Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur–Oxidovanadium(IV) Complex Treatment in Mice
Abstract
:1. Introduction
2. Results
2.1. Chemical Characterization of [VIVO(octd)] in Solution
2.2. Dexamethasone-Induced Insulin Resistance in Mice
2.3. Serum Profile
2.4. Liver Lipid Profile
2.5. Oxidative Stress
3. Discussion
4. Materials and Methods
4.1. Chemicals and General Methods
4.2. Synthesis of the Sulfur–Oxidovanadium(IV) Complex—[VIVO(octd)]
4.3. Animals and Treatment
4.4. Biochemical Analysis
4.5. Oxidative Stress Evaluation in the Liver
4.6. Oral Glucose Tolerance Test (OGTT)
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALB | Albumin |
ALT | Alanine aminotransferase |
ANOVA | One-way analysis of variance |
AST | Aspartate aminotransferase |
ATR | Attenuated total reflectance |
b.w. | Body weight |
BEOV | Bis(ethylmaltolato)oxidovanadium(IV) |
BFOV | Bis(alpha-furancarboxylato)oxidovanadium(IV) |
BUN | Blood urea nitrogen |
CAT | Catalase |
CEUA | Ethics Committee on the Use of Animals |
C-HDL | High-Density Lipoprotein Cholesterol |
CRE | Creatinine |
CVD | Cardiovascular Diseases |
DEX | Dexamethasone |
DM | Diabetes Mellitus |
DMSO | Dimethylsulfoxide |
EDL | Extensor digitorum longus |
EPR | Electronic paramagnetic resonance |
ESI-FT-MS | Electrospray Ionization Fourier Transform Mass Spectrometry |
FTIR | Fourier-transformed infrared spectroscopy |
G6-P | Glucose-6-phosphatase |
GCs | Glucocorticoids |
GLB | Globulin |
GLUT-4 | Glucose transporter-4 |
GPx | Glutathione peroxidase |
GR | Glucocorticoid receptor |
GS | Glycogen synthase |
GSH | Glutathione reduced |
GSSG | Glutathione oxidized |
i.p | Intraperitoneal administration |
IR | Insulin Resistance |
IRS-1 | Insulin receptor substrate 1 |
MDA | Malondialdehyde |
MET | Metformin |
NMR | Nuclear magnetic resonance |
o.g. | Oral gavage |
OCTD | 3,6-dithio-1,8-octanediol 97% |
OGTT | Oral glucose tolerance test |
PEPCK-C | Phosphoenolpyruvate carboxykinase |
RETRO | Retroperitoneal white adipose |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SARS | Severe Acute Respiratory Syndrome |
SD | Standard deviation |
SEM | Standard error of the mean |
SOD | Superoxide dismutase |
STZ | Streptozotocin |
TBAR | Thiobarbituric acid |
TC | Total cholesterol |
TG | Triacylglycerol |
TP | Total protein |
TyG | The triglyceride–glucose index |
References
- Liu, Y.; Jie, X.; Guo, Y.; Xue, Y.; Wang, J.; Xue, C. Ameliorative effect of vanadyl(IV)-ascorbate complex on high-fat high-sucrose diet-induced hyperglycemia, insulin resistance, and oxidative stress in mice. J. Trace Elem. Med. Biol. 2015, 32, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.A.; Murakami, H.; Gaebler, D.J.; Silva, W.E.; Belian, M.F.; Lira, E.C.; Crans, D.C. Acute Toxicity Evaluation of Non-Innocent Oxidovanadium(V) Schiff Base Complex. Inorganics 2021, 9, 42. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Mehdi, M.Z. Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet. Med. 2005, 22, 2–13. [Google Scholar] [CrossRef]
