Synthesis, Antibacterial Effects, and Toxicity of Licochalcone C
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Identification of Licochalcone C
2.2. Antibacterial Assays
2.3. Checkerboard Assay
2.4. Antibiofilm Assay
2.5. Membrane Disruption Assay
2.6. Systemic Toxicity in Galleria Mellonella Larvae Assay
3. Materials and Methods
3.1. General Chemical Procedures
3.2. Synthesis of Licochalcone C
3.2.1. C-Isoprenylation Reaction of Compound 1 [46]
3.2.2. Protection Reaction of Compound 2 [47]
3.2.3. O-Methylation of Compound 3 [48]
3.2.4. Synthesis of Compound 5 [47]
3.2.5. Claisen–Schmidt Condensation Reaction of Compounds 4 and 5 [49]
3.2.6. Deprotection Reaction of Compound 6 [49]
3.3. Identification of Licochalcone C
3.4. Antibacterial Assays
3.5. Checkerboard Assay
3.6. Antibiofilm Assay
3.7. Membrane Disruption Assay
3.8. Systemic Toxicity in Galleria Mellonella Larvae Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global 2020 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; WHO: Geneva, Switzerland, 2020; Available online: https://www.who.int/publications/i/item/9789240021303/ (accessed on 15 January 2023).
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial Biofilms: A Common Cause of Persistent Infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from January 1981 to September 2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Han, R.; Xu, Y.; Li, N.; Wang, J.; Dan, W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem. 2020, 101, 103922. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, S.E.; Fletcher, M.H.; Wuest, W.M. Natural Products as Platforms To Overcome Antibiotic Resistance. Chem. Rev. 2017, 117, 12415–12474. [Google Scholar] [CrossRef] [PubMed]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, F.; Kandasamy, G.; Vasudevan, R.; Ali, S.; Amir, M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Kakkar, R. Synthetic methods and biological applications of retrochalcones isolated from the root of Glycyrrhiza species: A review. Results Chem. 2021, 3, 100216. [Google Scholar] [CrossRef]
- Shen, F.; Tang, X.; Wang, Y.; Yang, Z.; Shi, X.; Wang, C.; Zhang, Q.; An, Y.; Cheng, W.; Jin, K.; et al. Phenotype and expression profile analysis of Staphylococcus aureus biofilms and planktonic cells in response to licochalcone A. Appl. Microbiol. Biotechnol. 2014, 99, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xiong, Y.; Shi, Y.; Deng, X.; Deng, Q.; Liu, Y.; Yu, Z.; Li, D.; Zheng, J.; Li, P. In vitro activities of licochalcone A against planktonic cells and biofilm of Enterococcus faecalis. Front. Microbiol. 2022, 13, 970901. [Google Scholar] [CrossRef] [PubMed]
- Tsukiyama, R.-I.; Katsura, H.; Tokuriki, N.; Kobayashi, M. Antibacterial activity of licochalcone A against spore-forming bacteria. Antimicrob. Agents Chemother. 2002, 46, 1226–1230. [Google Scholar] [CrossRef]
- Qiu, J.; Feng, H.; Xiang, H.; Wang, D.; Xia, L.; Jiang, Y.; Song, K.; Lu, J.; Yu, L.; Deng, X. Influence of subinhibitory concentrations of licochalcone A on the secretion of enterotoxins A and B by Staphylococcus aureus. FEMS Microbiol. Lett. 2010, 307, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Jiang, Y.; Xia, L.; Xiang, H.; Feng, H.; Pu, S.; Huang, N.; Yu, L.; Deng, X. Subinhibitory concentrations of licochalcone A decrease alpha-toxin production in both methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Lett. Appl. Microbiol. 2010, 50, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Hao, H.; Hui, W.; Liu, P.; Lv, Q.; Zeng, X.; Jiang, H.; Wang, Y.; Zheng, X.; Zheng, Y.; Li, J.; et al. Effect of licochalcone A on growth and properties of Streptococcus suis. PLoS ONE 2013, 8, e67728. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, H.; Tanimoto, K.; Tamura, Y.; Mizutani, K.; Kinoshita, T. Mode of antibacterial action of retrochalcones from Glycyrrhiza inflata. Phytochemistry 1998, 48, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-C.; Yang, Z.