, A. Spray Drying for the Encapsulation of Oils—A Review. Molecules 2020, 25, 3873. [Google Scholar] [CrossRef] [PubMed]
- Wicaksono, A.; Hermasnyah, H.; Wijanarko, A.; Sahlan, M. Scale-up simulation and economic evaluation of encapsulated eugenol with casein micelle using spray drying method. J. Physics Conf. Ser. 2019, 1295, 012072. [Google Scholar] [CrossRef]
- Keshani, S.; Daud, W.; Nourouzi, M.; Namvar, F.; Ghasemi, M. Spray drying: An overview on wall deposition, process and modeling. J. Food Eng. 2015, 146, 152–162. [Google Scholar] [CrossRef]
- Napiórkowska, A.; Kurek, M. Coacervation as a Novel Method of Microencapsulation of Essential Oils—A Review. Molecules 2022, 27, 5142. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Hub, Q.; Chenc, X.; Tan, C.; Niu, A.; Qiu, W.; Wang, G. Inclusion complexes of clove essential oil with sodium caseinate and gum arabic prepared by high-pressure homogenization: Characterization and non-contact antimicrobial activity. Food Control 2023, 150, 109765. [Google Scholar] [CrossRef]
- Baldim, I.; Oliveira, A.M.; Souto, E.B.; Oliveira, W.P. Cyclodextrins-in-Liposomes: A Promising Delivery System for Lippia sidoides and Syzygium aromaticum Essential Oils. Life 2022, 12, 95. [Google Scholar] [CrossRef]
- Kurozawa, L.; Hubinger, M. Hydrophilic food compounds encapsulation by ionic gelation. Curr. Opin. Food Sci. 2017, 15, 50–55. [Google Scholar] [CrossRef]
- Anandhakumar, S.; Krishnamoorthy, G.; Ramkumar, K.; Raichur, A. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 1, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Z.; Hu, L. High efficient freeze-drying technology in food industry. Crit. Rev. Food Sci. Nutr. 2021, 62, 3370–3388. [Google Scholar] [CrossRef]
- Zhu, Z.; Min, T.; Zhang, X.; Wen, Y. Microencapsulation of thymol in poly(lactide-co-glycolide) (PLGA): Physical and antibacterial properties. Materials 2019, 12, 1133. [Google Scholar] [CrossRef] [PubMed]
- Liñán-Atero, R.; Aghababaei, F.; García, S.R.; Hasiri, Z.; Ziogkas, D.; Moreno, A.; Hadidi, M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants 2024, 13, 488. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.R.B.; Mouchrek Filho, V.E.; Rabêlo, W.F.; Nascimento, A.A.; Louzeiro, H.C.; Lyra, W.S.; Fontenele, M.A. Caracterização química e citotoxicidade do óleo essencial do cravo-da-índia (Syzygium aromaticum). Rev. Colomb. Cienc. 2018, 47, 37–52. [Google Scholar] [CrossRef]
- Haro-González, J.N.; Castillo-Herrera, G.A.; Martínez-Velázquez, M.; Espinosa-Andrews, H. Clove Essential Oil (Syzygium aromaticum L. Myrtaceae): Extraction, Chemical Composition, Food Applications, and Essential Bioactivity for Human Health. Molecules 2021, 26, 6387. [Google Scholar] [CrossRef] [PubMed]
- Shoubben, A.; Blasi, P.; Giovagnoli, S.; Rossi, C.; Ricci, M. Development of a scalable procedure for fine calcium alginate particle preparation. Chem. Eng. J. 2010, 160, 363–369. [Google Scholar] [CrossRef]
- Kim, B.; Gil, H.B.; Min, S.; Lee, S.; Choi, M. Effects of Pressure-shift Freezing on the Structural and Physical Properties of Gelatin Hydrogel Matrices. Korean J. Food Sci. Anim. Resour. 2014, 34, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Burey, P.; Bhandari, B.R.; Howes, T.; Gidley, M.J. Hydrocolloid gel particles: Formation, characterization, and application. Crit. Rev. Food Sci. Nutr. 2008, 48, 361–377. [Google Scholar] [CrossRef]