- Nigro, T.P.; Manica, G.C.M.; Souza, S.W.; Jesus, C.H.A.; Bottini, R.C.R.; Missina, J.M.; Valdameri, G.; Nunes, G.G.; da Cunha, J.M.; Picheth, G.; et al. Heteroleptic oxidovanadium(IV)-malate complex improves glucose uptake in HepG2 and enhances insulin action in streptozotocin-induced diabetic rats. Biometals 2022, 35, 903–919. [Google Scholar] [CrossRef]
- Thompson, K.H.; Lichter, J.; LeBel, C.; Scaife, M.C.; McNeill, J.H.; Orvig, C. Vanadium treatment of type 2 diabetes: A view to the future. J. Inorg. Biochem. 2009, 103, 554–558. [Google Scholar] [CrossRef]
- Crans, D.C.; Henry, L.R.; Cardiff, G.; Posner, B.I. Developing vanadium as an antidiabetic or anticancer drug: A clinical and historical perspective. Met. Ions Life Sci. 2019, 19, 203–230. [Google Scholar]
- ADA–American Diabetes Association. Standards of medical care. J. Clin. Appl. Res. Educ. 2022, 45, 1–270. [Google Scholar]
- Gans, I.M.; Coffman, J.A. Glucocorticoid-mediated developmental programming of vertebrate stress responsivity. Front. Physiol. 2021, 12, 812195. [Google Scholar] [CrossRef] [PubMed]
- Vandewalle, J.; Luypaert, A.; De Bosscher, K.; Libert, C. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol. Metab. 2018, 29, 42–54. [Google Scholar] [CrossRef]
- Rafacho, A.; Ortsater, H.; Nadal, A.; Quesada, I. Glucocorticoid treatment and endocrine pancreas function: Implications for glucose homeostasis, insulin resistance, and diabetes. J. Endocrinol. 2014, 223, R49–R62. [Google Scholar] [CrossRef]
- Burén, J.; Lai, Y.C.; Lundgren, M.; Eriksson, J.W.; Jensen, J. Insulin action and signaling in fat and muscle from dexamethasone-treated rats. Arch. Biochem. Biophys. 2008, 474, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Kaikaew, K.; Steenbergen, J.; van Dijk, T.H.; Grefhorst, A.; Visser, J.A. Sex Difference in Corticosterone-Induced Insulin Resistance in Mice. Endocrinology 2019, 160, 2367–2387. [Google Scholar] [CrossRef] [PubMed]
- Schneiter, P.; Tappy, L. Kinetics of dexamethasone-induced alterations of glucose metabolism in healthy humans. Am. J. Physiol. 1998, 275, E806–E813. [Google Scholar] [CrossRef] [PubMed]
- Ahrén, B. Evidence that autonomic mechanisms contribute to the adaptive increase in insulin secretion during dexamethasone-induced insulin resistance in humans. Diabetologia 2008, 51, 1018–1024. [Google Scholar] [CrossRef] [PubMed]
- Cea, L.A.; Balboa, E.; Puebla, C.; Vargas, A.A.; Cisterna, B.A.; Escamilla, R.; Regueira, T.; Sáez, J.C. Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels. Biochim. Biophys. Acta-Mol. Basis Dis. 2016, 1862, 1891–1899. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Hosokawa, M.; Miyashita, K.; Nishino, H.; Hashimoto, T. Effects of Fucoxanthin on the Inhibition of Dexamethasone-Induced Skeletal Muscle Loss in Mice. Nutrients 2021, 13, 1079. [Google Scholar] [CrossRef] [PubMed]
