Ingestion of Fluids of the Ocular Surface Containing Eye Drops of Imidazole Derivatives—Alpha Adrenergic Receptor Agonists as Paragons
Abstract
:1. Introduction
2. Eye Drops as Fluids of the Ocular Surface
- The palpebral fissure is layered with an ever-present lipid sealant, which isolates a much-aqueous pool (MAP) from the atmosphere, preventing its evaporation mitigation. The rate of tear secretion is controlled by parasympathetic and sympathetic innervation [12].
3. Eye Drops—Illicit Use and Abuse
Poisoning by Ingestion of Eye Drops
4. Results
4.1. Study Characteristics
4.2. Risk of Bias
5. Discussion
5.1. Case Reports of Misuse
5.2. Case Reports of Abuse
5.3. Limitations
6. Materials and Methods
6.1. Inclusion Criteria
- Articles indexed in PubMed, Web of Science—core collection, Scopus, and EBSCOhost.
- Articles published since the inception of the respective database until 7 May 2024.
- The papers must leverage technologies like artificial intelligence (AI) and machine learning (ML) and must focus on ingested lacrimal liquid.
- The studies must be related to drugs for ocular use or for use in the form of eye drops.
- The articles must be accessible as full texts.
- Inclusion in the meta-analysis required studies to be related to eye drops.
6.2. Exclusion Criteria
- Articles containing partial texts and articles available in languages other than English.
- Secondary (desk) research.
- Articles that do not focus on tetrahydrozoline or alpha-adrenergic receptor agonists.
6.3. Literature Review and Data Extraction
7. Conclusions
8. Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bousquet, P.; Hudson, A.; Garcia-Sevilla, J.A.; Li, J.X. Imidazoline Receptor System: The Past, the Present, and the Future. Pharmacol. Rev. 2020, 72, 50–79. [Google Scholar] [CrossRef] [PubMed]
- Gujjarappa, R.; Kabi, A.K.; Sravani, S.; Garg, A.; Vodnala, N.; Tyagi, U.; Kaldhi, D.; Velayutham, R.; Singh, V.; Gupta, S.; et al. Overview on Biological Activities of Imidazole Derivatives. In Nanostructured Biomaterials; Swain, B.P., Ed.; Materials Horizons: From Nature to Nanomaterials; Springer: Singapore, 2022; pp. 135–227. [Google Scholar]
- Lowry, J.A.; Brown, J.T. Significance of the imidazoline receptors in toxicology. Clin. Toxicol. 2014, 52, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Nappe, T.M. Alpha Receptor Agonist Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Manzon, L.; Nappe, T.M.; DelMaestro, C.; Maguire, N.J. Clonidine toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2017. [Google Scholar]
- Hosten, L.O.; Snyder, C. Over-the-Counter Ocular Decongestants in the United States—Mechanisms of Action and Clinical Utility for Management of Ocular Redness. Clin. Optom. 2020, 12, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Frigo, P.; Czejka, M. Systemic side effects of eye drops: A pharmacokinetic perspective. Clin. Ophthalmol. 2016, 10, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Mandelbaum, D.E. Attention Deficit–Hyperactivity Disorder. In Swaiman’s Pediatric Neurology; Swaiman, K.F., Ashwal, S., Ferriero, D.M., Schor, N.F., Finkel, R.S., Gropman, A.L., Pearl, P.L., Shevell, M.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 447–458. [Google Scholar]
