Contribution of Microbiota to Bioactivity Exerted by Bee Bread
Abstract
:1. Introduction
2. Results
2.1. Metataxonomic Microbiota Analysis during BB Maturation
2.2. Antimicrobial Activity and Biosynthetic Potential of Isolated BB Bacteria
2.3. Antibacterial Activity Exerted by BB Isolates
2.4. Biosynthetic Potential of BB Isolated Bacteria
2.5. Antibacterial Activity Exerted by Double Pasteurized and Artificially Fermented BCP
3. Discussion
4. Materials and Methods
4.1. Sampling
4.2. Metataxonomic Analysis during BB Maturation
4.3. Bioinformatics Analysis
4.4. Isolation of BB Culturable Bacteria
4.5. Assessment of Antibacterial Activity Exerted by BB Bacterial Isolates
4.6. BCP Double Pasteurization-Solid State BCP Fermentation
- -
- AF46D (negative control) sample: 1.3 mL NB3 broth mixed with 11.5 g of double pasteurized AF1 sample and incubated for 11 days at 33 °C.
- -
- AF42D sample was fermented as follows: 11.5 g of double pasteurized AF1 sample inoculated with 108 CFUs of A. kunkeei strain NADBB37 was re-suspended in 1.3 mL NB3 broth. The sample was mixed and incubated for 11 days at 33 °C.
- -
- AF43D sample was fermented as follows: 11.5 g of double pasteurized AF1 sample inoculated with 108 CFUs of A. kunkeei strain NADBB7 was re-suspended in 1.3 mL NB3 broth. The sample was mixed and incubated for 11 days at 33 °C.
- -
- AF44D sample was fermented as follows: 11.5 g of double pasteurized AF1 sample inoculated with 108 CFUs of A. kunkeei strain NADBB37, 108 CFUs of A. kunkeei strain NADBB7, 108 CFUs Fructobacillus fructosus strain NADBB39 and 108 CFUs Zygosaccharomyces siamensis was resuspended in 1.3 mL NB3 broth. The sample was mixed and incubated for 11 days at 33 °C.
- -
- AF5U sample was fermented as follows: 11.5 g of AF1 sample inoculated with 108 CFUs of A. kunkeei strain NADBB37 was re-suspended in 2.3 mL NB3 broth. The sample was mixed and incubated for 29 days at 33 °C.
4.7. Phenotypic Detection of Enzymes Produced by BB Isolates
- -
- Amylase activity: PCA + 1% starch. A clear halo was detected around the bacterial colony due to starch breakdown. To confirm amylase activity, the plate was covered with 1% iodine solution for 5–10 min, then washed with deionized water and the presence of light zones around the colony was observed under a light source [60].
- -
- Protease activity: PCA + 2% skimmed milk powder. A clear halo was formed around the bacterial colony due to the breakdown of milk proteins [22].
- -
- Hemicellulose activity (endo-1,4-b-Xylanase): PCA + 0.02% Megazyme AZCL-XYLAN (Megazyme, Bray, Ireland). A blue halo was detected around the bacterial colony due to the breakdown of the hemicellulose granules and the release of the bounded azo pigment [61].
- -
- Cellulose activity (endo-Cellulase): PCA + 0.02% w/v Megazyme AZCL-HE-CELLULOSE (Megazyme, Bray, Ireland). In the case of cellulase secretion, a blue halo formed around the bacterial colony due to cellulose granule breakdown and the release of the azo pigment [62].
- -
- Guaiacol assay and dye breakdown: PCA + 0.02% w/v Coomassie Brilliant Blue G (BIO-RAD, Richmond, CA, USA), PCA + 0.02% Coomassie Brilliant Blue R, PCA + 10% Malachite Green (oxalate solution 0.2% w/v, MERCK, Darmstadt, Germany), PCA + 0.5 mM guaiacol (Alfa Aecar, Kandel, Germany). The secretion of enzymes that break down dyes was detected as a clear halo formed around the bacterial colony. The appearance of brown color in the guaiacol assay indicated the positive phenotype [63].