- Asensio, C.; Muzzin, P.; Rohner-Jeanrenaud, F. Role of glucocorticoids in the physiopathology of excessive fat deposition and insulin resistance. Int. J. Obes. Relat. Metab. Disord. 2004, 28 (Suppl. S4), S45–S52. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, G.N.; Rossi-Valentim, R.; Buzelle, S.L.; Paula-Gomes, S.; Zanon, N.M.; Garófalo, A.R.; Frasson, D.; Navegantes, L.C.C.; Chaves, V.E.; Kettelhut, I.C. Differential regulation of glyceroneogenesis by glucocorticoids in epididymal and retroperitoneal white adipose tissue from rats. Endocrine 2017, 57, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.Q.; Liu, W.P.; Niu, Y.F.; Tian, C.F.; Xie, M.J.; Chen, X.Z.; Li, L. Bis(alpha-furancarboxylato)oxovanadium(IV) prevents and improves dexamethasone-induced insulin resistance in 3T3-L1 adipocytes. J. Pharm. Pharmacol. 2008, 60, 1333–13340. [Google Scholar] [CrossRef]
- Barbera, M.; Fierabracci, V.; Novelli, M.; Bombara, M.; Masiello, P.; Bergamini, E.; Tata, V. Dexamethasone-induced insulin resistance and pancreatic adaptive response in aging rats are not modified by oral vanadyl sulfate treatment. Eur. J. Endocrinol. 2001, 145, 799–806. [Google Scholar] [CrossRef]
- Bjelakovic, G.; Beninati, S.; Pavlovic, D.; Kocic, G.; Jevtovic, T.; Kamenov, B. Dexamethasone and oxidative stress. J. Basic Clin. Physiol. Pharmacol. 2007, 18, 115–127. [Google Scholar] [CrossRef]
- Rafacho, A.; Quallio, S.; Ribeiro, D.L.; Taboga, S.R.; Paula, F.M.; Boschero, A.C.; Bosqueiro, J.R. The adaptive compensations in endocrine pancreas from glucocorticoid-treated rats are reversible after the interruption of treatment. Acta Physiol. 2010, 200, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Ghalichi, F.; Ostadrahimi, A.; Saghafi-Asl, M. Vanadium, and diabetic dyslipidemia: A systematic review of animal studies. J. Trace Elem. Med. Biol. 2022, 71, 126955. [Google Scholar] [CrossRef] [PubMed]
- Fetters, K.B.; Judge, S.P.; Daar, E.S.; Hatlen, T.J. Burden of Hyperglycemia in Patients Receiving Corticosteroids for Severe COVID-19. Mayo Clin. Proc. Innov. Qual. Outcomes 2022, 6, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Elena, C.; Chiara, M.; Angelica, B.; Chiara, M.A.; Chirico, N.L.; Claudio, C.; Antonella, F.; Nicola, G. Hyperglycemia and Diabetes Induced by Glucocorticoids in Nondiabetic and Diabetic Patients: Revision of Literature and Personal Considerations. Curr. Pharm. Biotechnol. 2018, 19, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Cummins, C.L. Fresh insights into glucocorticoid-induced diabetes mellitus and new therapeutic directions. Nat. Rev. Endocrinol. 2022, 18, 540–557. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.A.; da Silva, A.K.J.P.F.; Batista, E.K.; Postal, K.; Kostenkova, K.; Fenton, A.; Crans, D.C.; Silva, W.E.; Belian, M.F.; Lira, E.C. The antihyperglycemic and hypolipidemic activities of a sulfur-oxidovanadium(IV) complex. J. Inorg. Biochem. 2023, 241, 112127. [Google Scholar] [CrossRef] [PubMed]
- Crans, D.C.; Trujillo, A.M.; Pharazyn, P.S.; Cohen, M.D. How environment affects drug activity: Localization, compartmentalization, and reactions of a vanadium insulin-enhancing compound, dipicolinatooxovanadium(V). Coord. Chem. Rev. 2011, 255, 2178–2192. [Google Scholar] [CrossRef]
