In Vitro and Randomized Controlled Clinical Study of Natural Constituents’ Anti-HPV Potential for Treatment of Plantar Warts Supported with In Silico Studies and Network Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC-MS Assisted Dereplication of the Chemical Constituents in Nigella sativa Seed, Musca accuminata Peels and Moringa olifera Seed Extracts
2.2. Network Pharmacology and Gene Ontology Analysis
2.2.1. Plant–Compounds Networks
2.2.2. Compounds–Targets Networks
2.2.3. Plant–Compounds–Genes Networks
2.2.4. Gene–HPV Infection Association
2.3. Gene Enrichment Analysis
Molecular Docking
2.4. Pharmacokinetic Properties
3. Material and Methods
3.1. Preparation of PFFs
3.2. Evaluation of the PFFs
3.3. Polymers’ Compatibility and Safety
Scanning Electron Microscopy (SEM)
3.4. Patients and Method
Plant Collections
3.5. Metabolomic Analysis
3.6. Network Pharmacology and Gene Ontology Analysis
3.6.1. Plant–Compounds Networks
3.6.2. Compounds–Targets Network
3.6.3. Merged Networks
3.6.4. Genes–HPV Infection Association Network
3.6.5. Complete Pharmacology Network
3.7. Gene Ontology and Enrichment Analysis
3.8. Molecular Docking
3.8.1. CA-2
3.8.2. EGFR
3.9. Pharmacokinetic Properties and Drug Likeness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
References
- Lin, L.-T.; Hsu, W.-C.; Lin, C.-C. Antiviral natural products and herbal medicines. J. Tradit. Complement. Med. 2014, 4, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Witchey, D.J.; Witchey, N.B.; Roth-Kauffman, M.M.; Kauffman, M.K. Plantar warts: Epidemiology, pathophysiology, and clinical management. J. Osteopath. Med. 2018, 118, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Quint, W.; Banks, L.; Bravo, I.G.; Stoler, M.; Broker, T.R.; Stanley, M.A. The biology and life-cycle of human papillomaviruses. Vaccine 2012, 30, F55–F70. [Google Scholar] [CrossRef] [PubMed]
- Kamolratanakul, S.; Pitisuttithum, P. Human Papillomavirus Vaccine Efficacy and Effectiveness against Cancer. Vaccines 2021, 9, 1413. [Google Scholar] [CrossRef] [PubMed]
- de Planell-Mas, E.; Martínez-Garriga, B.; Zalacain, A.J.; Vinuesa, T.; Viñas, M. Human papillomaviruses genotyping in plantar warts. J. Med. Virol. 2017, 89, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Clebak, K.T.; Mendez-Miller, M.; Croad, J. Cutaneous cryosurgery for common skin conditions. Am. Fam. Physician 2020, 101, 399–406. [Google Scholar] [PubMed]
- Mercer, J.M.; Pushpanthan, C.; Anandakrishnan, C.; Landells, I.D. Familial pityriasis rubra pilaris: Case report and review. J. Cutan. Med. Surg. 2013, 17, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Stamuli, E.; Cockayne, S.; Hewitt, C.; Hicks, K.; Jayakody, S.; Kang’Ombe, A.R.; Turner, G.; Thomas, K.; Curran, M.; Hashmi, F.; et al. Cost-effectiveness of cryotherapy versus salicylic acid for the treatment of plantar warts: Economic evaluation alongside a randomised controlled trial (EVerT trial). J. Foot Ankle Res. 2012, 5, 4. [Google Scholar]
- Viennet, C.; Gheit, T.; Muret, P.; Aubin, F.; Cabou, J.; Marchal, A.; Tommasino, M.; Humbert, P.J.C.; Dermatology, E. Assessment of the efficacy of a new formulation for plantar wart mummification: New experimental design and human papillomavirus identification. Clin. Exp. Dermatol. 2013, 38, 85–88. [Google Scholar] [CrossRef]