-Q.; Liu, F.; Peng, W.-J.; Qu, S.-Q.; Li, Q.; Song, X.-B.; Zhu, K.; Shen, J.-Z. Antibacterial Effect and Mode of Action of Flavonoids from Licorice against Methicillin-Resistant Staphylococcus aureus. Front. Microbiol. 2019, 10, 2489. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Cao, Y.; Paudel, S.; Yoon, G.; Cheon, S.H. Concise synthesis of licochalcone C and its regioisomer, licochalcone H. Arch. Pharmacal. Res. 2013, 36, 1432–1436. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.G.; Jeon, J.-H.; Seo, Y.H.; Jun, J.-G. Facile Synthesis of Licochalcone C. Bull. Korean Chem. Soc. 2014, 35, 1996–1998. [Google Scholar] [CrossRef]
- Dovhaniuk, N.; Blahun, O.P.; Sosunovych, B.; Redka, M.O.; Vashchenko, B.V.; Grygorenko, O.O. Regioselective and Scalable Total Synthesis of Licochalcone C and Related Licoagrochalcones. Eur. J. Org. Chem. 2022, 26, e202201226. [Google Scholar] [CrossRef]
- Kajiyama, K.; Demizu, S.; Hiraga, Y.; Kinoshita, K.; Koyama, K.; Takahashi, K.; Tamura, Y.; Okada, K.; Kinoshita, T. Two prenylated retrochalcones from Glycyrrhiza inflata. Phytochemistry 1992, 31, 3229–3232. [Google Scholar] [CrossRef]
- Fergestad, M.E.; Stamsas, G.A.; Angeles, D.M.; Salehian, Z.; Wasteson, Y.; Kjos, M. Penicillin-binding protein PBP2a provides variable levels of protection toward different beta-lactams in Staphylococcus aureus RN4220. Microbiologyopen 2020, 9, e1057. [Google Scholar] [CrossRef]
- Fishovitz, J.; Hermoso, J.A.; Chang, M.; Mobashery, S. Penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Int. Union Biochem. Mol. Biol. 2014, 66, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Ávila, H.P.; Smânia, E.d.F.A.; Monache, F.D.; Smânia, A. Structure–activity relationship of antibacterial chalcones. Bioorg. Med. Chem. 2008, 16, 9790–9794. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Z.; Nikaido, H. Efflux-mediated drug resistance in bacteria. Drugs 2004, 64, 159–204. [Google Scholar] [CrossRef] [PubMed]
- Poole, K. Efflux-mediated antimicrobial resistance. J. Antimicrob. Chemother. 2005, 56, 20–51. [Google Scholar] [CrossRef] [PubMed]
- Pagès, J.-M.; Amaral, L. Mechanisms of drug efflux and strategies to combat them: Challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2009, 1794, 826–833. [Google Scholar] [CrossRef]
- Kuete, V.; Ngameni, B.; Tangmouo, J.G.; Bolla, J.-M.; Alibert-Franco, S.; Ngadjui, B.T.; Pagès, J.-M. Efflux Pumps Are Involved in the Defense of Gram-Negative Bacteria against the Natural Products Isobavachalcone and Diospyrone. Antimicrob. Agents Chemother. 2010, 54, 1749–1752. [Google Scholar] [CrossRef] [PubMed]
- Kusters, J.G.; van Vliet, A.H.M.; Kuipers, E.J. Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19, 449–490. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Xu, L.; Yuan, G.; Wang, Y.; Qu, Y.; Zhou, M. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Sci. Rep. 2018, 8, 7237. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.; Gupta, V.K.; Pal, A.; Darokar, M.P.; Bhakuni, R.S.; Kumar, B. In vitro and in vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus. RSC Adv. 2015, 5, 5830–5845. [Google Scholar] [CrossRef]
- Božić, D.D.; Milenković, M.; Ivković, B.; Cirković, I. Antibacterial activity of three newly-synthesized chalcones & synergism with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus. Indian J. Med. Res. 2014, 140, 130–137. [Google Scholar]
- Götz, F. Staphylococcus and biofilms. Mol. Microbiol. 2022, 43, 1367–1378. [Google Scholar] [CrossRef]
- Wu, H.; Moser, C.; Wang, H.-Z.; Høiby, N.; Song, Z.-J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2014, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.P.; Qureshi, A.; Hassan, W. Mechanisms of action by antimicrobial agents: A review. McGill J. Med. 2021, 19. [Google Scholar] [CrossRef]