- Wang, J.P.; Cui, R.Y.; Zhang, K.Y.; Ding, X.M.; Luo, Y.H.; Bai, S.P.; Zeng, Q.F.; Xuan, Y.; Su, Z.W. High-fat diet increased renal and hepatic oxidative stress induced by vanadium of Wistar rat. Biol. Trace Elem. Res. 2016, 170, 415–423. [Google Scholar] [CrossRef]
- Treviño, S.; González-Vergara, E. Metformin-decavanadate treatment ameliorates hyperglycemia and redox balance of the liver and muscle in a rat model of alloxan-induced diabetes. N. J. Chem. 2019, 43, 17850–17862. [Google Scholar]
- Ghalichim, F.; Ostadrahimi, A.; Saghafi-Asl, M. Vanadium and biomarkers of inflammation and oxidative stress in diabetes: A systematic review of animal studies. Health Promot. Perspect. 2022, 12, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.M.A.; Belian, M.F.; Silva, W.E.; Postal, K.; Kostenkova, K.; Crans, D.C.; Rossiter, A.K.F.F.; da Silva Júnior, V.A. Vanadium(IV)-diamine complex with hypoglycemic activity and a reduction in testicular atrophy. J. Inorg. Biochem. 2021, 216, 111312. [Google Scholar] [CrossRef] [PubMed]
- Xulu, N.; Ngubane, P.; Khathi, A.; Booysen, I.; Sibiya, N. Heamanetic effects of a dioxidovanadium(V) complex in STZ-induced diabetic male sprague dawley rats. Diabetes Metab. Syndr. Obes. 2020, 14, 4321–4333. [Google Scholar] [CrossRef] [PubMed]
- Tunali, S.; Yanardag, R. Protective effect of vanadyl sulfate on skin injury in streptozotocin-induced diabetic rats. Hum. Exp. Toxicol. 2013, 32, 1206–1212. [Google Scholar] [CrossRef] [PubMed]
- Francik, R.; Kryczyk-Kozioł, J.; Krośniak, M.; Francik, S.; Hebda, T.; Pedryc, N.; Knapczyk, A.; Berköz, M.; Ślipek, Z. The Influence of Organic Vanadium Complexes on an Antioxidant Profile in Adipose Tissue in Wistar Rats. Materials 2022, 15, 1952. [Google Scholar] [CrossRef] [PubMed]
- Willsky, G.R.; Chi, L.H.; Godzala, M.; Kostyniak, P.J.; Smee, J.J.; Trujillo, A.M.; Alfano, J.A.; Ding, W.; Hu, Z.; Crans, D.C. Anti-diabetic effects of a series of vanadium dipicolinate complexes in rats with streptozotocin-induced diabetes. Coord. Chem. Rev. 2011, 255, 2258–2269. [Google Scholar] [CrossRef] [PubMed]
- Chruvattil, R.; Banerjee, S.; Nath, S.; Machhi, J.; Kharkwal, G.; Yadav, M.R.; Gupta, S. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol. Neurobiol. 2017, 54, 7483–7496. [Google Scholar] [CrossRef] [PubMed]
- Jahng, J.W.; Kim, N.Y.; Ryu, V.; Yoo, S.B.; Kim, B.T.; Kang, D.W.; Lee, J.H. Dexamethasone reduces food intake, weight gain, and the hypothalamic 5-HT concentration and increases plasma leptin in rats. Eur. J. Pharmacol. 2008, 581, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.P.; Marks, D.L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 2015, 6, 12. [Google Scholar] [CrossRef]
- Kritsch, K.R.; Murali, S.; Adaom, M.L.; Clayton, M.K.; Ney, D.M. Hypoenergetic high-carbohydrate or high-fat parenteral nutrition induces a similar metabolic response with differential effects on hepatic IGF-1 mRNA in dexamethasone-treated rats. J. Nutr. 2010, 135, 479–485. [Google Scholar] [CrossRef]