- Eadie, R.; McKenzie, C.A.; Hadfield, D.; Kalk, N.J.; Bolesta, S.; Dempster, M.; McAuley, D.F.; Blackwood, B.; on behalf of UK ALERT-ICU study investigators. Opioid, sedative, preadmission medication and iatrogenic withdrawal risk in UK adult critically ill patients: A point prevalence study. Int. J. Clin. Pharm. 2023, 45, 1167–1175. [Google Scholar] [CrossRef] [PubMed]
- Hermenau, M.; Stamper, B.; Leung, K.; Pomm, R.; Guerrier, C.; Cammilleri, J.; Johnson, B. A Retrospective Comparison of the Effectiveness of Buprenorphine Versus Baclofen for Acute Opioid Withdrawal. HCA Healthc. J. Med. 2023, 4, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Cher, I. Fluids of the ocular surface: Concepts, functions and physics. Clin. Exp. Ophthalmol. 2012, 40, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Masoudi, S. Biochemistry of human tear film: A review. Exp. Eye Res. 2022, 220, 109101. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Amin, M.M.; Sayed, S. Ocular Drug Delivery: A Comprehensive Review. AAPS PharmSciTech 2023, 24, 66. [Google Scholar] [CrossRef]
- Gugleva, V.; Andonova, V. Recent Progress of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Ocular Drug Delivery Platforms. Pharmaceuticals 2023, 16, 474. [Google Scholar] [CrossRef]
- Wang, J.J.; Liu, X.X.; Zhu, C.C.; Wang, T.Z.; Wang, S.Y.; Liu, Y.; Pan, X.Y.; Liu, M.H.; Chen, D.; Li, L.L.; et al. Improving ocular bioavailability of hydrophilic drugs through dynamic covalent complexation. J. Control Release 2023, 355, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Aschenbrenner, D.S. Preventing Wrong Route Errors: Eye and Ear Drops. AJN Am. J. Nurs. 2024, 124, 20. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.; Jensen, B.P.; Bachmann, L.M.; Wong, D.; Wells, A.P. New technique to reduce systemic side effects of timolol eye drops: The tissue press method-Cross-over clinical trial. Clin. Exp. Ophthalmol. 2020, 48, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, P.; Rupenthal, I.D. Non-aqueous formulations in topical ocular drug delivery—A paradigm shift? Adv. Drug Deliv. Rev. 2023, 198, 114867. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Su, Y.J.; Wu, J.; Wang, H.D. Recent advances in ocular lubrication. Friction 2024, 1–26. [Google Scholar] [CrossRef]
- Ramsay, E.; Del Amo, E.M.; Toropainen, E.; Tengvall-Unadike, U.; Ranta, V.P.; Urtti, A.; Ruponen, M. Corneal and conjunctival drug permeability: Systematic comparison and pharmacokinetic impact in the eye. Eur. J. Pharm. Sci. 2018, 119, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Ávila Reyes, D.; García Pasichana, B.D.; Galvis Mejía, J.C.; Gómez González, J.F.; Villadiego, M.; Aguirre Flórez, M.; González Cuellar, J.A. Toxicological diagnosis in the critical patient: The challenge. Rev. Médica Risaralda 2021, 27, 126–144. [Google Scholar] [CrossRef]
- Giovannitti, J.A., Jr.; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth. Prog. 2015, 62, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Lanier, O.L.; Manfre, M.G.; Bailey, C.; Liu, Z.; Sparks, Z.; Kulkarni, S.; Chauhan, A. Review of Approaches for Increasing Ophthalmic Bioavailability for Eye Drop Formulations. AAPS PharmSciTech 2021, 22, 107. [Google Scholar] [CrossRef]
- Law, S.K.; Lee, D.A. Ocular pharmacology. In Glaucoma Medical Therapy-Principles and Managemen, 3rd ed.; Kugler Publications: Amsterdam, The Netherlands, 2020; Volume 2. [Google Scholar]