- Capar, T.D. Characterization of sodium alginate-based biodegradable edible film incorporated with Vitis vinifera leaf extract: Nano-scaled by ultrasound-assisted technology. Food Packag. Shelf Life 2023, 37, 101068. [Google Scholar] [CrossRef]
- Voo, W.P.; Lee, B.B.; Idris, A.; Islam, A.; Tey, B.T.; Chan, E.S. Production of ultra-high concentration calcium alginate beads with prolonged dissolution profile. RSC Adv. 2015, 5, 36687–36695. [Google Scholar] [CrossRef]
- Fertah, M.; Belfkira, A.; Dahmane, E.M.; Taourirte, M.; Brouillette, F. Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. [Google Scholar] [CrossRef]
- Moura-Alves, M.; Souza, V.G.L.; Silva, J.A.; Esteves, A.; Pastrana, L.M.; Saraiva, C.; Cerqueira, M.A. Characterization of Sodium Alginate-Based Films Blended with Olive Leaf and Laurel Leaf Extracts Obtained by Ultrasound-Assisted Technology. Foods 2023, 12, 4076. [Google Scholar] [CrossRef] [PubMed]
- Tarhan, I. A robust method for simultaneous quantification of eugenol, eugenyl acetate, and β-caryophyllene in clove essential oil by vibrational spectroscopy. Phytochemistry 2021, 191, 112928. [Google Scholar] [CrossRef]
- Oliveira, A.N.; Lima, E.T.L.; Oliveira, D.T.; Angélica, R.S.; Andrade, E.H.A.; Rocha Filho, G.N.; Costa, C.E.; Costa, F.F.; Luque, R.; Nascimento, L.A.S. Acetylation of eugenol over 12-molybdophosphoric acid anchored in mesoporous silicate support synthesized from Flint Kaolin. Materials 2019, 12, 2995. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Identificação Espectrométrica de Compostos Orgânicos, 6th ed.; LTC: Rio de Janeiro, Brazil, 2000. [Google Scholar]
- Berardi, A.; Bauhuber, S.; Sawafta, O.; Warnke, G. Alginates as tablet disintegrants: Understanding disintegration mechanisms and defining ranges of applications. Int. J. Pharm. 2021, 601, 120512. [Google Scholar] [CrossRef] [PubMed]
- Radünz, M.; Trindade, M.L.M.; Camargo, T.M.; Radunz, A.L.; Borges, C.D.; Gandra, E.A.; Helbig, E. Antimicrobial and Antioxidant Activity of Unencapsulated and Encapsulated Clove (Syzygium aromaticum, L.) Essential Oil. Food Chem. 2018, 276, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Babaoglu, H.C.; Bayrak, A.; Ozdemir, N.; Ozgun, N. Encapsulation of clove essential oil in hydroxypropyl beta-cyclodextrin for characterization, controlled release, and antioxidant activity. J. Food Process Preserv. 2017, 41, 1–8. [Google Scholar] [CrossRef]
- Singh, T.P.; Chauhan, G.; Mendiratta, S.K.; Agrawal, R.K.; Arora, S.; Verma, A.K.; Rajkumar, V. In vitro antioxidant and antimicrobial activities of clove extract and its effectiveness in bio-composite film on storage stability of goat meat balls. J. Food Sci. 2022, 87, 2083–2095. [Google Scholar] [CrossRef]
- Demircan, H.; Oral, R.A. Parameters affecting calcium-alginate bead characteristics: Viscosity of hydrocolloids and water solubility of core material. Int. J. Biol. Macromol. 2023, 1, 124011. [Google Scholar] [CrossRef]