- Dhama, K.; Karthik, K.; Khandia, R.; Munjal, A.; Tiwari, R.; Rana, R.; Khurana, S.K.; Ullah, S.; Khan, R.U.; Alagawany, M. Medicinal and therapeutic potential of herbs and plant metabolites/extracts countering viral pathogens-current knowledge and future prospects. Curr. Drug Metab. 2018, 19, 236–263. [Google Scholar] [CrossRef]
- Shady, N.H.; Soltane, R.; Maher, S.A.; Saber, E.A.; Elrehany, M.A.; Mostafa, Y.A.; Sayed, A.M.; Abdelmohsen, U.R. Wound Healing and Antioxidant Capabilities of Zizyphus mauritiana Fruits: In-Vitro, In-Vivo, and Molecular Modeling Study. Plants 2022, 11, 1392. [Google Scholar] [CrossRef] [PubMed]
- Musa, A.; Shady, N.H.; Ahmed, S.R.; Alnusaire, T.S.; Sayed, A.M.; Alowaiesh, B.F.; Sabouni, I.; Al-Sanea, M.M.; Mostafa, E.M.; Youssif, K.A.; et al. Antiulcer Potential of Olea europea L. cv. Arbequina Leaf Extract Supported by Metabolic Profiling and Molecular Docking. Antioxidants 2021, 10, 644. [Google Scholar] [CrossRef] [PubMed]
- Nile, S.H.; Kai, G. Recent clinical trials on natural products and traditional Chinese medicine combating the COVID-19. Indian J. Microbiol. 2021, 61, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, T.; Awan, S.J.; Malik, S.; Hadi, F.; Shehzadi, S.; Tariq, K. In-vitro anti-proliferative, apoptotic and antioxidative activities of medicinal herb Kalonji (Nigella sativa). Curr. Pharm. Biotechnol. 2019, 20, 1288–1308. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.T.; Khan, M.; Mishra, S.K. An updated literature-based review: Phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. Orient. Pharm. Exp. Med. 2019, 19, 115–129. [Google Scholar] [CrossRef]
- Hisham Shady, N.; Zhang, J.; Khalid Sobhy, S.; Hisham, M.; Glaeser, S.P.; Alsenani, F.; Kämpfer, P.; El-Katatny, M.H.; Abdelmohsen, U.R. Metabolomic profiling and cytotoxic potential of three endophytic fungi of the genera Aspergillus, Penicillium and Fusarium isolated from Nigella sativa seeds assisted with docking studies. Nat. Prod. Res. 2022, 37, 2905–2910. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.K.; Castro, A.H.F.; Jouneghani, R.S.; Leyssen, P.; Neyts, J.; Swennen, R.; Luyten, W. Antiviral and cytotoxic activity of different plant parts of banana (Musa spp.). Viruses 2020, 12, 549. [Google Scholar] [CrossRef] [PubMed]
- Mosa, Z.M.; Khalil, A.F. The effect of banana peels supplemented diet on acute liver failure rats. Ann. Agric. Sci. 2015, 60, 373–379. [Google Scholar] [CrossRef]
- Shady, N.H.; Mostafa, N.M.; Fayez, S.; Abdel-Rahman, I.M.; Maher, S.A.; Zayed, A.; Saber, E.A.; Khowdiary, M.M.; Elrehany, M.A.; Alzubaidi, M.A. Mechanistic Wound Healing and Antioxidant Potential of Moringa oleifera Seeds Extract Supported by Metabolic Profiling, In Silico Network Design, Molecular Docking, and In Vivo Studies. Antioxidants 2022, 11, 1743. [Google Scholar] [CrossRef]
- Biswas, D.; Nandy, S.; Mukherjee, A.; Pandey, D.; Dey, A. Moringa oleifera Lam. and derived phytochemicals as promising antiviral agents: A review. S. Afr. J. Bot. 2020, 129, 272–282. [Google Scholar] [CrossRef]