- Aru, M.; Alev, K.; Pehme, A.; Purge, P.; Õnnik, L.; Ellam, A.; Kaasik, P.; Seene, T. Changes in Body Composition of Old Rats at Different Time Points after Dexamethasone Administration. Curr. Aging Sci. 2018, 11, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Stopa, L.R.S.; De Souza, C.F.; Santos, G.F.; Martins, A.B.; Ferreira, R.N.; Andrade, F.G.; Leite, C.M.; Zaia, D.A.M.; Zaia, C.T.B.V.; Uchoa, E.T. Sex differences in glucocorticoids-induced anabolic effects in rats. Physiol. Behav. 2019, 209, 112587. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Hughes, C.; Ayers, C.R.; Mallou, C.R.; Jin, E.S. Effects of Visceral Adiposity on Glycerol Pathways in Gluconeogenesis. Metabolism 2017, 67, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Stalmans, W.; Laloux, M. Glucocorticoids, and hepatic glycogen metabolism. Monogr. Endocrinol. 1979, 12, 517–533. [Google Scholar] [PubMed]
- Margolis, R.N.; Curnow, R.T. The Role of Insulin and Glucocorticoids in the Regulation of Hepatic Glycogen Metabolism: Effect of Fasting, Refeeding, and Adrenalectomy. Endocrinology 1983, 113, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Praestholm, S.M.; Correia, C.M.; Goitea, V.E.; Sierbaesk, M.S.; Jorgensen, M.; Havelund, J.F.; Pedersen, T.A.; Faergeman, J.; Grontved, L. Impaired glucocorticoid receptor expression in liver disrupts feeding-induced gene expression, glucose uptake, and glycogen storage. Cell Rep. 2021, 37, 109938. [Google Scholar] [CrossRef] [PubMed]
- Kotelevtsev, Y.; Holmes, M.C.; Burchell, A.; Houston, P.M.; Schmoll, D.; Jamieson, P.; Best, R.; Brown, R.; Edwards, C.R.; Seckl, J.R.; et al. 11beta-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid-inducible responses and resist hyperglycemia on obesity or stress. Proc. Natl. Acad. Sci. USA 1997, 94, 14924–14929. [Google Scholar] [CrossRef] [PubMed]
- Masuzaki, H.; Paterson, J.; Shinyama, H.; Morton, N.M.; Mullins, J.J.; Seckl, J.R.; Flier, J.S. A transgenic model of visceral obesity and the metabolic syndrome. Science 2001, 294, 2166–2170. [Google Scholar] [CrossRef] [PubMed]
- Costantini, D.; Marasco, V.; Moller, A.P. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J. Comp. Physiol. B 2011, 181, 447–456. [Google Scholar] [CrossRef]
- Tu, W.; Xiao, X.; Lu, J.; Liu, X.; Wang, E.; Yyan, R.; Wan, R.; Shen, Y.; Xu, D.; Yang, P.; et al. Vanadium exposure exacerbates allergic airway inflammation and remodeling through triggering reactive oxidative stress. Front. Immunol. 2023, 13, 1099509. [Google Scholar] [CrossRef]
- Barbosa, M.M.; Lima, L.M.A.; Widarlane, A.S.A.; Lima, E.K.B.; Silva, L.A.; Silva, T.D.; Postal, K..; Ramadan, M.; Kostenkova, K.; Gomes, D.A.; et al. In vitro, oral acute, and repeated 28-day oral dose toxicity of a mixed-valence polyoxovanadate cluster. Pharmaceuticals 2023, 16, 1232. [Google Scholar] [CrossRef] [PubMed]