- Bušić, A.; Belščak-Cvitanović, A.; Vojvodić Cebin, A.; Karlović, S.; Kovač, V.; Špoljarić, I.; Mršić, G.; Komes, D. Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Res. Int. 2018, 111, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Kacaniová, M.; Galovicová, L.; Borotová, P.; Valková, V.; Duranová, H.; Kowalczewski, P.L.; Said-Al Ahl, S.; Hikal, W.M.; Vukic, M.; Savitskaya, T.; et al. Chemical Composition, In Vitro and In Situ Antimicrobial and Antibiofilm Activities of Syzygium aromaticum (Clove) Essential Oil. Plants 2021, 10, 2185. [Google Scholar] [CrossRef]
- Hekmatpanah, A.; Sharifzadeh, A.; Shokri, H.; Abbaszadeh, S.; Nikaein, D. Efficacy of Syzygium aromaticum essential oil on the growth and enzymatic activity of pathogenic Candida albicans strains. Med. Mycol. 2022, 8, 12–19. [Google Scholar] [CrossRef]
- Nikoui, V.; Ostadhadi, S.; Bakhtiarian, A.; Abbasi-Goujani, E.; Habibian-Dehkordi, S.; Rezaei-Roshan, M.; Foroohandeh, M.; Giorgi, M. The anti-inflammatory and antipyretic effects of clove oil in healthy dogs after surgery. Pharmanutrition 2017, 5, 52–57. [Google Scholar] [CrossRef]
- Kheawfu, K.; Pikulkaew, S.; Chaisri, W.; Okonogi, S. Nanoemulsion: A suitable nondelivery system of clove oil for anesthetizing Nile tilapia. Drug Discov. Ther. 2017, 11, 181–185. [Google Scholar] [CrossRef]
- Scandiffio, R.; Geddo, F.; Cottone, E.; Querio, G.; Antoniotti, S.; Gallo, M.P.; Maffei, M.; Bovolin, P. Protective Effects of (E)-β-Caryophyllene (BCP) in Chronic Inflammation. Nutrients 2020, 12, 3273. [Google Scholar] [CrossRef]
- Cortés-Rojas, D.F.; Souza, C.R.F.; Oliveira, W.P. Clove (Syzygium aromaticum): A precious spice. Asian Pac. J. Trop. Biomed. 2014, 4, 90–96. [Google Scholar] [CrossRef]
- Baker, B.P.; Grant, J.A. Active Ingredients Eligible for Minimum Risk Pesticide Use: Overview of the Profiles. Integr. Pest Manag. Program 2017, 1, 1–18. Available online: https://ecommons.cornell.edu/server/api/core/bitstreams/3b1a195d-b17b-43ad-aad0-5d1a04d82cff/content (accessed on 5 April 2024).
- Kunicka-Styczynska, A.; Tyfa, A.; Laskowski, D.; Plucinska, A.; Rajkowska, K.; Kowal, K. Clove Oil (Syzygium aromaticum L.) Activity against Alicyclobacillus acidoterrestris Biofilm on Technical Surfaces. Molecules 2020, 25, 3334. [Google Scholar] [CrossRef]
- Ghadiri, M.; Chrzanowski, W.; Lee, W.H.; Fathi, A.; Dehghani, F. Physico-chemical, mechanical and cytotoxicity characterizations of Laponite®/alginate nanocomposite. Appl. Clay Sci. 2013, 85, 64–73. [Google Scholar] [CrossRef]
- Castellano, M.; Alloisio, M.; Darawish, R.; Dodero, A.; Vicini, S. Electrospun composite mats of alginate with embedded silver nanoparticles: Synthesis and characterization. J. Therm. Anal. Calorim. 2019, 137, 767–778. [Google Scholar] [CrossRef]
- Dodero, A.; Pianella, L.; Vicini, S.; Alloisio, M.; Ottonelli, M.; Castellano, M. Alginate-based hydrogels prepared via ionic gelation: An experimental design approach to predict the crosslinking degree. Eur. Polym. J. 2019, 118, 586–594. [Google Scholar] [CrossRef]
- Elbayomi, S.M.; Wang, H.; Tamer, T.M.; You, Y. Enhancement of Antioxidant and Hydrophobic Properties of Alginate via Aromatic Derivatization: Preparation, Characterization, and Evaluation. Polymers 2021, 13, 2575. [Google Scholar] [CrossRef] [PubMed]