- Mohamad, S.A.; Badwi, A.M.; Elrehany, M.; Ali, S.; Helmy, A.M. Cholecalciferol-load films for the treatment of nasal burns caused by cauterization of the hypertrophied inferior turbinate: Formulation, in vivo study, and clinical assessment. Drug Deliv. Transl. Res. 2023, 13, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- Fetih, G.; Ibrahim, M.; Amin, M.A. Design and characterization of transdermal films containing ketorolac tromethamine. Int. J. PharmTech Res. 2011, 3, 449–458. [Google Scholar]
- Mohamad, S.A.; Salem, H.; Yassin, H.A.; Mansour, H.F. Bucco-adhesive film as a pediatric proper dosage form for systemic delivery of propranolol hydrochloride: In-vitro and in-vivo evaluation. Drug Des. Dev. Ther. 2020, 14, 4277–4289. [Google Scholar] [CrossRef] [PubMed]
- Shariatinia, Z.; Barzegari, A. Polysaccharide hydrogel films/membranes for transdermal delivery of therapeutics. In Polysaccharide Carriers for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 639–684. [Google Scholar]
- Laali, K.K.; Greves, W.J.; Correa-Smits, S.J.; Zwarycz, A.T.; Bunge, S.D.; Borosky, G.L.; Manna, A.; Paulus, A.; Chanan-Khan, A. Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: Synthesis, structural studies, Computational/Docking and in-vitro bioassay. J. Fluor. Chem. 2018, 206, 82–98. [Google Scholar] [CrossRef]
- Shady, N.H.; Altemani, A.H.; Altemani, F.H.; Maher, S.A.; Elrehany, M.A.; Saber, E.A.; Badawi, A.M.; El-Mordy, F.M.A.; Mohamed, N.M.; Abourehab, M.A.S. The Potential of Corchorus olitorius Seeds Buccal Films for Treatment of Recurrent Minor Aphthous Ulcerations in Human Volunteers. Molecules 2022, 27, 7020. [Google Scholar] [CrossRef] [PubMed]
- Vriend, H.J.; Nieuwkerk, P.T.; van der Sande, M.A. Impact of genital warts on emotional and sexual well-being differs by gender. Int. J. STD AIDS 2014, 25, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Zaman, K. Nigellimine: A new isoquinoline alkaloid from the seeds of Nigella sativa. J. Nat. Prod. 1992, 55, 676–678. [Google Scholar]
- Malik, S.; Ahmad, S.; Chaudhary, I.J.H. Nigellimine N-oxide-a new isoquinoline alkaloid from the seeds of Nigella sativa. Heterocycles 1985, 23, 953–955. [Google Scholar]
- Rajendran, J.; Pachaiappan, P.; Thangarasu, R. Citronellol, an acyclic monoterpene induces mitochondrial-mediated apoptosis through activation of proapoptotic factors in MCF-7 and MDA-MB-231 human mammary tumor cells. Nutr. Cancer 2021, 73, 1448–1458. [Google Scholar] [CrossRef]
- Liu, Y.-M.; Yang, J.-S.; Liu, Q.-H. A new alkaloid and its artificial derivative with an indazole ring from Nigella glandulifera. Chem. Pharm. Bull. 2004, 52, 454–455. [Google Scholar] [CrossRef]
- Liu, X.; Aisa, H.A.; Xin, X.J. A new fatty acid ester from Nigella sativa var. hispidula Boiss showing potent anti-protein tyrosine phosphatase 1B activity. Nat. Prod. Res. 2019, 33, 472–476. [Google Scholar] [CrossRef]
- Malik, S.; Cun-Heng, H.; Clardy, J. Isolation and structure determination of nigellicine, a novel alkaloid from the seeds of Nigella sativa. Tetrahedron Lett. 1985, 26, 2759–2762. [Google Scholar]
- Khairalla, M.E.K. Extraction, Constituent and Biological Activity of some Phytochemicals; Sudan University of Science and Technology: Khartoum, Sudan, 2020. [Google Scholar]
- Malik, S.; Hasan, S.S.; Choudhary, M.I.; Ni, C.-Z.; Clardy, J. Nigellidine—A new indazole alkaloid from the seeds of Nigella sativa. Tetrahedron Lett. 1995, 36, 1993–1996. [Google Scholar]
