Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzymatic Metabolic Switches (MSs) Are Functionally Related to Metabolic Pathways That ARE altered under Neurodegenerative Conditions
2.2. Trifluperidol, Trifluoperazine, Disulfiram, and Haloperidol Would Significantly Affect MSs
2.3. Enzymatic Metabolic Switches Related to Nervous System Drugs Have Interesting Structural Characteristics with Druggable Potential
3. Materials and Methods
3.1. Metabolic Switches Analyzed in This Study
3.2. Protein–Protein Interactions Network (PPI)
3.3. Drug–Protein Interactions Network (DPI)
3.4. Targets 3D Structures and Associated Ligands
3.5. Characterization of Cavities with Druggable Potential
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Volterra, A.; Meldolesi, J. Astrocytes, from Brain Glue to Communication Elements: The Revolution Continues. Nat. Rev. Neurosci. 2005, 6, 626–640. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, R.; El-Bachá, R.S.; González, J.; Barreto, G.E. Mitochondrial Functions in Astrocytes: Neuroprotective Implications from Oxidative Damage by Rotenone. Neurosci. Res. 2012, 74, 80–90. [Google Scholar] [CrossRef]
- Robertson, J.M. The Gliocentric Brain. Int. J. Mol. Sci. 2018, 19, 3033. [Google Scholar] [CrossRef]
- Buskila, Y.; Bellot-Saez, A.; Morley, J.W. Generating Brain Waves, the Power of Astrocytes. Front. Neurosci. 2019, 13, 1125. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Pinzón, A.; Angarita-Rodríguez, A.; Aristizabal, A.F.; Barreto, G.E.; Martín-Jiménez, C. Advances in Astrocyte Computational Models: From Metabolic Reconstructions to Multi-Omic Approaches. Front. Neuroinform. 2020, 14, 35. [Google Scholar] [CrossRef]
- Siracusa, R.; Fusco, R.; Cuzzocrea, S. Astrocytes: Role and Functions in Brain Pathologies. Front. Pharmacol. 2019, 10, 1114. [Google Scholar] [CrossRef] [PubMed]
- Valles, S.L.; Singh, S.K.; Campos-Campos, J.; Colmena, C.; Campo-Palacio, I.; Alvarez-Gamez, K.; Caballero, O.; Jorda, A. Functions of Astrocytes under Normal Conditions and after a Brain Disease. Int. J. Mol. Sci. 2023, 24, 8434. [Google Scholar] [CrossRef] [PubMed]
- Angarita-Rodríguez, A.; Mendoza-Mejía, N.; Gonzalez, J.; Aristizabal, A.F.; Hidalgo-Lanussa, O.; Rubio-Mesa, J.J.; Barreto, G.E.; Pinzon, A. Multi-Omics Integrative Analysis Coupled to Control Theory and Computational Simulation of a Genome-Scale Metabolic Model Reveal Controlling Biological Switches in Human Astrocytes Under Palmitic Acid-Induced Lipotoxicity. Front. Syst. Biol. 2022, 2, 896265. [Google Scholar] [CrossRef]
- Carta, G.; Murru, E.; Banni, S.; Manca, C. Palmitic Acid: Physiological Role, Metabolism and Nutritional Implications. Front. Physiol. 2017, 8, 902. [Google Scholar] [CrossRef]
- Frago, L.M.; Canelles, S.; Freire-Regatillo, A.; Argente-Arizón, P.; Barrios, V.; Argente, J.; Garcia-Segura, L.M.; Chowen, J.A. Estradiol Uses Different Mechanisms in Astrocytes from the Hippocampus of Male and Female Rats to Protect against Damage Induced by Palmitic Acid. Front. Mol. Neurosci. 2017, 10, 330. [Google Scholar] [CrossRef]