- Mbatha, B.; Khathi, A.; Sibiya, N.; Booysen, I.; Mangundu, P.; Ngubane, P. Cardio-protective effects of a dioxidovanadium(V) complex in male Sprague–Dawley rats with streptozotocin-induced diabetes. Biometals 2021, 34, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.F.; Wei, Y.S. The relationships between serum fructosamine concentrations and lipid profiles in community-dwelling adults. Sci. Rep. 2017, 7, 6886. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Romero, F.; Simental-Mendía, L.E.; González-Ortiz, M.; Martínez-Abundis, E.; Ramos-Zavala, M.G.; Hernández-González, S.O.; Jacques-Camarena, O.; Rodríguez-Morán, M. The product of triglycerides and glucose is a simple measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic clamp. J. Clin. Endocrinol. Metab. 2010, 95, 3347–3351. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Less, M.; Sloane Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Carroll, N.V.R.; Longley, R.W.; Roe, J.H. The Determination of Glycogen in Liver and Muscle by Use of Anthrone Reagent. J. Biol. Chem. 1955, 220, 583–593. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Hissin, P.J.; Hilf, R. A Fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem. 1976, 74, 214–226. [Google Scholar] [CrossRef]
- Misra, H.P.; Fridovich, I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J. Biol. Chem. 1972, 10, 3170–3175. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
Groups | Control | DEXA | VIVVO25 | VIVVO50 | DEXA Met |
---|---|---|---|---|---|
Body weight (g) | 458.70 ± 6.07 | 421.64 ± 6.07 a | 397.20 ± 4.22 b | 403.25 ± 6.65 b | 406.50 ± 9.91 b |
Food intake (g) | 96.25 ± 1.93 | 87.55 ± 2.09 a | 72.80 ± 2.82 b | 79.27 ± 2.6 b | 80.50 ± 4.03 b |
Fluid intake (mL) | 230.50 ± 4.75 | 229.20 ± 6.79 | 211.00 ± 3.12 b | 211.82 ± 5.82 b | 234.00 ± 5.73 |
Organ/Tissue | Control | DEXA | VIVVO25 | VIVVO50 | DEXA Met |
---|---|---|---|---|---|
Heart (g/100 g) | 0.48 ± 0.02 | 0.49 ± 0.03 | 0.48 ± 0.03 | 0.50 ± 0.03 | 0.48 ± 0.02 |
Liver (g/100 g) | 4.42 ± 0.14 | 4.78 ± 0.16 | 4.42 ± 0.14 | 4.83 ± 0.29 | 4.68 ± 0.18 |
Kidney (g/100 g) | 0.63 ± 0.01 | 0.69 ± 0.05 | 0.63 ± 0.06 | 0.68 ± 0.04 | 0.62 ± 0.01 |
Adrenal (g/100 g) | 0.46 ± 0.04 | 0.12 ± 0.04 a | 0.10 ± 0.01 a | 0.10 ± 0.01 a | 0.09 ± 0.01 a |
Tibial anterior (mg/100 g) | 46.65 ± 3.21 | 35.09 ± 0.51 a | 46.54 ± 2.23 b | 43.12 ± 2.23 b | 47.07 ± 4.10 b |
Soleus (mg/100 g) | 9.63 ± 0.04 | 5.26 ± 0.03 a | 6.66 ± 0.05 b | 7.91 ± 0.91 c | 5.07 ± 0.05 a |
RETRO (%/mg) | 0.70 ± 0.04 | 1.19 ± 0.21 a | 1.38 ± 0.24 b | 0.75 ± 0.1 c | 1.25 ± 0.38 b |
Parameters | Control | DEXA | VIVVO25 | VIVVO50 | DEXA Met |
---|---|---|---|---|---|
Fructosamine (μmol L−1) | 8.90 ± 0.25 | 21.06 ± 2.00 a | 16.74 ± 1.26 b | 9.30 ± 0.57 c | 5.90 ± 0.90 d |
Glycerol (mmol L−1) | 0.28 ± 0.02 | 0.54 ± 0.03 a | 0.30 ± 0.02 b | 0.26 ± 0.03 b | 0.28 ± 0.01 b |
Total cholesterol (mmol L−1) | 2.28 ± 0.13 | 3.84 ± 0.32 a | 2.62 ± 0.21 b | 2.67 ± 0.08 b | 2.75 ± 0.04 b |
C-HDL (mmol L−1) | 1.95 ± 0.19 | 1.01 ± 0.16 a | 0.72 ± 0.01 b | 1.27 ± 0.10 c | 2.24 ± 0.34 d |