- Ali, Z.; Ferreira, D.; Carvalho, P.; Avery, M.A.; Khan, I.A. Nigellidine-4-O-sulfite, the first sulfated indazole-type alkaloid from the seeds of Nigella sativa. J. Nat. Prod. 2008, 71, 1111–1112. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Xu, F.; Ninomiya, K.; Matsuda, H.; Yoshikawa, M. Nigellamines A3, A4, A5, and C, new dolabellane-type diterpene alkaloids, with lipid metabolism-promoting activities from the Egyptian medicinal food black cumin. Chem. Pharm. Bull. 2004, 52, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Xu, F.; Kashima, Y.; Matsuda, H.; Ninomiya, K.; Yoshikawa, M. Novel Dolabellane-Type Diterpene Alkaloids with Lipid Metabolism Promoting Activities from the Seeds of Nigella sativa. Org. Lett. 2004, 6, 869–872. [Google Scholar] [CrossRef] [PubMed]
- Vilela, C.; Santos, S.A.; Villaverde, J.J.; Oliveira, L.; Nunes, A.; Cordeiro, N.; Freire, C.S.; Silvestre, A.J. Lipophilic phytochemicals from banana fruits of several Musa species. Food Chem. 2014, 162, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.J.P. Neo-clerodane diterpenoids from Musa balbisiana seeds. Phytochemistry 1992, 31, 2173–2175. [Google Scholar] [CrossRef]
- Otálvaro, F.; Nanclares, J.; Vásquez, L.E.; Quinones, W.; Echeverri, F.; Arango, R.; Schneider, B. Phenalenone-type compounds from Musa acuminata var.“Yangambi km 5”(AAA) and their activity against Mycosphaerella fijiensis. J. Nat. Prod. 2007, 70, 887–890. [Google Scholar] [CrossRef]
- Abad, T.; McNaughton-Smith, G.; Fletcher, W.Q.; Echeverri, F.; Diaz-Peñate, R.; Tabraue, C.; Ruiz de Galarreta, C.M.; López-Blanco, F.; Luis, J.G. Isolation of (S)-(+)-naproxene from Musa acuminata. Inhibitory effect of naproxene and its 7-methoxy isomer on constitutive COX-1 and inducible COX-2. Planta Med. 2000, 66, 471–473. [Google Scholar] [CrossRef]
- Duque, L.; Restrepo, C.; Sáez, J.; Gil, J.; Schneider, B.; Otálvaro, F. Synthesis of musafluorone: A naphthoxanthenone isolated from Musa acuminata. Tetrahedron Lett. 2010, 51, 4640–4643. [Google Scholar] [CrossRef]
- Quiñones, W.; Escobar, G.; Echeverri, F.; Torres, F.; Rosero, Y.; Arango, V.; Cardona, G.; Gallego, A. Synthesis and Antifungal Activity of Musa Phytoalexins and Structural Analogs. Molecules 2000, 5, 974–980. [Google Scholar] [CrossRef]
- Yannai, S. Dictionary of Food Compounds with CD-ROM; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Jitsaeng, K.; Paetz, C.; Schneider, B. Phenylphenalenones from Musa cv. ‘Thepanom’ (BBB). Rec. Nat. Prod. 2010, 4, 26–30. [Google Scholar]
- Moser, S.; Müller, T.; Ebert, M.O.; Jockusch, S.; Turro, N.J.; Kräutler, B. Blue luminescence of ripening bananas. Angew. Chem. Int. Ed. 2008, 47, 8954–8957. [Google Scholar] [CrossRef] [PubMed]
- Koorbanally, N.; Mulholland, D.A.; Crouch, N. Alkaloids and triterpenoids from Ammocharis coranica (Amaryllidaceae). Phytochemistry 2000, 54, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Memon, G.M.; Memon, S.A.; Memon, A.R. Isolation and structure elucidation of moringyne—A new glycoside from seeds of Moringa oleifera Lam. Pak. J. Sci. Ind. Res. 1985, 28, 7. [Google Scholar]
- Govardhan Singh, R.S.; Negi, P.S.; Radha, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J. Funct. Foods 2013, 5, 1883–1891. [Google Scholar] [CrossRef]