- -
- In order to determine whether cellulases and hemicellulases are produced and present in mature BB, the assays were carried out using the respective substrates mentioned above for the specific enzymes. Briefly, 6 mm diameter wells were opened in the plates and 100 μL of each protein fraction suspension of BB sample was placed in each of them.
4.8. Preparation of BB Protein Fractions
4.9. Detection of Genes Encoding Enzymes in BB Isolates
4.10. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
4.11. Identification of Culturable Bacteria and Yeasts via 16S rRNA Gene and ITS SANGER Sequencing, Respectively
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cardinal, S.; Danforth, B.N. Bees Diversified in the Age of Eudicots. Proc. R. Soc. B Biol. Sci. 2013, 280, 20122686. [Google Scholar] [CrossRef]
- Mărgăoan, R.; Stranț, M.; Varadi, A.; Topal, E.; Yücel, B.; Cornea-Cipcigan, M.; Campos, M.G.; Vodnar, D.C. Bee Collected Pollen and Bee Bread: Bioactive Constituents and Health Benefits. Antioxidants 2019, 8, 568. [Google Scholar] [CrossRef]
- Baky, M.H.; Abouelela, M.B.; Wang, K.; Farag, M.A. Bee Pollen and Bread as a Super-Food: A Comparative Review of Their Metabolome Composition and Quality Assessment in the Context of Best Recovery Conditions. Molecules 2023, 28, 715. [Google Scholar] [CrossRef]
- Fan, T.-F.; Park, S.; Shi, Q.; Zhang, X.; Liu, Q.; Song, Y.; Chin, H.; Bin Ibrahim, M.S.; Mokrzecka, N.; Yang, Y.; et al. Transformation of Hard Pollen into Soft Matter. Nat. Commun. 2020, 11, 1449. [Google Scholar] [CrossRef] [PubMed]
- Aylanc, V.; Falcão, S.I.; Ertosun, S.; Vilas-Boas, M. From the Hive to the Table: Nutrition Value, Digestibility and Bioavailability of the Dietary Phytochemicals Present in the Bee Pollen and Bee Bread. Trends Food Sci. Technol. 2021, 109, 464–481. [Google Scholar] [CrossRef]
- Brodschneider, R.; Crailsheim, K. Nutrition and Health in Honey Bees. Apidologie 2010, 41, 278–294. [Google Scholar] [CrossRef]
- Kostić, A.Ž.; Milinčić, D.D.; Barać, M.B.; Ali Shariati, M.; Tešić, Ž.L.; Pešić, M.B. The Application of Pollen as a Functional Food and Feed Ingredient—The Present and Perspectives. Biomolecules 2020, 10, 84. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M.; Piwowarek, K.; Kot, A.M.; Błażejak, S.; Chlebowska-Śmigiel, A.; Wolska, I. Pollen and Bee Bread as New Health-Oriented Products: A Review. Trends Food Sci. Technol. 2018, 71, 170–180. [Google Scholar] [CrossRef]
- Bakour, M.; Fernandes, Â.; Barros, L.; Sokovic, M.; Ferreira, I.C.F.R. Badiaa lyoussi Bee Bread as a Functional Product: Chemical Composition and Bioactive Properties. LWT 2019, 109, 276–282. [Google Scholar] [CrossRef]
- Ćirić, J.; Haneklaus, N.; Rajić, S.; Baltić, T.; Lazić, I.B.; Đorđević, V. Chemical Composition of Bee Bread (Perga), a Functional Food: A Review. J. Trace Elem. Miner. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Vásquez, A.; Olofsson, T.C. The Lactic Acid Bacteria Involved in the Production of Bee Pollen and Bee Bread. J. Apic. Res. 2009, 48, 189–195. [Google Scholar] [CrossRef]