- Fatima, S.; Hu, X.; Gong, R.-H.; Huang, C.; Chen, M.; Wong, H.L.X.; Bian, Z.; Kwan, H.Y. Palmitic Acid Is an Intracellular Signaling Molecule Involved in Disease Development. Cell. Mol. Life Sci. 2019, 76, 2547–2557. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Melrose, J.; Chan, C. Involvement of Astroglial Ceramide in Palmitic Acid-Induced Alzheimer-like Changes in Primary Neurons. Eur. J. Neurosci. 2007, 26, 2131–2141. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rodriguez, A.; Acaz-Fonseca, E.; Boya, P.; Arevalo, M.A.; Garcia-Segura, L.M. Lipotoxic Effects of Palmitic Acid on Astrocytes Are Associated with Autophagy Impairment. Mol. Neurobiol. 2019, 56, 1665–1680. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Rodriguez, A.; Arevalo, M.A. The Contribution of Astrocyte Autophagy to Systemic Metabolism. Int. J. Mol. Sci. 2020, 21, 2479. [Google Scholar] [CrossRef]
- Nuthikattu, S.; Milenkovic, D.; Rutledge, J.C.; Villablanca, A.C. Lipotoxic Injury Differentially Regulates Brain Microvascular Gene Expression in Male Mice. Nutrients 2020, 12, 1771. [Google Scholar] [CrossRef] [PubMed]
- Basler, G.; Nikoloski, Z.; Larhlimi, A.; Barabási, A.-L.; Liu, Y.-Y. Control of Fluxes in Metabolic Networks. Genome Res. 2016, 26, 956–968. [Google Scholar] [CrossRef]
- Nisius, B.; Sha, F.; Gohlke, H. Structure-Based Computational Analysis of Protein Binding Sites for Function and Druggability Prediction. J. Biotechnol. 2012, 159, 123–134. [Google Scholar] [CrossRef]
- Dai, W.; Chang, Q.; Peng, W.; Zhong, J.; Li, Y. Network Embedding the Protein–Protein Interaction Network for Human Essential Genes Identification. Genes 2020, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Milano, M.; Agapito, G.; Cannataro, M. Challenges and Limitations of Biological Network Analysis. BioTech 2022, 11, 24. [Google Scholar] [CrossRef]
- Wu, Z.; Li, W.; Liu, G.; Tang, Y. Network-Based Methods for Prediction of Drug-Target Interactions. Front. Pharmacol. 2018, 9, 381369. [Google Scholar] [CrossRef]
- Alegría-arcos, M.; Barbosa, T.; Sepúlveda, F.; Combariza, G.; González, J.; Gil, C.; Martínez, A.; Ramírez, D. Network Pharmacology Reveals Multitarget Mechanism of Action of Drugs to Be Repurposed for COVID-19. Front. Pharmacol. 2022, 13, 952192. [Google Scholar] [CrossRef]
- Mallick, R.; Basak, S.; Duttaroy, A.K. Fatty Acids and Evolving Roles of Their Proteins in Neurological, Cardiovascular Disorders and Cancers. Prog. Lipid Res. 2021, 83, 101116. [Google Scholar] [CrossRef]
- Jo, D.S.; Park, N.Y.; Cho, D.H. Peroxisome Quality Control and Dysregulated Lipid Metabolism in Neurodegenerative Diseases. Exp. Mol. Med. 2020, 52, 1486–1495. [Google Scholar] [CrossRef]
- Uzor, N.E.; McCullough, L.D.; Tsvetkov, A.S. Peroxisomal Dysfunction in Neurological Diseases and Brain Aging. Front. Cell. Neurosci. 2020, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Bogie, J.F.J.; Haidar, M.; Kooij, G.; Hendriks, J.J.A. Fatty Acid Metabolism in the Progression and Resolution of CNS Disorders. Adv. Drug Deliv. Rev. 2020, 159, 198–213. [Google Scholar] [CrossRef]
- Bennati, A.M.; Castelli, M.; Della Fazia, M.A.; Beccari, T.; Caruso, D.; Servillo, G.; Roberti, R. Sterol Dependent Regulation of Human TM7SF2 Gene Expression: Role of the Encoded 3beta-Hydroxysterol Delta14-Reductase in Human Cholesterol Biosynthesis. Biochim. Biophys. Acta 2006, 1761, 677–685. [Google Scholar] [CrossRef]