- Singh, B.N.; Singh, B.R.; Singh, R.L.; Prakash, D.; Dhakarey, R.; Upadhyay, G.; Singh, H.B. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2009, 47, 1109–1116. [Google Scholar] [CrossRef]
- Zhu, Y.; Yin, Q.; Yang, Y. Comprehensive Investigation of Moringa oleifera from Different Regions by Simultaneous Determination of 11 Polyphenols Using UPLC-ESI-MS/MS. Molecules 2020, 25, 676. [Google Scholar] [CrossRef]
- Cirmi, S.; Ferlazzo, N.; Gugliandolo, A.; Musumeci, L.; Mazzon, E.; Bramanti, A.; Navarra, M. Moringin from Moringa oleifera Seeds Inhibits Growth, Arrests Cell-Cycle, and Induces Apoptosis of SH-SY5Y Human Neuroblastoma Cells through the Modulation of NF-κB and Apoptotic Related Factors. Int. J. Mol. Sci. 2019, 20, 1930. [Google Scholar] [CrossRef]
- Marzouk, M.M.; Al-Nowaihi, A.-S.M.; Kawashty, S.A.; Saleh, N.A.M. Chemosystematic studies on certain species of the family Brassicaceae (Cruciferae) in Egypt. Biochem. Syst. Ecol. 2010, 38, 680–685. [Google Scholar] [CrossRef]
- Jiang, M.-Y.; Lu, H.; Pu, X.-Y.; Li, Y.-H.; Tian, K.; Xiong, Y.; Wang, W.; Huang, X.-Z. Laxative Metabolites from the Leaves of Moringa oleifera. J. Agric. Food Chem. 2020, 68, 7850–7860. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Morrison, J.J.; Botting, N.P.; Thornalley, P.J. Analysis of glucosinolates, isothiocyanates, and amine degradation products in vegetable extracts and blood plasma by LC–MS/MS. Anal. Biochem. 2005, 347, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 2014, 3, 136–174. [Google Scholar] [CrossRef]
- Lu, C.H.; Liu, S.S.; Wang, J.Y.; Wang, M.Z.; Shen, Y.M. Characterization of Eight New Secondary Metabolites from the Mutant Strain G-444 of Tubercularia sp. TF5. Helv. Chim. Acta 2014, 97, 334–344. [Google Scholar] [CrossRef]
- Behnke, C.A.; Le Trong, I.; Godden, J.W.; Merritt, E.A.; Teller, D.C.; Bajorath, J.; Stenkamp, R.E. Atomic resolution studies of carbonic anhydrase II. Acta Crystallogr. Sect. D Struct. Biol. 2010, 66, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Stamos, J.; Sliwkowski, M.X.; Eigenbrot, C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002, 277, 46265–46272. [Google Scholar] [CrossRef] [PubMed]
- Chemical Computing Group Inc. Molecular Operating Environment (MOE); Chemical Computing Group Inc.: Montreal, QC, Canada, 2016. [Google Scholar]
- Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Carbonic anhydrase inhibitors and activators and their use in therapy. Expert Opin. Ther. Pat. 2006, 16, 1627–1664. [Google Scholar] [CrossRef]
- Guangzhi, Z.; Huoqiang, H.; Ninghua, T.; Changjiu, J.; Xulin, P. Carbonic anhydrase II: Structures, functions and inhibitors. Acta Bot. Yunnanica 2006, 28, 543–552. [Google Scholar]
- Chen, J.; Zeng, F.; Forrester, S.J.; Eguchi, S.; Zhang, M.-Z.; Harris, R.C. Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol. Rev. 2016, 96, 1025–1069. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2012, 64, 4–17. [Google Scholar] [CrossRef]
- Sakwanichol, J.; Sungthongjeen, S.; Puttipipatkhachorn, S. Preparation and characterization of chitosan aqueous dispersion as a pharmaceutical film forming material. J. Drug Deliv. Sci. Technol. 2019, 54, 101230. [Google Scholar] [CrossRef]