- Schwarz, S.; Shen, J.; Kadlec, K.; Wang, Y.; Michael, G.B.; Feßler, A.T.; Vester, B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb. Perspect. Med. 2016, 6, a027037. [Google Scholar] [CrossRef] [PubMed]
- Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev. 2017, 11, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, I.; Benz, R.; Sahl, H.-G. Lipid II-Mediated Pore Formation by the Peptide Antibiotic Nisin: A Black Lipid Membrane Study. J. Bacteriol. 2004, 186, 3259–3261. [Google Scholar] [CrossRef]
- Browne, N.; Heelan, M.; Kavanagh, K. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013, 4, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Allegra, E.; Titball, R.W.; Carter, J.; Champion, O.L. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. Chemosphere 2018, 198, 469–472. [Google Scholar] [CrossRef] [PubMed]
- Pereira, T.C.; De Barros, P.P.; Fugisaki, L.R.d.O.; Rossoni, R.D.; Ribeiro, F.d.C.; De Menezes, R.T.; Junqueira, J.C.; Scorzoni, L. Recent Advances in the Use of Galleria mellonella Model to Study Immune Responses against Human Pathogens. J. Fungi 2018, 4, 128. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, X.; Wang, Y.; Zhao, H.; Sun, X.; Zheng, Q. Licochalcone C induces apoptosis via B-cell lymphoma 2 family proteins in T24 cells. Mol. Med. Rep. 2015, 12, 7623–7628. [Google Scholar] [CrossRef]
- Lee, S.-O.; Joo, S.H.; Lee, J.-Y.; Kwak, A.-W.; Kim, K.-T.; Cho, S.-S.; Yoon, G.; Choi, Y.H.; Park, J.W.; Shim, J.-H. Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin. Biomol. Ther. 2024, 32, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, A.-H.A.; Effat, H.; Mahrous, E.A.; Ali, M.A.; Al-Shafie, T.A. A Licorice Roots Extract Induces Apoptosis and Cell Cycle Arrest and Improves Metabolism via Regulating miRNAs in Liver Cancer Cells. Nutr. Cancer 2021, 73, 1047–1058. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.; Seo, J.; Lee, M.; Kim, C.; Kim, E.; Yoon, G.; Cho, S.; Cho, Y.S.; Choi, H.W.; Shim, J.; et al. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J. Cell. Biochem. 2018, 119, 10118–10130. [Google Scholar] [CrossRef] [PubMed]
- Kwak, A.-W.; Choi, J.-S.; Liu, K.; Lee, M.-H.; Jeon, Y.-J.; Cho, S.-S.; Yoon, G.; Oh, H.-N.; Chae, J.-I.; Shim, J.-H. Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J. Chemother. 2020, 32, 132–143. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, J.; Feng, Y.; Ma, T.; Niu, M. First enantioselective synthesis of Brosimacutins H and I. Chin. J. Org. Chem. 2016, 36, 547–554. [Google Scholar] [CrossRef]
- Rikimaru, K.; Wakabayashi, T.; Abe, H.; Tawaraishi, T.; Imoto, H.; Yonemori, J.; Hirose, H.; Murase, K.; Matsuo, T.; Matsumoto, M.; et al. Structure–activity relationships and key structural feature of pyridyloxybenzene-acylsulfonamides as new, potent, and selective peroxisome proliferator-activated receptor (PPAR) γ Agonists. Bioorg. Med. Chem. 2012, 20, 3332–3358. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, Y.; Li, H.; Wang, K.; Wan, Q.; Li, J.; Zhou, Y.; Chen, Y. Novel Nitric Oxide Donors of Phenylsulfonylfuroxan and 3-Benzyl Coumarin Derivatives as Potent Antitumor Agents. ACS Med. Chem. Lett. 2018, 9, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Songthammawat, P.; Wangngae, S.; Matsumoto, K.; Duangkamol, C.; Ruchirawat, S.; Ploypradith, P. Bioinspired Diastereoconvergent Synthesis of the Tricyclic Core of Palodesangrens via Diels–Alder Reaction, LiAlH4-Mediated Isomerization, and Acid-Mediated Cyclization. J. Org. Chem. 2018, 83, 5225–5241. [Google Scholar] [CrossRef] [PubMed]
- Leandro, L.F.; Cardoso, M.J.O.; Silva, S.D.C.; Souza, M.G.M.; Veneziani, R.C.S.; Ambrosio, S.R.; Martins, C.H.G. Antibacterial activity of Pinus elliottii and its major compound, dehydroabietic acid, against multidrug-resistant strains. J. Med Microbiol. 2014, 63, 1649–1653. [Google Scholar] [CrossRef]
- CLSI M07; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved Standard. 9th ed. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012; Volume 32.