- Fujii, H.; Krietsch, W.K.; Yoshida, A. A Single Amino Acid Substitution (Asp Leads to Asn) in a Phosphoglycerate Kinase Variant (PGK München) Associated with Enzyme Deficiency. J. Biol. Chem. 1980, 255, 6421–6423. [Google Scholar] [CrossRef] [PubMed]
- Koch, K.; Mansi, K.; Haynes, E.; Adams, C.E.; Sampson, S.; Furtado, V.A. Trifluoperazine versus Placebo for Schizophrenia. Cochrane Database Syst. Rev. 2014, 2014, CD010226. [Google Scholar] [CrossRef]
- Zheng, L.T.; Hwang, J.; Ock, J.; Lee, M.G.; Lee, W.H.; Suk, K. The Antipsychotic Spiperone Attenuates Inflammatory Response in Cultured Microglia via the Reduction of Proinflammatory Cytokine Expression and Nitric Oxide Production. J. Neurochem. 2008, 107, 1225–1235. [Google Scholar] [CrossRef]
- Labuzek, K.; Kowalski, J.; Gabryel, B.; Herman, Z.S. Chlorpromazine and Loxapine Reduce Interleukin-1β and Interleukin-2 Release by Rat Mixed Glial and Microglial Cell Cultures. Eur. Neuropsychopharmacol. 2005, 15, 23–30. [Google Scholar] [CrossRef]
- Kim, Y.K.; Na, K.S. Neuroprotection in Schizophrenia and Its Therapeutic Implications. Psychiatry Investig. 2017, 14, 383–391. [Google Scholar] [CrossRef]
- Pan, W.; Zadina, J.E.; Harlan, R.; Weber, J.; Banks, W.; Kastin, A.J. TNFα—A Neuromodulator in the CNS. Neurosci. Biobehav. Rev. 1997, 21, 603–613. [Google Scholar] [CrossRef]
- Obuchowicz, E.; Bielecka-Wajdman, A.M.; Paul-Samojedny, M.; Nowacka, M. Different Influence of Antipsychotics on the Balance between Pro- and Anti-Inflammatory Cytokines Depends on Glia Activation: An in Vitro Study. Cytokine 2017, 94, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Racki, V.; Marcelic, M.; Stimac, I.; Petric, D.; Kucic, N. Effects of Haloperidol, Risperidone and Aripiprazole on the Immunometabolic Properties of BV-2 Microglial Cells. Int. J. Mol. Sci. 2021, 22, 4399. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandusse, S.; Denis, S.; Van Roermund, C.W.T.; Wanders, R.J.A.; Dacremont, G. Identification of the Peroxisomal Beta-Oxidation Enzymes Involved in the Degradation of Long-Chain Dicarboxylic Acids. J. Lipid Res. 2004, 45, 1104–1111. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-Y.; He, X.-Y.; Olpin, S.E.; Sutton, V.R.; McMenamin, J.; Philipp, M.; Denman, R.B.; Malik, M. Mental Retardation Linked to Mutations in the HSD17B10 Gene Interfering with Neurosteroid and Isoleucine Metabolism. Proc. Natl. Acad. Sci. USA 2009, 106, 14820–14824. [Google Scholar] [CrossRef]
- Höllerhage, M.; Goebel, J.N.; de Andrade, A.; Hildebrandt, T.; Dolga, A.; Culmsee, C.; Oertel, W.H.; Hengerer, B.; Höglinger, G.U. Trifluoperazine Rescues Human Dopaminergic Cells from Wild-Type α-Synuclein-Induced Toxicity. Neurobiol. Aging 2014, 35, 1700–1711. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.B.; Luo, C.; Mao, X.Y.; Li, X.; Yin, J.Y.; Zhang, W.; Zhou, H.H.; Liu, Z.Q. The Prospective Value of Dopamine Receptors on Bio-Behavior of Tumor. J. Cancer 2019, 10, 1622–1632. [Google Scholar] [CrossRef]
- Huang, H.T.; Chen, P.C.; Chen, P.S.; Chiu, W.T.; Kuo, Y.M.; Tzeng, S.F. Inhibitory Effects of Trifluoperazine on Peripheral Proinflammatory Cytokine Expression and Hypothalamic Microglia Activation in Obese Mice Induced by Chronic Feeding with High-Fat-Diet. Front. Cell. Neurosci. 2021, 15, 752771. [Google Scholar] [CrossRef]