- Mohamad, S.A.; Sarhan, H.A.; Abdelkader, H.; Mansour, H.F. Vitamin B12–loaded buccoadhesive films as a noninvasive supplement in vitamin B12 deficiency: In vitro evaluation and in vivo comparative study with intramuscular injection. J. Pharm. Sci. 2017, 106, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Su, W.Y.; Yang, M.C. Evaluation of chitosan/PVA blended hydrogel membranes. J. Membr. Sci. 2004, 236, 39–51. [Google Scholar] [CrossRef]
- Chopra, H.; Bibi, S.; Kumar, S.; Khan, M.S.; Kumar, P.; Singh, I. Preparation and evaluation of chitosan/PVA based hydrogel films loaded with honey for wound healing application. Gels 2022, 8, 111. [Google Scholar] [CrossRef]
- Popescu, I.; Constantin, M.; Pelin, I.M.; Suflet, D.M.; Ichim, D.L.; Daraba, O.M.; Fundueanu, G. Eco-Friendly Synthesized PVA/Chitosan/Oxalic Acid Nanocomposite Hydrogels Embedding Silver Nanoparticles as Antibacterial Materials. Gels 2022, 8, 268. [Google Scholar] [CrossRef]
- Khodja, A.N.; Mahlous, M.; Tahtat, D.; Benamer, S.; Youcef, S.L.; Chader, H.; Mouhoub, L.; Sedgelmaci, M.; Ammi, N.; Mansouri, M.B.; et al. Evaluation of healing activity of PVA/chitosan hydrogels on deep second degree burn: Pharmacological and toxicological tests. Burns 2013, 39, 98–104. [Google Scholar] [CrossRef]
- El Sayed, M.H.; Sayed, F.S.; Afify, A.A. Intralesional zinc sulfate 2% vs intralesional vitamin D in plantar warts: A clinicodermoscopic study. Dermatol. Ther. 2020, 33, e13308. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Al-Sanea, M.M.; Mostafa, E.M.; Qasim, S.; Abelyan, N.; Mokhtar, F.A. A Network Pharmacology Analysis of Cytotoxic Triterpenes Isolated from Euphorbia abyssinica Latex Supported by Drug-likeness and ADMET Studies. ACS Omega 2022, 7, 17713–17722. [Google Scholar] [CrossRef]
- Abou-Taleb, H.A.; Sayed, A.M.; Refaat, H.; Alsenani, F.; Alaaeldin, E.; Mokhtar, F.A.; Abdelmohsen, U.R.; Shady, N.H. Network Pharmacological Analysis of the Red Sea Sponge Hyrtios erectus Extract to Reveal Anticancer Efficacy of Corresponding Loaded Niosomes. Mar. Drugs 2022, 20, 628. [Google Scholar] [CrossRef]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Lopes, C.T.; Huck, G.; Dong, Y.; Sumer, O.; Bader, G.D. Cytoscape. js: A graph theory library for visualisation and analysis. Bioinformatics 2016, 32, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Tsuda, M.; Watanabe, D.; Kobayashi, J.I. A new manzamine congener from marine sponge Amphimedon sp. Heterocycles 1999, 50, 485–488. [Google Scholar]
NO. | Network Name | Source Node/s | No. of Source Node/s | Target Node/s | No. of Target Node/s | Total No. of Nodes | No. of Edges | Characteristic Path Length | Network Centralization | Figure No. |
---|---|---|---|---|---|---|---|---|---|---|
1 | Musca accuminata–compounds | Musca accuminata | 1 | Cpds. | 15 | 16 | 15 | 1.875 | 1.0 | Figure S1 |
2 | Musca accuminata–compounds–genes | Musca accuminata compounds | 15 | Targets | 412 | 427 | 645 | 3.507 | 0.231 | Figure S4 |
3 | Musca accuminata–compounds–genes | A merged network composed of networks (Figures S1 and S4) | 428 | 652 | 3.394 | 0.230 | Figure 6 | |||
4 | Moringa olifera–compounds | Moringa olifera | 1 | cpds | 18 | 19 | 18 | 1.875 | 1.0 | Figure S2 |