- Palomino, J.-C.; Martin, A.; Camacho, M.; Guerra, H.; Swings, J.; Portaels, F. Resazurin Microtiter Assay Plate: Simple and Inexpensive Method for Detection of Drug Resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2720–2722. [Google Scholar] [CrossRef]
- Alves, J.A.; Abrão, F.; Moraes, T.d.S.; Damasceno, J.L.; Moraes, M.F.d.S.; Veneziani, R.C.S.; Ambrósio, S.R.; Bastos, J.K.; Miranda, M.L.D.; Martins, C.H.G. Investigation of Copaifera genus as a new source of antimycobaterial agents. Future Sci. OA 2020, 6, FSO587. [Google Scholar] [CrossRef] [PubMed]
- White, R.L.; Burgess, D.S.; Manduru, M.; Bosso, J.A. Comparison of three different in vitro methods of detecting synergy: Time-kill, checkerboard, and E test. Antimicrob. Agents Chemother. 1996, 40, 1914–1918. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.-X.; Campagna, A.N.; Bobek, L.A. Effect of MUC7 peptides on the growth of bacteria and on Streptococcus mutans biofilm. J. Antimicrob. Chemother. 2006, 57, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.G.L.; Moraes, T.d.S.; Silva, L.d.O.; Bianchi, T.C.; Veneziani, R.C.S.; Ambrosio, S.R.; Bastos, J.K.; Pires, R.H.; Martins, C.H.G. In vitro studies of the antibacterial activity of Copaifera spp. oleoresins, sodium hypochlorite, and peracetic acid against clinical and environmental isolates recovered from a hemodialysis unit. Antimicrob. Resist. Infect. Control. 2018, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Parai, D.; Banerjee, M.; Dey, P.; Mukherjee, S.K. Reserpine attenuates biofilm formation and virulence of Staphylococcus aureus. Microb. Pathog. 2020, 138, 103790. [Google Scholar] [CrossRef] [PubMed]
- Saising, J.; Dube, L.; Ziebandt, A.-K.; Voravuthikunchai, S.P.; Nega, M.; Götz, F. Activity of Gallidermin on Staphylococcus aureus and Staphylococcus epidermidis Biofilms. Antimicrob. Agents Chemother. 2012, 56, 5804–5810. [Google Scholar] [CrossRef] [PubMed]
- Dilarri, G.; Zamuner, C.F.C.; Mendes, C.R.; Junior, J.R.M.; Morão, L.G.; Montagnolli, R.N.; Bidoia, E.D.; Ferreira, H. Evaluating the potential of electrolysed water for the disinfection of citrus fruit in packinghouses. J. Sci. Food Agric. 2021, 101, 2584–2591. [Google Scholar] [CrossRef] [PubMed]
- Savietto, A.; Polaquini, C.R.; Kopacz, M.; Scheffers, D.-J.; Marques, B.C.; Regasini, L.O.; Ferreira, H. Antibacterial activity of monoacetylated alkyl gallates against Xanthomonas citri subsp. citri. Arch. Microbiol. 2018, 200, 929–937. [Google Scholar] [CrossRef]
- Martins, P.M.; Lau, I.F.; Bacci, M.; Belasque, J.; Amaral, A.M.D.; Taboga, S.R.; Ferreira, H. Subcellular localization of proteins labeled with GFP in Xanthomonas citri ssp. citri: Targeting the division septum. FEMS Microbiol. Lett. 2010, 310, 76–83. [Google Scholar] [CrossRef]
- Król, E.; Borges, A.d.S.; da Silva, I.; Polaquini, C.R.; Regasini, L.O.; Ferreira, H.; Scheffers, D.-J. Antibacterial activity of alkyl gallates is a combination of direct targeting of FtsZ and permeabilization of bacterial membranes. Front. Microbiol. 2015, 6, 390. [Google Scholar] [CrossRef]