- Huang, H.T.; Tsai, S.F.; Wu, H.T.; Huang, H.Y.; Hsieh, H.H.; Kuo, Y.M.; Chen, P.S.; Yang, C.S.; Tzeng, S.F. Chronic Exposure to High Fat Diet Triggers Myelin Disruption and Interleukin-33 Upregulation in Hypothalamus. BMC Neurosci. 2019, 20, 33. [Google Scholar] [CrossRef]
- Sylvain, N.J.; Salman, M.M.; Pushie, M.J.; Hou, H.; Meher, V.; Herlo, R.; Peeling, L.; Kelly, M.E. The Effects of Trifluoperazine on Brain Edema, Aquaporin-4 Expression and Metabolic Markers during the Acute Phase of Stroke Using Photothrombotic Mouse Model. Biochim. Biophys. Acta Biomembr. 2021, 1863, 183573. [Google Scholar] [CrossRef] [PubMed]
- Milanski, M.; Degasperi, G.; Coope, A.; Morari, J.; Denis, R.; Cintra, D.E.; Tsukumo, D.M.L.; Anhe, G.; Amaral, M.E.; Takahashi, H.K.; et al. Saturated Fatty Acids Produce an Inflammatory Response Predominantly through the Activation of TLR4 Signaling in Hypothalamus: Implications for the Pathogenesis of Obesity. J. Neurosci. 2009, 29, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.A.; Spencer, S.J. Obesity and Neuroinflammation: A Pathway to Cognitive Impairment. Brain. Behav. Immun. 2014, 42, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Khaledi, E.; Noori, T.; Mohammadi-Farani, A.; Sureda, A.; Dehpour, A.R.; Yousefi-Manesh, H.; Sobarzo-Sanchez, E.; Shirooie, S. Trifluoperazine Reduces Cuprizone-Induced Demyelination via Targeting Nrf2 and IKB in Mice. Eur. J. Pharmacol. 2021, 909, 174432. [Google Scholar] [CrossRef]
- Ercolani, L.; Florence, B.; Denaro, M.; Alexander, M. Isolation and Complete Sequence of a Functional Human Glyceraldehyde-3-Phosphate Dehydrogenase Gene. J. Biol. Chem. 1988, 263, 15335–15341. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Chen, S.; Li, C.; Xu, J.; Wang, L. Application of Disulfiram and Its Metabolites in Treatment of Inflammatory Disorders. Front. Pharmacol. 2022, 12, 795078. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, S.; Stoye, N.; Luderer, M.; Kiefer, F.; Schmitt, U.; Lieb, K.; Endres, K. Identification of Disulfiram as a Secretase-Modulating Compound with Beneficial Effects on Alzheimer’s Disease Hallmarks. Sci. Rep. 2018, 8, 1329. [Google Scholar] [CrossRef] [PubMed]
- Postina, R.; Schroeder, A.; Dewachter, I.; Bohl, J.; Schmitt, U.; Kojiro, E.; Prinzen, C.; Endres, K.; Hiemke, C.; Blessing, M.; et al. A Disintegrin-Metalloproteinase Prevents Amyloid Plaque Formation and Hippocampal Defects in an Alzheimer Disease Mouse Model. J. Clin. Investig. 2004, 114, 598. [Google Scholar] [CrossRef]
- Roberds, S.L.; Anderson, J.; Basi, G.; Bienkowski, M.J.; Branstetter, D.G.; Chen, K.S.; Freedman, S.B.; Frigon, N.L.; Games, D.; Hu, K.; et al. BACE Knockout Mice Are Healthy despite Lacking the Primary β-Secretase Activity in Brain: Implications for Alzheimer’s Disease Therapeutics. Hum. Mol. Genet. 2001, 10, 1317–1324. [Google Scholar] [CrossRef]