- Campos, M.G.R.; Frigerio, C.; Lopes, J.; Bogdanov, S. What Is the Future of Bee-Pollen? J. ApiProduct ApiMedical Sci. 2010, 2, 131–144. [Google Scholar] [CrossRef]
- Anđelković, B.; Jevtić, G.; Mladenović, M.; Marković, J.; Petrović, M.; Nedić, N. Quality of pollen and honey bee bread collected in spring. J. Hyg. Eng. Des. 2012, 1, 275–277. [Google Scholar]
- Bakour, M.; Laaroussi, H.; Ousaaid, D.; El Ghouizi, A.; Es-Safi, I.; Mechchate, H.; Lyoussi, B. Bee Bread as a Promising Source of Bioactive Molecules and Functional Properties: An Up-To-Date Review. Antibiotics 2022, 11, 203. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Karatasou, K.; Dimitriou, T.G.; Amoutzias, G.D.; Mossialos, D. Antimicrobial Activity of Bee Collected Pollen and Bee bread: State of the Art and Future Perspectives. Antibiotics 2020, 9, 811. [Google Scholar] [CrossRef] [PubMed]
- Didaras, N.A.; Kafantaris, I.; Dimitriou, T.G.; Mitsagga, C.; Karatasou, K.; Giavasis, I.; Stagos, D.; Amoutzias, G.D.; Hatjina, F.; Mossialos, D. Biological Properties of Bee Bread Collected from Apiaries Located across Greece. Antibiotics 2021, 10, 555. [Google Scholar] [CrossRef] [PubMed]
- Pełka, K.; Otłowska, O.; Worobo, R.W.; Szweda, P. Bee Bread Exhibits Higher Antimicrobial Potential Compared to Bee Pollen. Antibiotics 2021, 10, 125. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.A.; Zemolin, A.P.P.; Franco, J.L.; Boldo, J.T.; Stefenon, V.M.; Triplett, E.W.; de Oliveira Camargo, F.A.; Roesch, L.F.W. Relationship between Honeybee Nutrition and Their Microbial Communities. Antonie Van Leeuwenhoek 2015, 107, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Dharampal, P.S.; Carlson, C.; Currie, C.R.; Steffan, S.A. Pollen-Borne Microbes Shape Bee Fitness. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182894. [Google Scholar] [CrossRef]
- Gilliam, M. Identification and Roles of Non-Pathogenic Microflora Associated with Honey Bees. FEMS Microbiol. Lett. 1997, 155, 1–10. [Google Scholar] [CrossRef]
- Kaškonienė, V.; Adaškevičiūtė, V.; Kaškonas, P.; Mickienė, R.; Maruška, A. Antimicrobial and Antioxidant Activities of Natural and Fermented Bee Pollen. Food Biosci. 2020, 34, 100532. [Google Scholar] [CrossRef]
- Pełka, K.; Worobo, R.W.; Walkusz, J.; Szweda, P. Bee Pollen and Bee Bread as a Source of Bacteria Producing Antimicrobials. Antibiotics 2021, 10, 713. [Google Scholar] [CrossRef] [PubMed]
- Dimitriou, T.G.; Asoutis Didaras, N.; Barda, C.; Skopeliti, D.; Kontogianni, K.; Karatasou, K.; Skaltsa, H.; Mossialos, D. Antiviral Activity of Bee bread, Bee Collected Pollen and Artificially Fermented Pollen against Influenza A Virus. Foods 2023, 12, 1978. [Google Scholar] [CrossRef] [PubMed]
- Asoutis Didaras, N.; Dimitriou, T.; Daskou, M.; Karatasou, K.; Mossialos, D. In vitro assessment of the antiviral activity of Greek Bee bread and bee collected pollen against Enterovirus D68. J. Microbiol. Biotechnol. Food Sci. 2022, 11, e4859. [Google Scholar] [CrossRef]
- Martinson, V.G.; Moy, J.; Moran, N.A. Establishment of Characteristic Gut Bacteria during Development of the Honeybee Worker. Appl. Environ. Microbiol. 2012, 78, 2830–2840. [Google Scholar] [CrossRef] [PubMed]
- Vásquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as Major Modulators of Insect Health: Lactic Acid Bacteria and Honeybees. PLoS ONE 2012, 7, e33188. [Google Scholar] [CrossRef] [PubMed]
- Killer, J.; Dubná, S.; Sedláček, I.; Švec, P. Lactobacillus apis sp. Nov., from the Stomach of Honeybees (Apis Mellifera), Having an in Vitro Inhibitory Effect on the Causative Agents of American and European Foulbrood. Int. J. Syst. Evol. Microbiol. 2014, 64, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Tsadila, C.; Amoroso, C.; Mossialos, D. Microbial Diversity in Bee Species and Bee Products: Pseudomonads Contribution to Bee Well-Being and the Biological Activity Exerted by Honey Bee Products: A Narrative Review. Diversity 2023, 15, 1088. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Cantatore, V.; Gobbetti, M. Novel Solid-State Fermentation of Bee Collected Pollen Emulating the Natural Fermentation Process of Bee Bread. Food Microbiol. 2019, 82, 218–230. [Google Scholar] [CrossRef]
- Ghosh, S.; Namin, S.M.; Jung, C. Differential Bacterial Community of Bee Bread and Bee Pollen Revealed by 16s RRNA High-Throughput Sequencing. Insects 2022, 13, 863. [Google Scholar] [CrossRef]
- Gilliam, M. Microbiology of pollen and bee bread: The yeasts. Apidologie 1979, 10, 43–53. [Google Scholar] [CrossRef]
- Disayathanoowat, T.; Li, H.; Supapimon, N.; Suwannarach, N.; Lumyong, S.; Chantawannakul, P.; Guo, J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms 2020, 8, 264. [Google Scholar] [CrossRef] [PubMed]
- Donkersley, P.; Rhodes, G.; Pickup, R.W.; Jones, K.C.; Wilson, K. Bacterial Communities Associated with Honeybee Food Stores Are Correlated with Land Use. Ecol. Evol. 2018, 8, 4743–4756. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.E.; Carroll, M.J.; Sheehan, T.; Mott, B.M.; Maes, P.; Corby-Harris, V. Hive-stored Pollen of Honey Bees: Many Lines of Evidence Are Consistent with Pollen Preservation, Not Nutrient Conversion. Mol. Ecol. 2014, 23, 5904–5917. [Google Scholar] [CrossRef] [PubMed]
- Gilliam, M.; Hayden Bee, C. Microbiology of Pollen and Bee Bread: The Genus Bacillus. Apidologie 1979, 10, 269–274. [Google Scholar] [CrossRef]
- Barene, I.; Daberte, I.; Siksna, S. Investigation of Bee bread and development of its dosage forms. Med. Teor. Ir Prakt. 2014, 21, 16–22. [Google Scholar] [CrossRef]
- Dranca, F.; Ursachi, F.; Oroian, M. Bee Bread: Physicochemical Characterization and Phenolic Content Extraction Optimization. Foods 2020, 9, 1358. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, T.C.; Vásquez, A. Detection and Identification of a Novel Lactic Acid Bacterial Flora Within the Honey Stomach of the Honeybee Apis Mellifera. Curr. Microbiol. 2008, 57, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Reis, J.A.; Paula, A.T.; Casarotti, S.N.; Penna, A.L.B. Lactic Acid Bacteria Antimicrobial Compounds: Characteristics and Applications. Food Eng. Rev. 2012, 4, 124–140. [Google Scholar] [CrossRef]
- Ramachandran, S.; Fontanille, P.; Pandey, A.; Larroche, C. Gluconic Acid: Properties, Applications and Microbial Production. Food Technol. Biotechnol. 2006, 44, 185–195. [Google Scholar]