5 | Moringa olifera–compounds–genes | Moringa olifera compounds | 18 | Targets | 329 | 330 | 658 | 3.380 | 0.283 | Figure S5 |
6 | Moringa olifera—compounds–genes | A merged network composed of networks (Figures S2 and S5) | 348 | 673 | 3.316 | 0.287 | Figure 7 | |||
7 | Nigella sativa–compounds | Nigella sativa | 1 | cpds | 15 | 16 | 15 | 1.875 | 1.0 | Figure S3 |
8 | Nigella sativa–compounds–genes | Nigella sativa compounds | 15 | Targets | 322 | 347 | 658 | 3.380 | 0.283 | Figure S6 |
9 | Nigella sativa–compounds–genes | A merged network composed of networks (Figures S3 and S6) | 348 | 673 | 3.316 | 0.282 | Figure 8 |
No | Compound | Structure | Binding Scores (kcal/mol−1) | Ligand Atom | CA2 Residue | Interaction | Bond Length (A0) |
---|---|---|---|---|---|---|---|
1 | Nigellidine 1-O-Sulfate | −19.82 | Sulfate O | HIS96 | HB | 2.85 | |
Sulfate O | THR199 | HB | 2.45 | ||||
Sulfate O | THR199 | HB | 3.02 | ||||
Sulfate O | THR199 | HB | 2.73 | ||||
Zn | HIS94 | Ionic | 1.97 | ||||
Zn | HIS96 | Ionic | 2.02 | ||||
Zn | HIS119 | Ionic | 2.01 | ||||
Sulfate O | Zn | Ionic | 2.09 | ||||
Sulfate O | Zn | Ionic | 2.27 | ||||
2 | Salfredin B11 | −9.86 | Hydroxyl O | THR200 | HBD | 2.63 | |
Hydroxyl O | THR200 | HBA | 2.53 | ||||
Zn | HIS94 | Ionic | 1.97 | ||||
Zn | HIS96 | Ionic | 2.02 | ||||
Zn | HIS119 | Ionic | 2.01 | ||||
Carbonyl O | HIS119 | Ionic | 2.07 | ||||
3 | Ferulic acid | −15.59 | Phenolic (OH) COOH (OH) Phenolic OH Methoxy O Methoxy O COOH, OH COOH, CO Zn Zn Zn COOH, OH Benzene ring | ASN67 THR199 ASN62 ASN62 ASN67 THR199 THR199 HIS94 HIS96 HIS119 Zn HIS94 | HB HB HB HB HB HB HB Ionic Ionic Ionic Ionic Arene–Arene | 1.47 2.51 3.13 2.55 2.81 2.47 2.51 1.97 2.02 2.01 2.06 - | |
4 | Kaempferol | −15.50 | 2-HO.Ph (OH) 3-HO.Chrom (OH) 2-HO.Ph (OH) Carbonyl O 3-HO.Chrom (OH) Zn Zn Zn 3-HO.Chrom, OH Benzene ring | ASN67 THR199 ASN62 THR199 THR199 HIS94 HIS96 HIS119 Zn HIS94 | HB HB HB HB HB Ionic Ionic Ionic Ionic Arene–Arene | 1.45 2.56 2.66 2.53 2.56 1.97 2.02 2.01 2.09 - | |
5 | Quercetin | −14.28 | 2-HO.Ph (OH) | ASN62 | HB | 2.60 | |
2-HO.Ph (OH) | ASN62 | HB | 2.71 | ||||
Zn | HIS94 | Ionic | 1.97 | ||||
Zn | HIS96 | Ionic | 2.02 | ||||
Zn | HIS119 | Ionic | 2.01 | ||||
3-HO.Chrom (OH) | Zn | Ionic | 2.01 | ||||
Carbonyl O | Zn | Ionic | 2.53 | ||||
6 | 9-(4-Hydroxyphenyl)-2-methoxy-1H-phenalen-1-one | −14.28 | Methoxy O Methoxy O Zn Zn Zn Carbonyl O Phenolic benzene ring | THR199(N) THR199(O) HIS94 HIS96 HIS119 Zn HIS94 | HB HB Ionic Ionic Ionic Ionic Arene–Arene | 2.71 3.03 1.97 2.02 2.01 2.01 - | |
7 | 4-Phenyl-1H,3H-naphtho [1,8-cd]pyran-1,3-dione. | −10.08 | Zn | HIS94 | Ionic | 1.97 | |
Zn | HIS96 | Ionic | 2.02 | ||||
Zn | HIS119 | Ionic | 2.01 | ||||
Carbonyl C1O(O) | Zn | Ionic | 2.22 | ||||
8 | Sulfonamide ligand (SUA) inhibitor | −10.17 | O−SONH−(NH) | THR199 | HB | 2.89 | |
O−SONH−(O) | THR199 | HB | 2.89 | ||||
O−SONH−(N) | THR199 | HB | 2.89 | ||||
Zn | HIS94 | Ionic | 1.97 | ||||
Zn | HIS96 | Ionic | 2.02 | ||||
Zn | HIS119 | Ionic | 2.01 | ||||
O−SONH−(O−) | Zn | Ionic | 2.52 | ||||
O−SONH−(N) | Zn | Ionic | 2.31 |
No | Compound | Structure | Binding Scores (kcal/mol−1) | Ligand Atom | EGFR Residue | Interaction | Bond Length (A0) |
---|---|---|---|---|---|---|---|
1 | Nigellidine 1-O-Sulfate | −11.71 | 4-HO.Ph (OH) | THR766 | HB | 2.75 | |