- Teli, P.; Sahiba, N.; Sethiya, A.; Soni, J.; Agarwal, S. Imidazole derivatives: Impact and prospects in antiviral drug discovery. Imidazole-Based Drug Discov. 2022, 167. [Google Scholar]
- Rakhshan, A.; Rahmati Kamel, B.; Saffaei, A.; Tavakoli-Ardakani, M. Hepatotoxicity Induced by Azole Antifungal Agents: A Review Study. Iran. J. Pharm. Res. 2023, 22, e130336. [Google Scholar] [CrossRef]
- Adeyemi, O.S.; Molefe-Nyembe, N.I.; Eseola, A.O.; Plass, W.; Shittu, O.K.; Yunusa, I.O.; Atolani, O.; Evbuomwan, I.O.; Awakan, O.J.; Suganuma, K.; et al. New Series of Imidazoles Showed Promising Growth Inhibitory and Curative Potential Against Trypanosoma Infection. Yale J. Biol. Med. 2021, 94, 199–207. [Google Scholar] [PubMed]
- Vaajanen, A.; Vapaatalo, H. A Single Drop in the Eye—Effects on the Whole Body? Open Ophthalmol. J. 2017, 11, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.H.; Yue, Z.S.; Zhang, G.H.; Wang, L.; Dou, G.R. Beyond the Liver: Liver-Eye Communication in Clinical and Experimental Aspects. Front. Mol. Biosci. 2021, 8, 823277. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Duan, C.; Yang, Y.; Wang, Z.; Tan, C.; Han, C.; Hou, X. Insights into the liver-eyes connections, from epidemiological, mechanical studies to clinical translation. J. Transl. Med. 2023, 21, 712. [Google Scholar] [CrossRef] [PubMed]
- Herman, T.F.; Santos, C. First-Pass Effect. In StatPearls; StatPearls Publishing LLC: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rehbinder, D.; Deckers, W. [Studies on the pharmacokinetics and on the metabolism of 2(2,6-dichlorphenylamino)-2-imidazoline-hydrochloride (St 155)]. Arzneim. -Forsch. 1969, 19, 169–176. [Google Scholar] [PubMed]
- Luo, W.; Pan, J.; Chen, B.; Ma, M. Rapid Determination of Clonidine in Pharmaceutical Preparations by Paper Spray Tandem Mass Spectrometry (PS-MS/MS). Anal. Lett. 2022, 56, 2215–2225. [Google Scholar] [CrossRef]
- Peat, J.; Garg, U. Determination of tetrahydrozoline in urine and blood using gas chromatography-mass spectrometry (GC-MS). Methods Mol. Biol. 2010, 603, 501–508. [Google Scholar] [CrossRef]
- Menshawey, E.; Menshawey, R. More than meets the eye: A scoping review on the non-medical uses of THZ eye drops. Forensic Sci. Med. Pathol. 2023, 1–10. [Google Scholar] [CrossRef]
- Gussow, L. Toxicology Rounds: Unexplained Bradycardia? Consider Imidazolines. Emerg. Med. News 2020, 42, 8. [Google Scholar] [CrossRef]
- Johnson, M.L.; Visser, E.J.; Goucke, C.R. Massive Clonidine Overdose During Refill of an Implanted Drug Delivery Device for Intrathecal Analgesia: A Review of Inadvertent Soft-Tissue Injection During Implantable Drug Delivery Device Refills and Its Management. Pain Med. 2011, 12, 1032–1040. [Google Scholar] [CrossRef]
- Manzon, L.; Nappe, T.M.; DelMaestro, C.; Maguire, N.J. Clonidine Toxicity. 2023 June 26. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Tobias, J.D. Central nervous system depression following accidental ingestion of Visine eye drops. Clin. Pediatr. 1996, 35, 539–540. [Google Scholar] [CrossRef] [PubMed]
- LiverTox, L. Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda. MD: National Institute of Diabetes and Digestive and Kidney Diseases 2012. Available online: https://pubmed.ncbi.nlm.nih.gov/31643176/ (accessed on 5 June 2024).