- Sinpoo, C.; Williams, G.R.; Chantawannakul, P. Dynamics of Fungal Communities in Corbicular Pollen and Bee Bread. Chiang Mai J. Sci. 2017, 44, 1244–1256. [Google Scholar]
- Detry, R.; Simon-Delso, N.; Bruneau, E.; Daniel, H.M. Specialisation of Yeast Genera in Different Phases of Bee Bread Maturation. Microorganisms 2020, 8, 1789. [Google Scholar] [CrossRef] [PubMed]
- Malgas, S.; Mafa, M.S.; Mkabayi, L.; Pletschke, B.I. A Mini Review of Xylanolytic Enzymes with Regards to Their Synergistic Interactions during Hetero-Xylan Degradation. World J. Microbiol. Biotechnol. 2019, 35, 187. [Google Scholar] [CrossRef]
- Wang, X.; Yao, B.; Su, X. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification. Int. J. Mol. Sci. 2018, 19, 3373. [Google Scholar] [CrossRef] [PubMed]
- Dimov, S.G.; Zagorchev, L.; Iliev, M.; Dekova, T.; Ilieva, R.; Kitanova, M.; Georgieva-Miteva, D.; Dimitrov, M.; Peykov, S. A Snapshot Picture of the Fungal Composition of Bee Bread in Four Locations in Bulgaria, Differing in Anthropogenic Influence. J. Fungi 2021, 7, 845. [Google Scholar] [CrossRef]
- Iravani, S.; Varma, R.S. Plant Pollen Grains: A Move Towards Green Drug and Vaccine Delivery Systems. Nano-Micro Lett. 2021, 13, 128. [Google Scholar] [CrossRef] [PubMed]
- Damulienė, V.; Kaškonienė, V.; Kaškonas, P.; Maruška, A. The Influence of Enzymatic Hydrolysis on Bee Pollen Antioxidant and Antibacterial Activities. Foods 2023, 12, 3582. [Google Scholar] [CrossRef]
- Iorizzo, M.; Testa, B.; Lombardi, S.J.; Ganassi, S.; Ianiro, M.; Letizia, F.; Succi, M.; Tremonte, P.; Vergalito, F.; Cozzolino, A.; et al. Antimicrobial Activity against Paenibacillus Larvae and Functional Properties of Lactobacillus plantarum Strains: Potential Benefits for Honeybee Health. Antibiotics 2020, 9, 442. [Google Scholar] [CrossRef]
- Rokop, Z.P.; Horton, M.A.; Newton, I.L.G. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives. Appl. Environ. Microbiol. 2015, 81, 7261. [Google Scholar] [CrossRef]
- Perez, R.H.; Zendo, T.; Sonomoto, K. Novel Bacteriocins from Lactic Acid Bacteria (LAB): Various Structures and Applications. Microb. Cell Fact. 2014, 13, S3. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Ayivi, R.D.; Zimmerman, T.; Siddiqui, S.A.; Altemimi, A.B.; Fidan, H.; Esatbeyoglu, T.; Bakhshayesh, R.V. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Prevention. Foods 2021, 10, 3131. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ang, B.; Xue, C.; Wang, Z.; Yin, L.; Wang, T.; Chen, Q.; Wang, Z.; Zeng, M.; Zhang, W.; et al. Insights into the Fermentation Potential of Pollen: Manufacturing, Composition, Health Benefits, and Applications in Food Production. Trends Food Sci. Technol. 2024, 143, 104245. [Google Scholar] [CrossRef]