Non-C-HDL (mmol L−1) | 0.44 ± 0.02 | 2.83 ± 0.47 a | 1.79 ± 0.18 b | 1.30 ± 0.10 c | 1.53 ± 0.03 d |
Atherogenic index | 1.28 ± 0.11 | 5.18 ± 1.50 a | 3.51 ± 0.24 b | 2.45 ± 0.37 c | 1.99 ± 0.27 d |
AST (mmol L−1) | 32.79 ± 7.0 | 61.35 ± 9.31 a | 68.27 ± 1.92 a | 59.39 ± 4.74 a | 60.68 ± 0.55 a |
ALT (mmol L−1) | 27.72 ± 1.18 | 45.63 ± 2.69 a | 32.93 ± 3.12 b | 35.06 ± 1.39 b | 22.72 ± 0.49 c |
Total protein (g L−1) | 40.17 ± 1.19 | 46.34 ± 2.06 | 50.15 ± 2.48 | 47.57 ± 2.34 | 40.72 ± 1.64 |
Parameters | Control | DEXA | VIVVO25 | VIVVO50 | DEXA Met |
---|---|---|---|---|---|
Total liver lipids (g/100 g) | 3.71 ± 0.75 | 32.60 ± 1.7 a | 5.16 ± 0.33 b | 5.15 ± 0.68 b | 2.44 ± 0.10 c |
Triglycerides (mmol L−1) | 0.75 ± 0.09 | 1.73 ± 0.21 a | 1.44 ± 0.12 b | 0.96 ± 0.12 c | 1.46 ± 0.01 b |
Total cholesterol (mmol L−1) | 1.29 ± 0.10 | 3.05 ± 0.21 a | 2.35 ± 0.24 b | 2.19 ± 0.13 b | 1.21 ± 0.01 c |
C-HDL (mmol L−1) | 1.95 ± 0.19 | 1.01 ± 0.16 a | 0.72 ± 0.02 b | 1.27 ± 0.10 c | 2.24 ± 0.34 d |
Hepatic glycogen (%/g) | 1.06 ± 0.20 | 12.93 ± 2.32 a | 6.76 ± 0.47 b | 2.34 ± 0.11 c | 3.58 ± 0.15 c |
Parameters | Control | DEXA | VIVVO25 | VIVVO50 | DEXA Met |
---|---|---|---|---|---|
MDA (U/mg) | 1.11 ± 0.09 | 2.07 ± 0.15 a | 1.12 ± 0.09 b | 1.52 ± 0.10 c | 2.29 ± 0.26 a |
Nitrite (μmol/mg) | 2.48 ± 0.25 a | 3.15 ± 0.33 a | 1.74 ± 0.11 b | 1.42 ± 0.09 b | 2.37 ± 0.19 d |
GSH (nmol/mg) | 9.74 ± 0.29 | 6.59 ± 0.29 a | 6.27 ± 0.13 a | 7.63 ± 0.58 b | 6.25 ± 0.24 a |
GSSG (nmol/mg) | 4.51 ± 0.84 | 3.64 ± 0.13 a | 2.64 ± 0.15 c | 3.62 ± 0.17 b | 1.77 ± 0.08 b |
GSH/GSSG (nmol/mg) | 2.45 ± 0.41 | 1.85 ± 0.15 a | 2.40 ± 0.11 c | 2.46 ± 0.22 c | 3.56 ± 0.19 d |
SOD (U/mg) | 22.42 ± 2.09 | 30.53 ± 2.49 a | 31.75 ± 2.08 a | 26.15 ± 2.70 b | 24.67 ± 1.04 b |
CAT (U/mg) | 0.040 ± 0.01 | 0.060 ± 0.01 a | 0.042 ± 0.012 b | 0.060 ± 0.001 b | 0.024 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, E.K.; Lima, L.M.A.d.; Gomes, D.A.; Crans, D.C.; Silva, W.E.; Belian, M.F.; Lira, E.C. Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur–Oxidovanadium(IV) Complex Treatment in Mice. Pharmaceuticals 2024, 17, 760. https://doi.org/10.3390/ph17060760
Batista EK, Lima LMAd, Gomes DA, Crans DC, Silva WE, Belian MF, Lira EC. Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur–Oxidovanadium(IV) Complex Treatment in Mice. Pharmaceuticals. 2024; 17(6):760. https://doi.org/10.3390/ph17060760
Chicago/Turabian StyleBatista, Eucilene K., Lidiane M. A. de Lima, Dayane A. Gomes, Debbie C. Crans, Wagner E. Silva, Mônica F. Belian, and Eduardo C. Lira. 2024. "Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur–Oxidovanadium(IV) Complex Treatment in Mice" Pharmaceuticals 17, no. 6: 760. https://doi.org/10.3390/ph17060760
APA StyleBatista, E. K., Lima, L. M. A. d., Gomes, D. A., Crans, D. C., Silva, W. E., Belian, M. F., & Lira, E. C. (2024). Dexamethasone-Induced Insulin Resistance Attenuation by Oral Sulfur–Oxidovanadium(IV) Complex Treatment in Mice. Pharmaceuticals, 17(6), 760. https://doi.org/10.3390/ph17060760