- Kartasheva-Ebertz, D.; Gaston, J.; Lair-Mehiri, L.; Massault, P.P.; Scatton, O.; Vaillant, J.C.; Morozov, V.A.; Pol, S.; Lagaye, S. Adult human liver slice cultures: Modelling of liver fibrosis and evaluation of new anti-fibrotic drugs. World J. Hepatol. 2021, 13, 187–217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Xu, D.; Bai, L.; Zhou, Y.M.; Zhang, H.; Cui, Y.L. A Review of Non-Invasive Drug Delivery through Respiratory Routes. Pharmaceutics 2022, 14, 1974. [Google Scholar] [CrossRef] [PubMed]
- Abstracts of the 2010 International Congress of the European Association of Poisons Centres and Clinical Toxicologists, 11–14 May 2010, Bordeaux, France. Clin. Toxicol. 2010, 48, 240–318. [CrossRef]
- Cibickova, L.; Caran, T.; Dobias, M.; Ondra, P.; Vorisek, V.; Cibicek, N. Multi-drug intoxication fatality involving atorvastatin: A case report. Forensic Sci. Int. 2015, 257, e26–e31. [Google Scholar] [CrossRef] [PubMed]
- Tenenbein, M. The One Pill Can Kill Myth. Pediatr. Emerg. Care 2023. [Google Scholar] [CrossRef] [PubMed]
- Broderick-Cantwell, J.J. Case study: Accidental clonidine patch overdose in attention-deficit/hyperactivity disorder patients. J. Am. Acad. Child. Adolesc. Psychiatry 1999, 38, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, J.; Patel, A.; Chitithoti, J.; Venter, F.; Win, T.; Joolhar, F. Clonidine Overdose as an Unusual Cause of Heart Failure. J. Investig. Med. High Impact Case Rep. 2022, 10, 23247096221106856. [Google Scholar] [CrossRef] [PubMed]
- Killian, C.A.; Roberge, R.J.; Krenzelok, E.P.; Stonage, C.L. “Cloniderm” toxicity: Another manifestation of clonidine overdose. Pediatr. Emerg. Care 1997, 13, 340–341. [Google Scholar] [CrossRef]
- van Groen, B.D.; Krekels, E.H.J.; Mooij, M.G.; van Duijn, E.; Vaes, W.H.J.; Windhorst, A.D.; van Rosmalen, J.; Hartman, S.J.F.; Hendrikse, N.H.; Koch, B.C.P.; et al. The Oral Bioavailability and Metabolism of Midazolam in Stable Critically Ill Children: A Pharmacokinetic Microtracing Study. Clin. Pharmacol. Ther. 2021, 109, 140–149. [Google Scholar] [CrossRef]
- Sharma, H.P.; Vijayakumar, A.R.; Velpandian, T. Systemic Toxicity of Drugs Applied to the Eye. In Pharmacology of Ocular Therapeutics; Velpandian, T., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 375–384. [Google Scholar]
- Commission., Consumer Product Safety. Products Containing Imidazolines Equivalent to 0.08 Milligrams or More. The Federal Register, 2012. [Google Scholar]
- Afify, O.; Suleiman, A.M.; Mohamed, H.G.; Saaed, O. Complete atrioventricular block due to ingestion of Visine eye drops. BMJ Case Rep. 2021, 14, e241905. [Google Scholar] [CrossRef] [PubMed]
- Kacinko, S.; Lamb, M. Tetrahydrozoline: Death by Eyedrops. Toxicol. Anal. Clin. 2022, 34, S63–S64. [Google Scholar] [CrossRef]
- Amna, S.; Ohlenschlaeger, T.; Saedder, E.A.; Sigaard, J.V.; Bergmann, T.K. Review of clinical pharmacokinetics and pharmacodynamics of clonidine as an adjunct to opioids in palliative care. Basic. Clin. Pharmacol. Toxicol. 2024, 134, 485–497. [Google Scholar] [CrossRef] [PubMed]
- McCord, E.; Van Hale, C.; Tang, Y.-L. Medical treatments for opioid use disorder. In Substance Use and Addiction Research; Kaye, A.D., Urman, R.D., Cornett, E.M., Edinoff, A.N., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 349–367. [Google Scholar]
- Rangan, C.; Everson, G.; Cantrell, F.L. Central alpha-2 adrenergic eye drops: Case series of 3 pediatric systemic poisonings. Pediatr. Emerg. Care 2008, 24, 167–169. [Google Scholar] [CrossRef] [PubMed]
- Gunes, A.; Balik, H.; Yel, S.; Kocamaz, H.; Bosnak, M. Respiratuvar depression after accidental nasal ingestion of brimonidine eye drops in infant. Turk. J. Emerg. Med. 2016, 16, 169–170. [Google Scholar] [CrossRef] [PubMed]