- Balanč, B.; Kalušević, A.; Drvenica, I.; Coelho, M.T.; Djordjević, V.; Alves, V.D.; Sousa, I.; Moldão-Martins, M.; Rakić, V.; Nedović, V.; et al. Calcium–Alginate–Inulin Microbeads as Carriers for Aqueous Carqueja Extract. J. Food Sci. 2016, 81, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Gu, X.; Tan, S. Drying process of sodium alginate films studied by two-dimensional correlation ATR-FTIR spectroscopy. Food Chem. 2014, 164, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Sousa, A.; Coelho, H.; Amado, A.M.; Ribeiro-Claro, P.J.A. Use of FTIR, FT-Raman and 13C-NMR spectroscopy for identification of some seaweed phycocolloids. Biomol. Eng. 2003, 20, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Leal, D.; Matsuhiro, B.; Rossi, M.; Caruso, F. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr. Res. 2008, 343, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Kondaveeti, S.; Bueno, P.V.A.; Carmona-Ribeiro, A.M.; Esposito, F.; Lincopan, N.; Sierakowski, M.R.; Petri, D.F.S. Microbicidal gentamicin-alginate hydrogels. Carbohydr. Polym. 2018, 186, 159–167. [Google Scholar] [CrossRef]
- Bennacef, C.; Desobry-Banon, S.; Probst, L.; Desobry, S. Advances on alginate use for spherification to encapsulate biomolecules. Food Hydrocoll. 2021, 118, 106782. [Google Scholar] [CrossRef]
- Frent, O.D.; Vicas, L.G.; Duteanu, N.; Morgovan, C.M.; Jurca, T.; Pallag, A.; Muresan, M.E.; Filip, S.M.; Lucaciu, R.L.; Marian, E. Sodium Alginate-Natural Microencapsulation Material of Polymeric Microparticles. Int. J. Mol. Sci. 2022, 23, 12108. [Google Scholar] [CrossRef]
- Kim, C.K.; Lee, E.J. The controlled release of blue dextran from alginate beads. Int. J. Pharm. 1992, 79, 11–19. [Google Scholar] [CrossRef]
- Rashidzadeh, B.; Shokri, E.; Mahdavinia, G.R.; Moradi, R.; Mohamadi-Aghdam, S.; Abdi, S. Preparation and characterization of antibacterial magnetic-/pH-sensitive alginate/Ag/Fe3O4 hydrogel beads for controlled drug release. Int. J. Biol. Macromol. 2020, 154, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Min, J.; Ahn, J.M.; Cho, S.J.; Ahn, J.Y.; Kim, Y.H. Effect of pH on the Formation of Lysosome-Alginate Beads for Antimicrobial Activity. J. Microbiol. Biotechnol. 2015, 25, 234–237. [Google Scholar] [CrossRef]
- Norcino, L.B.; Mendes, J.F.; Figueiredo, J.A.; Oliveira, N.L.; Botrel, D.A.; Mattoso, L.H.C. Development of alginate/pectin microcapsules by a dual process combining emulsification and ultrasonic gelation for encapsulation and controlled release of anthocyanins from grapes (Vitis labrusca L.). Food Chem. 2022, 391, 133256. [Google Scholar] [CrossRef] [PubMed]
- Shilpa, A.; Agrawal, S.S.; Ray, A.R. Controlled Delivery of Drugs from Alginate Matrix. J. Macromol. Sci. C 2003, 43, 187–221. [Google Scholar] [CrossRef]
- Aldawsari, M.F.; Ahmed, M.M.; Fatima, F.; Anwer, M.K.; Katakam, P.; Khan, A. Development and Characterization of Calcium-Alginate Beads of Apigenin: In Vitro Antitumor, Antibacterial, and Antioxidant Activities. Mar. Drugs 2021, 19, 467. [Google Scholar] [CrossRef]
- Esmaeili, A.; Asgari, A. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2015, 81, 283–290. [Google Scholar] [CrossRef]