- Megaw, J.; Thompson, T.P.; Lafferty, R.A.; Gilmore, B.F. Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. Chemosphere 2015, 139, 197–201. [Google Scholar] [CrossRef] [PubMed]
Species | MIC (μg/mL) | |||||
---|---|---|---|---|---|---|
LCC | Tetracycline # | Vancomycin # | Chlorhexidine # | Isoniazid # | ||
Gram-positive | Staphylococcus aureus (MSSA) | 12.5 | 0.09 | - | - | - |
Staphylococcus aureus (MRSA) | 12.5 | - | 0.73 | - | - | |
Staphylococcus epidermidis | 6.2 | >5.9 | - | - | - | |
Enterococcus faecalis | 50.0 | 3.3 | - | - | - | |
Streptococcus pneumoniae | 50.0 | 0.4 | - | - | - | |
Streptococcus sanguinis | 6.2 | - | - | 1.8 | - | |
Streptococcus sobrinus | 12.5 | - | - | 3.6 | - | |
Streptococcus mutans | 12.5 | - | - | 0.4 | - | |
Mycobacteria | Mycobacterium tuberculosis | 31.2 | - | - | - | 0.5 |
Mycobacterium avium | 62.5 | - | - | - | >1.0 | |
Mycobacterium kansasii | 125.0 | - | - | - | 1.0 | |
Gram-negative | Helicobacter pylori | 25.0 | 1.47 | - | - | - |
Pseudomonas aeruginosa | >400 | 5.9 | - | - | - | |
Klebsiella pneumoniae | >400 | 1.47 | - | - | - | |
Escherichia coli | >400 | 0.73 | - | - | - |
MIC (μg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|
S. aureus Strains | Combination | Alone | Combined | FICLCC | FICD | FICI | Type of Combination | ||
LCC | D | LCC | D | ||||||
MSSA | LCC + TC | 12.5 | 0.09 | 3.12 | 0.18 | 0.25 | 2.0 | 2.25 | Indifferent |
MRSA | LCC + VAN | 12.5 | 0.73 | 6.25 | 0.36 | 0.5 | 0.5 | 1.0 | Indifferent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozanique, P.R.; Helena, A.L.; Menezes, R.d.P.; Gonçalves, D.S.; Santiago, M.B.; Dilarri, G.; Sardi, J.d.C.O.; Ferreira, H.; Martins, C.H.G.; Regasini, L.O. Synthesis, Antibacterial Effects, and Toxicity of Licochalcone C. Pharmaceuticals 2024, 17, 634. https://doi.org/10.3390/ph17050634
Ozanique PR, Helena AL, Menezes RdP, Gonçalves DS, Santiago MB, Dilarri G, Sardi JdCO, Ferreira H, Martins CHG, Regasini LO. Synthesis, Antibacterial Effects, and Toxicity of Licochalcone C. Pharmaceuticals. 2024; 17(5):634. https://doi.org/10.3390/ph17050634
Chicago/Turabian StyleOzanique, Patrick Rômbola, Alvaro Luiz Helena, Ralciane de Paula Menezes, Daniela Silva Gonçalves, Mariana Brentini Santiago, Guilherme Dilarri, Janaína de Cássia Orlandi Sardi, Henrique Ferreira, Carlos Henrique Gomes Martins, and Luis Octávio Regasini. 2024. "Synthesis, Antibacterial Effects, and Toxicity of Licochalcone C" Pharmaceuticals 17, no. 5: 634. https://doi.org/10.3390/ph17050634
APA StyleOzanique, P. R., Helena, A. L., Menezes, R. d. P., Gonçalves, D. S., Santiago, M. B., Dilarri, G., Sardi, J. d. C. O., Ferreira, H., Martins, C. H. G., & Regasini, L. O. (2024). Synthesis, Antibacterial Effects, and Toxicity of Licochalcone C. Pharmaceuticals, 17(5), 634. https://doi.org/10.3390/ph17050634