- Sihota, R.; Rajashekhar, Y.L.; Venkatesh, P.; Agarwal, H. A prospective, long-term, randomized study of the efficacy and safety of the drug combination pilocarpine 1% with clonidine 0.06% or clonidine 0.125% versus timolol 0.25%. J. Ocul. Pharmacol. Ther. 2002, 18, 499–506. [Google Scholar] [CrossRef]
- Lai Becker, M.; Huntington, N.; Woolf, A.D. Brimonidine tartrate poisoning in children: Frequency, trends, and use of naloxone as an antidote. Pediatrics 2009, 123, e305–e311. [Google Scholar] [CrossRef]
- Pearson, S.D.; Ash, K.O.; Urry, F.M. Mechanism of false-negative urine cannabinoid immunoassay screens by Visine eyedrops. Clin. Chem. 1989, 35, 636–638. [Google Scholar] [CrossRef]
- Mikkelsen, S.L.; Ash, K.O. Adulterants causing false negatives in illicit drug testing. Clin. Chem. 1988, 34, 2333–2336. [Google Scholar] [CrossRef]
- Hughes, A.R.; Grusing, S.; Lin, A.; Hendrickson, R.G.; Sheridan, D.C.; Marshall, R.; Zane Horowitz, B. Trends in intentional abuse and misuse ingestions in school-aged children and adolescents reported to US poison centers from 2000–2020. Clin. Toxicol. 2023, 61, 64–71. [Google Scholar] [CrossRef]
- Al-Abri, S.A.; Yang, H.S.; Olson, K.R. Unintentional pediatric ophthalmic tetrahydrozoline ingestion: Case files of the medical toxicology fellowship at the University of California, San Francisco. J. Med. Toxicol. 2014, 10, 388–391. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, Z.; Zakariaei, Z.; Ghazaeian, M.; Jafari, R.; Ezoddin, N.; Yousefi Nouraee, H.; Navaeifar, M.R. Adverse effects of brimonidine eye drop in children: A case series. J. Clin. Pharm. Ther. 2021, 46, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Lusthof, K.J.; Lameijer, W.; Zweipfenning, P.G. Use of clonidine for chemical submission. J. Toxicol. Clin. Toxicol. 2000, 38, 329–332. [Google Scholar] [CrossRef] [PubMed]
- Stillwell, M.E.; Saady, J.J. Use of tetrahydrozoline for chemical submission. Forensic Sci. Int. 2012, 221, e12–e16. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.A.C.; Ccoscco, C.A.C.; Alcántara, K.J.G.; Ramos, V.T.; Pérez, V.C. Chemical submission in cases of alleged crimes against sexual freedom 2016–2018, Lima, Peru. Span. J. Leg. Med. 2022, 48, 10–16. [Google Scholar] [CrossRef]
- Edwards, C.N.; Tilley, D.S.; Ayala, F. Drug-Facilitated Sexual Assault With Tetrahydrozoline (Visine): A Case Report. J. Forensic Nurs. 2023, 19, 271–275. [Google Scholar] [CrossRef] [PubMed]
- News, A. Wisconsin Woman Arrested, Accused of Murdering Friend with Eye Drops. Available online: https://abcnews.go.com/amp/US/wisconsin-woman-arrested-accused-murdering-friend-eye-drops/story?id=78148517 (accessed on 13 May 2024).
- Gitter, M.F.; Cox, R. Clonidine toxicity in an adolescent patient. J. Miss. State Med. Assoc. 2000, 41, 757–759. [Google Scholar]
- Kumar, N.; Goel, N. Recent development of imidazole derivatives as potential anticancer agents. Phys. Sci. Rev. 2023, 8, 2903–2941. [Google Scholar] [CrossRef]
- Information., National Center for Biotechnology Information. PubChem Compound Summary for CID 5419, Tetrahydrozoline. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tetrahydrozoline (accessed on 18 April 2024).
- Information., National Center for Biotechnology Information. PubChem Compound Summary for CID 2803, Clonidine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Clonidine (accessed on 19 April 2024).
- Hasson, H. Generalized Onset Tonic-Clonic Seizures. Available online: https://www.medlink.com/articles/generalized-onset-tonic-clonic-seizures (accessed on 13 May 2024).