- Yammine, J.; Chihib, N.E.; Gharsallaoui, A.; Ismail, A.; Karam, L. Advances in essential oils encapsulation: Development, characterization and release mechanisms. Polym. Bull. 2024, 81, 3837–3882. [Google Scholar] [CrossRef]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [CrossRef]
- Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. 2011, 84, 163–171. [Google Scholar] [CrossRef]
- Muneratto, V.M.; Gallo, T.C.B.; Nicoletti, V.R. Oregano essential oil encapsulation following the complex coacervation method: Influence of temperature, ionic strength, and pH on the release kinetics in aqueous medium. Food Sci. Technol. 2021, 45, e003221. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Sharma, S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004, 59, 129–140. [Google Scholar] [CrossRef]
- Adebisi, A.O.; Conway, B.R. Preparation and characterisation of gastroretentive alginate beads for targeting H. pylori. J. Microencapsul. 2014, 31, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Makarova, A.O.; Derkach, S.R.; Khair, T.; Kazantseva, M.A.; Zuev, Y.F.; Zueva, O.S. Ion-Induced Polysaccharide Gelation: Peculiarities of Alginate Egg-Box Association with Different Divalent Cations. Polymers 2023, 15, 1243. [Google Scholar] [CrossRef] [PubMed]
- Song, B. Lotus leaf-inspired design of calcium alginate particles with superhigh drug encapsulation efficiency and pH responsive release. Colloids Surf. B Biointerfaces 2018, 172, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Condé, D.T.; Mendes, L.A.; Ramos, G.P.; Silva, R.R.A.; Teixeira, A.V.N.C.; Teixeira, R.R.; Martins, G.F.; Cerceau, C.I.; Lopes, R.P. Larvicidal Activity of Calcium Alginate Microcapsules Containing Clove Essential Oil Obtained by Microfluidics. J. Braz. Chem. Soc. 2023, 34, 1166–1174. [Google Scholar] [CrossRef]
- Gupta, B.; Agarwal, R.; Alam, M.S. Antimicrobial and release study of drug loaded PVA/PEO/CMC wound dressings. J. Mater. Sci. Mater. Med. 2014, 25, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Viuda-Martos, M.; Navajas, Y.R.; Zapata, E.S.; Fernández-López, J.; Pérez-Álvarez, J.A. Antioxidant activity of essential oils of five spice plants widely used in a Mediterranean diet. Flavour. Fragr. J. 2010, 25, 13–19. [Google Scholar] [CrossRef]
- Barakat, H. Composition, Antioxidant, Antibacterial Activities and Mode of Action of Clove (Syzygium aromaticum L.) Buds Essential Oil. British J. Appl. Sci. Technol. 2014, 4, 1934–1951. [Google Scholar] [CrossRef]
- El-Maati, M.; Mahgoub, S.; Labib, S.; Al-Gaby, A.; Ramadan, M. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. European J. Integr. Med. 2016, 8, 494–504. [Google Scholar] [CrossRef]
- Oliveira, R.A.; Reis, T.V.; Sacramento, C.K.; Duarte, L.P.; Oliveira, F.F. Constituintes químicos voláteis de especiarias ricas em eugenol. Rev. Bras. Farmacogn. 2009, 19, 771–775. [Google Scholar] [CrossRef]
- Olszowy, M.; Dawidowicz, A. Essential oils as antioxidants: Their evaluation by DPPH, ABTS, FRAP, CUPRAC, and β-carotene bleaching methods. Monatsh Chem. 2016, 147, 2083–2091. [Google Scholar] [CrossRef]
- Kiki, M.J. In Vitro Antiviral Potential, Antioxidant, and Chemical Composition of Clove (Syzygium aromaticum) Essential Oil. Molecules 2023, 28, 2421. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef]