- Sezgin, B.; Sibar, S.; Bulam, H.; Findikcioglu, K.; Tuncer, S.; Dogan, B. Disulfiram Implantation for the Treatment of Alcoholism: Clinical Experiences from the Plastic Surgeon’s Point of View. Arch. Plast. Surg. 2014, 41, 571–575. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.E.; El-Shamarka, M.E.S.; Salem, N.A.; El-Mosallamy, A.E.M.K.; Sleem, A.A. Amelioration of the Haloperidol-Induced Memory Impairment and Brain Oxidative Stress by Cinnarizine. EXCLI J. 2012, 11, 517–530. [Google Scholar] [PubMed]
- Kabra, A.; Baghel, U.S.; Hano, C.; Martins, N.; Khalid, M.; Sharma, R. Neuroprotective Potential of Myrica Esulenta in Haloperidol Induced Parkinson’s Disease. J. Ayurveda Integr. Med. 2020, 11, 448–454. [Google Scholar] [CrossRef]
- Saleem, U.; Hussain, L.; Shahid, F.; Anwar, F.; Chauhdary, Z.; Zafar, A. Pharmacological Potential of the Standardized Methanolic Extract of Prunus armeniaca L. in the Haloperidol-Induced Parkinsonism Rat Model. Evidence-based Complement. Altern. Med. 2022, 2022, 3697522. [Google Scholar] [CrossRef] [PubMed]
- Oyinloye, B.E.; Iwaloye, O.; Ajiboye, B.O. Polypharmacology of Gongronema Latifolium Leaf Secondary Metabolites against Protein Kinases Implicated in Parkinson’s Disease and Alzheimer’s Disease. Sci. Afr. 2021, 12, e00826. [Google Scholar] [CrossRef]
- Papa, A.; Pasquini, S.; Contri, C.; Gemma, S.; Campiani, G.; Butini, S.; Varani, K.; Vincenzi, F. Polypharmacological Approaches for CNS Diseases: Focus on Endocannabinoid Degradation Inhibition. Cells 2022, 11, 471. [Google Scholar] [CrossRef] [PubMed]
- Albertini, C.; Salerno, A.; de Sena Murteira Pinheiro, P.; Bolognesi, M.L. From Combinations to Multitarget-Directed Ligands: A Continuum in Alzheimer’s Disease Polypharmacology. Med. Res. Rev. 2021, 41, 2606–2633. [Google Scholar] [CrossRef] [PubMed]
- Van Der Schyf, C.J. The Use of Multi-Target Drugs in the Treatment of Neurodegenerative Diseases. Expert Rev. Clin. Pharmacol. 2011, 4, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Abramov, A.Y.; Bachurin, S.O. Neurodegenerative Disorders—Searching for Targets and New Ways of Diseases Treatment. Med. Res. Rev. 2021, 41, 2603–2605. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Baig, M.H.; Mushtaq, G.; Kamal, M.A.; Greig, N.H.; Choi, I. Commonalities in Biological Pathways, Genetics, and Cellular Mechanism between Alzheimer Disease and Other Neurodegenerative Diseases: An In Silico-Updated Overview. Curr. Alzheimer Res. 2017, 14, 1190–1197. [Google Scholar] [CrossRef]
- Cacabelos, R. Pharmacogenomics of Cognitive Dysfunction and Neuropsychiatric Disorders in Dementia. Int. J. Mol. Sci. 2020, 21, 3059. [Google Scholar] [CrossRef]
- Calsolaro, V.; Antognoli, R.; Okoye, C.; Monzani, F. The Use of Antipsychotic Drugs for Treating Behavioral Symptoms in Alzheimer’s Disease. Front. Pharmacol. 2019, 10, 1465. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Min, R.; Chen, P.; Mei, S.; Deng, F.; Zheng, Z.; Jiang, C.; Miao, R.; Wu, Z.; Zhang, P.; et al. Disulfiram Blocks Inflammatory TLR4 Signaling by Targeting MD-2. Proc. Natl. Acad. Sci. USA 2023, 120, e2306399120. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Zhang, M.; Wen, Y.; He, P.; He, Q.; Yang, B.; Jiang, L.; Yuan, M.; Cao, J. Identifying Chronic Alcoholism Drug Disulfiram as a Potent DJ-1 Inhibitor for Cancer Therapeutics. Eur. J. Pharmacol. 2022, 926, 175035. [Google Scholar] [CrossRef]