4-HO.Ph (OH) | THR766 | HB | 2.75 | ||||
Sulfate O | MET769 | HB | 3.17 | ||||
2 | Salfredin B11 | −9.55 | Pyran O | H2O-THR766 | HB | 2.75 | |
3 | Ferulic acid | −11.58 | Carbonyl O | MET769(O) | HB | 2.78 | |
Phenolic OH | ASP831 | HB | 1.34 | ||||
Methoxy O | H2O-THR766 | HB | 2.52 | ||||
Carbonyl O | MET769(N) | HB | 3.00 | ||||
4 | Kaempferol | −12.34 | 3-HO.Chrom (OH) | H2O-THR766 | HB | 2.77 | |
5-HO.Chrom (OH) | MET769(O) | HB | 1.94 | ||||
3-HO.Chrom (OH) | H2O-THR766 | HB | 2.77 | ||||
Carbonyl O | MET769(N) | HB | 2.87 | ||||
5 | Quercetin | −14.78 | 2-(3-HO.Ph) OH | MET769(O) | HB | 1.45 | |
5-HO.Chrom (OH) | ASP831 | HB | 1.24 | ||||
Carbonyl O | H2O-THR766 | HB | 2.60 | ||||
6 | 9-(4-Hydroxyphenyl)-2-methoxy-1H-phenalen-1-one | −11.10 | Phenolic OH | ASP83 | HB | 1.30 | |
Methoxy O | MET769(N) | HB | 3.03 | ||||
7 | 4-Phenyl-1H,3H-naphtho [1,8-cd]pyran-1,3-dione. | −8.93 | Pyran-1-one O | H2O-THR766 | HB | 2.73 | |
8 | Erlotinib | −11.02 | Quinazoline N3 | H2O-THR766 | HB | 3.02 | |
Quinazoline N1 | MET769 | HB | 3.09 |
No | Compound | Structure | Mol. Wt | HBA | HBD | ClogP | No. of Rot.B | TPSA |
---|---|---|---|---|---|---|---|---|
1 | Nigellidine 1-O-Sulfate | 374.417 | 7 | 1 | 2.56 | 3 | 158.38 | |
2 | Salfredin B11 | 332.235 | 4 | 1 | 2.68 | 0 | 126.84 | |
3 | Ferulic acid | 194.186 | 4 | 2 | 1.91 | 3 | 140.1 | |
4 | Kaempferol | 286.239 | 6 | 4 | 2.31 | 1 | 38.94 | |
5 | Quercetin | 302.238 | 7 | 5 | 2.03 | 1 | 38.33 | |
6 | 9-(4-Hydroxyphenyl)-2-methoxy-1H-phenalen-1-one | 302.329 | 3 | 1 | 5.0 | 2 | 110.55 | |
7 | 4-Phenyl-1H,3H-naphtho [1,8-cd]pyran-1,3-dione. | 274.275 | 3 | 0 | 4.69 | 1 | 102.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shady, N.H.; Mokhtar, F.A.; Abdullah, H.S.; Abdel-Aziz, S.A.; Mohamad, S.A.; Imam, M.S.; El Afify, S.R.; Abdelmohsen, U.R. In Vitro and Randomized Controlled Clinical Study of Natural Constituents’ Anti-HPV Potential for Treatment of Plantar Warts Supported with In Silico Studies and Network Analysis. Pharmaceuticals 2024, 17, 759. https://doi.org/10.3390/ph17060759
Shady NH, Mokhtar FA, Abdullah HS, Abdel-Aziz SA, Mohamad SA, Imam MS, El Afify SR, Abdelmohsen UR. In Vitro and Randomized Controlled Clinical Study of Natural Constituents’ Anti-HPV Potential for Treatment of Plantar Warts Supported with In Silico Studies and Network Analysis. Pharmaceuticals. 2024; 17(6):759. https://doi.org/10.3390/ph17060759
Chicago/Turabian StyleShady, Nourhan Hisham, Fatma Alzahraa Mokhtar, Hend Samy Abdullah, Salah A. Abdel-Aziz, Soad A. Mohamad, Mohamed S. Imam, Sherin Refat El Afify, and Usama Ramadan Abdelmohsen. 2024. "In Vitro and Randomized Controlled Clinical Study of Natural Constituents’ Anti-HPV Potential for Treatment of Plantar Warts Supported with In Silico Studies and Network Analysis" Pharmaceuticals 17, no. 6: 759. https://doi.org/10.3390/ph17060759
APA StyleShady, N. H., Mokhtar, F. A., Abdullah, H. S., Abdel-Aziz, S. A., Mohamad, S. A., Imam, M. S., El Afify, S. R., & Abdelmohsen, U. R. (2024). In Vitro and Randomized Controlled Clinical Study of Natural Constituents’ Anti-HPV Potential for Treatment of Plantar Warts Supported with In Silico Studies and Network Analysis. Pharmaceuticals, 17(6), 759. https://doi.org/10.3390/ph17060759