- Dundar, H.; Aslan, R. Antioxidative stress. Eastern J. Med. 2000, 5, 45–47. [Google Scholar]
- Rahaman, M.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; et al. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Baghshahi, H.; Riasi, A.; Mahdavi, A.; Shirazi, A. Antioxidant effects of clove bud (Syzygium aromaticum) extract used with diferente extenders on ram spermatozoa during cryopreservation. Cryobiology 2014, 69, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Vinholes, J.; Gonçalves, P.; Martel, F.; Coimbra, M.A.; Rocha, S.M. Assessment of the antioxidant and antiproliferative effects of sesquiterpenic compounds in in vitro Caco-2 cell models. Food Chem. 2014, 1, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-González, I.; Madrigal-Bujaidar, E.; Castro-García, S. Antigenotoxic capacity of beta-caryophyllene in mouse, and evaluation of its antioxidant and GST induction activities. J. Toxicol. Sci. 2014, 39, 849–859. [Google Scholar] [CrossRef]
- Sharmaa, C.; Kaabia, J.M.A.; Nurulainb, S.M.; Goyalc, S.N.; Kamald, M.A.; Ojhaf, S. Polypharmacological Properties and Therapeutic Potential of -Caryophyllene: A Dietary Phytocannabinoid of Pharmaceutical Promise. Curr. Pharma Design 2016, 22, 1–28. [Google Scholar] [CrossRef]
- Chniguir, A.; Pintard, C.; Liu, D.; Dang, P.M.C.; El-Benna, J.; Bachoual, R. Eugenol prevents fMLF-induced superoxide anion production in human neutrophils by inhibiting ERK1/2 signaling pathway and p47phox phosphorylation. Sci. Rep. 2019, 9, 18540. [Google Scholar] [CrossRef] [PubMed]
- Xue, Q.; Xiang, Z.; Wang, S.; Cong, Z.; Gao, P.; Liu, X. Recent advances in nutritional composition, phytochemistry, bioactive, and potential applications of Syzygium aromaticum L. (Myrtaceae). Front. Nutr. 2022, 14, 1002147. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, B.; Wang, Y. Clove essential oil confers antioxidant activity and lifespan extension in C. elegans via the DAF-16/FOXO transcription factor. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 242, 108938. [Google Scholar] [CrossRef] [PubMed]
- Johari, A.; Khan, M.H. Evaluation of the Antioxidant Activity of Essential Oils of Some Indian Medicinal Plants by DPPH, FRAP and ABTS assay. J. Pharm. Negat. Results 2022, 13, 1–6. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Nam, H.; Kim, M.M. Eugenol with antioxidante activity inhibits MMP-9 related to metastasis in human fibrosarcoma cells. Food Chem. Toxicol. 2013, 55, 106–112. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.; Lin, Q.; Gu, Y.; Yu, W. Eugenol protects cells against oxidative stress via Nrf2. Exp. Ther. Med. 2021, 21, 107. [Google Scholar] [CrossRef] [PubMed]
- Kaur, K.; Kaushal, S.; Rani, R. Chemical composition, antioxidant and antifungal potential of clove (Syzygium aromaticum) essential oil, its major compound and its derivatives. J. Essent. Oil-Bear. 2019, 22, 1195–1217. [Google Scholar] [CrossRef]
- Reig-Vano, B.; Tylkowski, B.; Montané, X.; Giamberini, M. Alginate-based hydrogels for cancer therapy and research. Int. J. Biol. Macromol. 2021, 170, 424–436. [Google Scholar] [CrossRef]