- Cammisa, M.; Correra, A.; Andreotti, G.; Cubellis, M.V. Identification and Analysis of Conserved Pockets on Protein Surfaces. BMC Bioinformatics 2013, 14, S9. [Google Scholar] [CrossRef]
- Greener, J.G.; Sternberg, M.J.E. AlloPred: Prediction of Allosteric Pockets on Proteins Using Normal Mode Perturbation Analysis. BMC Bioinformatics 2015, 16, 335. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Sharma, R.; Kumar, A. Docking Techniques in Pharmacology: How Much Promising? Comput. Biol. Chem. 2018, 76, 210–217. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A Web Server for Protein Cavity Detection with Pharmacophore Modelling, Allosteric Site Identification and Covalent Ligand Binding Ability Prediction. Nucleic Acids Res. 2018, 46, W374–W379. [Google Scholar] [CrossRef]
- Nielsen, J. Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine. Cell Metab. 2017, 25, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Dhote, V.; Mandloi, A.S.; Singour, P.K.; Kawadkar, M.; Ganeshpurkar, A.; Jadhav, M.P. Neuroprotective Effects of Combined Trimetazidine and Progesterone on Cerebral Reperfusion Injury. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100108. [Google Scholar] [CrossRef]
- Xia, C.; Fu, Z.; Battaile, K.P.; Kim, J.-J.P. Crystal Structure of Human Mitochondrial Trifunctional Protein, a Fatty Acid β-oxidation Metabolon. Proc. Natl. Acad. Sci. USA 2019, 116, 6069–6074. [Google Scholar] [CrossRef]
- Ussher, J.R.; Keung, W.; Fillmore, N.; Koves, T.R.; Mori, J.; Zhang, L.; Lopaschuk, D.G.; Ilkayeva, O.R.; Wagg, C.S.; Jaswal, J.S.; et al. Treatment with the 3-Ketoacyl-CoA Thiolase Inhibitor Trimetazidine Does Not Exacerbate Whole-Body Insulin Resistance in Obese Mice. J. Pharmacol. Exp. Ther. 2014, 349, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Ayyildiz, M.; Celiker, S.; Ozhelvaci, F.; Akten, E.D. Identification of Alternative Allosteric Sites in Glycolytic Enzymes for Potential Use as Species-Specific Drug Targets. Front. Mol. Biosci. 2020, 7, 88. [Google Scholar] [CrossRef]
- Barinova, K.; Khomyakova, E.; Semenyuk, P.; Schmalhausen, E.; Muronetz, V. Binding of alpha-synuclein to partially oxidized glyceraldehyde-3-phosphate dehydrogenase induces subsequent inactivation of the enzyme. Arch. Biochem. Biophys. 2018, 642, 10–22. [Google Scholar] [CrossRef] [PubMed]
- Balsa, E.; Perry, E.A.; Bennett, C.F.; Jedrychowski, M.; Gygi, S.P.; Doench, J.G.; Puigserver, P. Defective NADPH Production in Mitochondrial Disease Complex I Causes Inflammation and Cell Death. Nat. Commun. 2020, 11, 2714. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, Z.; Hu, C.; Chen, C.; Hu, Z.; Wang, A.; Wang, L.; Liu, J.; Wang, W.; Liu, Q. Pharmacologically Inhibiting Phosphoglycerate Kinase 1 for Glioma with NG52. Acta Pharmacol. Sin. 2021, 42, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Szrok-Jurga, S.; Turyn, J.; Hebanowska, A.; Swierczynski, J.; Czumaj, A.; Sledzinski, T.; Stelmanska, E. The Role of Acyl-CoA β-Oxidation in Brain Metabolism and Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 13977. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Thiel, K.; Wiswedel, B. KNIME—The konstanz information miner: Version 2.0 and beyond. SIGKDD Explor. Newsl. 2009, 11, 26–31. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models. Genome Res. 1971, 13, 426. [Google Scholar]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. G:Profiler: A Web Server for Functional Enrichment Analysis and Conversions of Gene Lists (2019 Update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Koscielny, G.; An, P.; Carvalho-Silva, D.; Cham, J.A.; Fumis, L.; Gasparyan, R.; Hasan, S.; Karamanis, N.; Maguire, M.; Papa, E.; et al. Open Targets: A Platform for Therapeutic Target Identification and Validation. Nucleic Acids Res. 2017, 45, D985–D994. [Google Scholar] [CrossRef]
- Bosc, N.; Atkinson, F.; Felix, E.; Gaulton, A.; Hersey, A.; Leach, A.R. Large Scale Comparison of QSAR and Conformal Prediction Methods and Their Applications in Drug Discovery. J. Cheminform. 2019, 11, 1–16. [Google Scholar] [CrossRef]
- Nowotka, M.M.; Gaulton, A.; Mendez, D.; Bento, A.P.; Hersey, A.; Leach, A. Using ChEMBL Web Services for Building Applications and Data Processing Workflows Relevant to Drug Discovery. Expert Opin. Drug Discov. 2017, 12, 757–767. [Google Scholar]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; et al. RCSB Protein Data Bank: Powerful New Tools for Exploring 3D Structures of Biological Macromolecules for Basic and Applied Research and Education in Fundamental Biology, Biomedicine, Biotechnology, Bioengineering and Energy Sciences. Nucleic Acids Res. 2020, 49, D437–D451. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; et al. UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Peng, Z.; Zhang, Y.; Yang, J. COACH-D: Improved Protein-Ligand Binding Sites Prediction with Refined Ligand-Binding Poses through Molecular Docking. Nucleic Acids Res. 2018, 46, W438–W442. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
Drug Name (CHEMBL ID) | Drug Group | Pharmacological Activity | Number of Targets | ID UniProt Target | Targets | Metabolic Switch Related |
---|---|---|---|---|---|---|
Trifluperidol (CHEMBL15023) | Butyrophenone derivatives | Modulation of glycolysis and cholesterol biosynthesis | 3 | P14618 | PKM | PGK1, GAPDH |
Q15125 | EBP | TM7SF2 | ||||
Q99720 | SIGMAR1 | TM7SF2 | ||||
Trifluoperazine (CHEMBL422) | Phenothiazines with piperazine structure | Modulation of fatty acid oxidation, cholesterol biosynthesis, and amino-acid catabolism | 3 | Q15125 | EBP | TM7SF2 |
Q99714 | HSD17B10 | ACAA1, EHHADH | ||||
Q99720 | SIGMAR1 | TM7SF2 | ||||
Disulfiram (CHEMBL964) | Drugs used in alcohol dependence | Glycolysis and fatty acid oxidation modulation | 2 | Q99714 | HSD17B10 | ACAA1, EHHADH |
P42858 | HTT | GAPDH | ||||
Haloperidol (CHEMBL54) | Butyrophenone derivatives | Modulation of lipid metabolism | 2 | Q15125 | EBP | TM7SF2 |
Q99720 | SIGMAR1 | TM7SF2 |
Protein | Cavity Number | Pred. Max pKd | Drug Score | Druggability | Residues | Allosteric Cavities | Z-Score (>0.5) |
---|---|---|---|---|---|---|---|
P00558 | 1 | 11.01 | 1424 | Strong | LEU:63, GLY:64, ARG:65, PRO:66, ASP:67, LYS:74, TYR:75, ARG:122, GLU:128, LY:166, THR:167, ALA:168, HIS:169, ARG:170, HIS:172, GLY:212, GLY:213, ALA:214, LYS:215, VAL:216, ALA:217, ASP:218, LYS:219, GLY:236, GLY:237, GLY:238, MET:239, PHE:241, SER:255, LEU:256, ASP:258, PHE:285, VAL:286, PHE:291, ASP:292, GLU:293, MET:311, GLY:312, LEU:313, ASP:314, CYS:315, ASN:336, GLY:337, PRO:338, VAL:339, GLY:340, VAL:341, PHE:342, GLU:343, TRP:344, PHE:347, THR:351, GLY:371, GLY:372, GLY:373, ASP:374, THR:375, ALA:376, THR:377, CYS:378, LYS:381, THR:393, GLY:394, GLY:395, GLY:396, ALA:397, SER:398, GLU:400 | 1 | 1.57 |