- Bersani, F.S.; Corazza, O.; Simonato, P.; Mylokosta, A.; Levari, E.; Lovaste, R.; Schifano, F. Drops of madness? Recreational misuse of tropicamide collyrium; early warning alerts from Russia and Italy. Gen. Hosp. Psychiatry 2013, 35, 571–573. [Google Scholar] [CrossRef]
- Bellman, V.; Ukolova, A.; Erovichenkova, E.; Lam, S.; Srivastava, H.K.; Bruce, J.; Burgess, D.M. Abuse of tropicamide eye drops: Review of clinical data. Braz. J. Psychiatry 2022, 44, 522–531. [Google Scholar] [CrossRef]
- Bhatia, A.; Mohan, S.; Reddy, S. Falling prey to superglue ocular injuries: A case series. Kerala J. Ophthalmol. 2022, 34, 149–153. [Google Scholar]
- Cole, J. Off-label: Technically unproven, but not out of bounds: Optometrists routinely prescribe myriad drugs off-label--just be sure you are following the proper standard of care. Rev. Optom. 2010, 147, 73–79. [Google Scholar]
- Petkova, V.; Georgieva, D.; Dimitrov, M.; Nikolova, I. Off-Label Prescribing in Pediatric Population—Literature Review for 2012–2022. Pharmaceutics 2023, 15, 2652. [Google Scholar] [CrossRef] [PubMed]
- Vosgerau, J.; Simonsohn, U.; Nelson, L.D.; Simmons, J.P. 99% impossible: A valid, or falsifiable, internal meta-analysis. J. Exp. Psychol. Gen. 2019, 148, 1628–1639. [Google Scholar] [CrossRef]
- Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a Promising Medicinal Scaffold: Current Status and Future Direction. Drug Des. Devel Ther. 2021, 15, 3289–3312. [Google Scholar] [CrossRef]
Toxicity Signs and Symptoms | Sihota et al. [58] | Lai Becker et al. [59] |
---|---|---|
local symptoms | 10% | |
symptoms of systemic toxicity | 0% | 58% |
unrelated to exposure | 3.4% | |
drowsiness | 41% | |
ataxia | 4.5% | |
irritability | 4% | |
bradycardia | 4% | |
hypotension | 4% |
Included Study | Population and Methodology | Agent | Interventions | Outcomes | |
---|---|---|---|---|---|
Sihota et al. [58] | n = 60; miscellanies | prospective, randomized study | drug combination pilocarpine 1% with clonidine 0.06% or clonidine 0.125% versus timolol 0.25% | efficacy and safety of the drug combination | Signs and symptoms of the depression of central nervous system |
Lai Becker et al. [59] | n = 753; pediatric (185 ≤5 years) | case series + FDA database | brimonidine | brimonidine tartrate poisoning in children | drowsiness, ataxia, pallor, irritability, hypotension, bradycardia, miosis, and respiratory depression. |
Search Term #1 | Operator | Search Term #2 |
---|---|---|
Tetrahydrozoline | AND | homicide |
Tetrahydrozoline | AND | suicide |
Tetrahydrozoline | AND | Accidental poisoning |
Tetrahydrozoline | AND | accident |
Tetrahydrozoline | AND | autopsy |
Clonidine | AND | homicide |
Clonidine | AND | suicide |
Clonidine | AND | Accidental poisoning |
Clonidine | AND | accident |
Clonidine | AND | autopsy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šoša, I. Ingestion of Fluids of the Ocular Surface Containing Eye Drops of Imidazole Derivatives—Alpha Adrenergic Receptor Agonists as Paragons. Pharmaceuticals 2024, 17, 758. https://doi.org/10.3390/ph17060758
Šoša I. Ingestion of Fluids of the Ocular Surface Containing Eye Drops of Imidazole Derivatives—Alpha Adrenergic Receptor Agonists as Paragons. Pharmaceuticals. 2024; 17(6):758. https://doi.org/10.3390/ph17060758
Chicago/Turabian StyleŠoša, Ivan. 2024. "Ingestion of Fluids of the Ocular Surface Containing Eye Drops of Imidazole Derivatives—Alpha Adrenergic Receptor Agonists as Paragons" Pharmaceuticals 17, no. 6: 758. https://doi.org/10.3390/ph17060758
APA StyleŠoša, I. (2024). Ingestion of Fluids of the Ocular Surface Containing Eye Drops of Imidazole Derivatives—Alpha Adrenergic Receptor Agonists as Paragons. Pharmaceuticals, 17(6), 758. https://doi.org/10.3390/ph17060758