- Spadari, C.C.; Bastiani, F.W.M.S.; Lopes, L.B.; Ishida, K. Alginate nanoparticles as non-toxic delivery system for miltefosine in the treatment of candidiasis and cryptococcosis. Int. J. Nanomedicine 2019, 14, 5187–5199. [Google Scholar] [CrossRef]
- Ulanowska, M.; Olas, B. Biological Properties and Prospects for the Application of Eugenol-A Review. Int. J. Mol. Sci. 2021, 22, 3671. [Google Scholar] [CrossRef] [PubMed]
- Sarma, B.D.; Puzari, K.C.; Dutta, P.; Pandey, A.K. An alginate-based encapsulation enhances shelf life and bioactivity of the entomopathogenic fungus, Metarhizium anisopliae. Egypt. J. Biol. Pest. Control 2023, 33, 69. [Google Scholar] [CrossRef]
- Woisky, R.G.; Salatino, A. Analysis of propolis: Some parameters and prodecore for chemical fuality control. J. Apic. Res. 1988, 37, 99–105. [Google Scholar] [CrossRef]
- Gulcin, I.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
Peak | RT | Area | Component | Chemical Structure | Content (%) * |
---|---|---|---|---|---|
1 | 10.28 | 79,065,820 | Eugenol | 83.7 | |
2 | 10.87 | 6,521,051 | Caryophyllene | 13.8 | |
3 | 11.17 | 1,153,276 | Humulene | 2.5 |
LF1 | LF2 | LF3 | |
---|---|---|---|
% incorporated | 39.3 ± 0.8 * | 50.4 ± 0.6 * | 76.9 ± 0.5 * |
Moisture content | 4.7 ± 0.05% | 4.1 ± 0.09 * | 3.9 ± 0.05 * |
Total Phenols (mg GAE g−1) * | |
---|---|
Essential oil | 449.9 ± 0.08 a |
LF1 | 172.2 ± 3.85 b |
LF2 | 147.6 ± 2.86 c |
LF3 | 146.5 ± 5.54 c |
Concentration (µg mL−1) | (% DPPH Inhibition) *,1 | |||
---|---|---|---|---|
CEO | LF1 | LF2 | LF3 | |
5 | 31.9 ± 1.0 | 28.2 ± 0.2 | 11.2 ± 1.9 | 5.8 ± 0.6 |
10 | 50.8 ± 0.3 | 45.4 ± 1.3 | 24.8 ± 1.4 | 14.1 ± 1.6 |
25 | 78.5 ± 1.0 | 69.2 ± 0.8 | 48.8 ± 0.6 | 20.2 ± 1.6 |
30 | 82.9 ± 0.8 | 75.9 ± 0.5 | 54.2 ± 0.2 | 22.3 ± 0.4 |
40 | 87.4 ± 0.3 | 80.3 ± 0.6 | 65.1 ± 0.7 | 30.8 ± 0.3 |
IC50 (µg mL−1) | 11.4 a | 18.1 b | 25.2 c | 86.4 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mergulhão, N.L.O.N.; Bulhões, L.C.G.; Silva, V.C.; Duarte, I.F.B.; Basílio-Júnior, I.D.; Freitas, J.D.; Oliveira, A.J.; Goulart, M.O.F.; Barbosa, C.V.; Araújo-Júnior, J.X. Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals 2024, 17, 599. https://doi.org/10.3390/ph17050599
Mergulhão NLON, Bulhões LCG, Silva VC, Duarte IFB, Basílio-Júnior ID, Freitas JD, Oliveira AJ, Goulart MOF, Barbosa CV, Araújo-Júnior JX. Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals. 2024; 17(5):599. https://doi.org/10.3390/ph17050599
Chicago/Turabian StyleMergulhão, Naianny L. O. N., Laisa C. G. Bulhões, Valdemir C. Silva, Ilza F. B. Duarte, Irinaldo D. Basílio-Júnior, Johnnatan D. Freitas, Adeildo J. Oliveira, Marília O. F. Goulart, Círia V. Barbosa, and João X. Araújo-Júnior. 2024. "Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity" Pharmaceuticals 17, no. 5: 599. https://doi.org/10.3390/ph17050599
APA StyleMergulhão, N. L. O. N., Bulhões, L. C. G., Silva, V. C., Duarte, I. F. B., Basílio-Júnior, I. D., Freitas, J. D., Oliveira, A. J., Goulart, M. O. F., Barbosa, C. V., & Araújo-Júnior, J. X. (2024). Insights from Syzygium aromaticum Essential Oil: Encapsulation, Characterization, and Antioxidant Activity. Pharmaceuticals, 17(5), 599. https://doi.org/10.3390/ph17050599