2 | 1.26 | ||||||
3 | 0.89 | ||||||
4 | 0.79 | ||||||
5 | 0.62 | ||||||
P04406 | 1 | 11.39 | 1477 | Strong | GLY:82, PHE:83, GLY:84, ARG:85, ILE:86, GLY:87, ARG:88, ASP:121, THR:123, HIS:124, GLU:168, SER:169, THR:170, GLY:171, VAL:172, TYR:173, LEU:174, ILE:192, SER:193, ALA:194, PRO:195, SER:196, PRO:197, MET:201, ALA:222, SER:223, CYS:224, THR:225, THR:226, ASN:227, MET:247, THR:249, VAL:250, HIS:251, SER:252, TYR:253, THR:254, ALA:255, THR:256, GLN:257, LYS:258, PRO:263, SER:264, ARG:265, LYS:266, ALA:267, ASP:270, GLY:271, ILE:279, PRO:280, ALA:281, SER:282, THR:283, GLY:284, ALA:285, ALA:286, LYS:287, ALA:288, VAL:289, LYS:291, GLY:302, MET:303, ALA:304, PHE:305, ARG:306, THR:309, PRO:310, ASP:311, SER:313, TYR:386, ASN:388, GLU:389, TYR:392, SER:393, VAL:396 | 1 | 2.89 |
2 | 0.94 | ||||||
Q08426 | 1 | 10.53 | 656 | Strong | ASP:62, ILE:63, ARG:64, GLY:65, PHE:66, SER:67, ALA:68, LEU:129, LEU:259, LEU:260, GLN:261, SER:262, GLY:263, ALA:265, ARG:266, ALA:267, LEU:268, GLN:269, TYR:270, ALA:271, PHE:272, PHE:273, ALA:274, GLU:275, ARG:276, LYS:277, ALA:278, ASN:279, LYS:280, SER:642, GLU:644, ASP:647, PHE:665, LEU:709, LYS:710 | 1 | 1.84 |
P09110 | 1 | 9.48 | 3753 | Strong | ARG:50, ALA:51, GLY:52, ASN:90, VAL:91, LEU:92, GLN:93, PRO:94, GLY:95, ASN:120, ARG:121, GLN:122, CYS:123, SER:124, SER:125, GLU:151, SER:152, MET:153, SER:154, LEU:155, ALA:156, ASP:157, ARG:158, GLY:159, ASN:163, ILE:164, THR:165, SER:166, LEU:168, ASP:176, CYS:177, LEU:178, ILE:179, PRO:180, MET:181, GLY:182, ILE:183, THR:184, ALA:263, PHE:264, THR:270, THR:271, ALA:272, GLY:273, SER:275, SER:276, GLN:277, VAL:278, SER:279, ASP:280, PRO:313, PRO:314, ASP:315, ILE:316, MET:317, ASN:345, GLU:346, ALA:347, PHE:348, VAL:373, HIS:377, PRO:378, LEU:379, CYS:408, ILE:409, GLY:410, THR:411, GLY:412, MET:413 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angarita-Rodríguez, A.; Matiz-González, J.M.; Pinzón, A.; Aristizabal, A.F.; Ramírez, D.; Barreto, G.E.; González, J. Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases. Pharmaceuticals 2024, 17, 648. https://doi.org/10.3390/ph17050648
Angarita-Rodríguez A, Matiz-González JM, Pinzón A, Aristizabal AF, Ramírez D, Barreto GE, González J. Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases. Pharmaceuticals. 2024; 17(5):648. https://doi.org/10.3390/ph17050648
Chicago/Turabian StyleAngarita-Rodríguez, Andrea, J. Manuel Matiz-González, Andrés Pinzón, Andrés Felipe Aristizabal, David Ramírez, George E. Barreto, and Janneth González. 2024. "Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases" Pharmaceuticals 17, no. 5: 648. https://doi.org/10.3390/ph17050648
APA StyleAngarita-Rodríguez, A., Matiz-González, J. M., Pinzón, A., Aristizabal, A. F., Ramírez, D., Barreto, G. E., & González, J. (2024). Enzymatic Metabolic Switches of Astrocyte Response to Lipotoxicity as Potential Therapeutic Targets for Nervous System Diseases. Pharmaceuticals, 17(5), 648. https://doi.org/10.3390/ph17050648