- Urcan, A.C.; Criste, A.D.; Dezmirean, D.S.; Bobiș, O.; Bonta, V.; Burtescu, R.F.; Olah, N.-K.; Cornea-Cipcigan, M.; Mărgăoan, R. Enhancing Antioxidant and Antimicrobial Activities in Bee Collected Pollen through Solid-State Fermentation: A Comparative Analysis of Bioactive Compounds. Antioxidants 2024, 13, 292. [Google Scholar] [CrossRef] [PubMed]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Larsson, K.H.; Abarenkov, K.; Nilsson, R.H.; Alexander, I.J.; Eberhardt, U.; Erland, S.; Høiland, K.; Kjøller, R.; Larsson, E.; et al. UNITE: A Database Providing Web-Based Methods for the Molecular Identification of Ectomycorrhizal Fungi. New Phytol. 2005, 166, 1063–1068. [Google Scholar] [CrossRef] [PubMed]
- Tsavea, E.; Mossialos, D. Antibacterial Activity of Honeys Produced in Mount Olympus Area against Nosocomial and Foodborne Pathogens Is Mainly Attributed to Hydrogen Peroxide and Proteinaceous Compounds. J. Apic. Res. 2019, 58, 756–763. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Chang, S.; Bang, D. Investigating Bio-Inspired Degradation of Toxic Dyes Using Potential Multi-Enzyme Producing Extremophiles. Microorganisms 2023, 11, 1273. [Google Scholar] [CrossRef]
- Yassin, S.N.; Jiru, T.M.; Indracanti, M. Screening and Characterization of Thermostable Amylase-Producing Bacteria Isolated from Soil Samples of Afdera, Afar Region, and Molecular Detection of Amylase-Coding Gene. Int. J. Microbiol. 2021, 2021, 5592885. [Google Scholar] [CrossRef]
- Maski, S.; Ngom, S.I.; Rached, B.; Chouati, T.; Benabdelkhalek, M.; El Fahime, E.; Amar, M.; Béra-Maillet, C. Hemicellulosic Biomass Conversion by Moroccan Hot Spring Bacillus Paralicheniformis CCMM B940 Evidenced by Glycoside Hydrolase Activities and Whole Genome Sequencing. 3 Biotech 2021, 11, 379. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.; Farmer, S.J.; Heiland, K.L.; Moore, K.T.; Wall, T.A.V.; Sun, W.; Chaudhari, Y.B.; Himmel, M.E.; Decker, S.R. A Multi-Plex Protein Expression System for Production of Complex Enzyme Formulations in Trichoderma Reesei. J. Ind. Microbiol. Biotechnol. 2023, 49, 27. [Google Scholar] [CrossRef] [PubMed]
- Sheikhi, F.; Roayaei Ardakani, M.; Enayatizamir, N.; Rodriguez-Couto, S. The Determination of Assay for Laccase of Bacillus Subtilis WPI with Two Classes of Chemical Compounds as Substrates. Indian J. Microbiol. 2012, 52, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.A.R.; da Silveira, W.B.; Passos, F.M.L.; Zucchi, T.D. Oligonucleotide Primers for Specific Detection of Actinobacterial Laccases from Superfamilies I and K. Antonie Van Leeuwenhoek 2014, 106, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Ausec, L.; Berini, F.; Casciello, C.; Cretoiu, M.S.; van Elsas, J.D.; Marinelli, F.; Mandic-Mulec, I. The First Acidobacterial Laccase-like Multicopper Oxidase Revealed by Metagenomics Shows High Salt and Thermo-Tolerance. Appl. Microbiol. Biotechnol. 2017, 101, 6261–6276. [Google Scholar] [CrossRef] [PubMed]
- Sheng, P.; Li, Y.; Marshall, S.; Zhang, H. High Genetic Diversity of Microbial Cellulase and Hemicellulase Genes in the Hindgut of Holotrichia Parallela Larvae. Int. J. Mol. Sci. 2015, 16, 16545–16559. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
Accession Number (GenBank) | K. pneumoniae (cm ± 1SD) | S. enterica ser. Typhimurium (cm ± 1SD) | P. aeruginosa (cm ± 1SD) | S. aureus (cm ± 1SD) | % Identity | Identified Bacteria | 16 S rRNA Gene Sequence (bp) | Strain |
---|---|---|---|---|---|---|---|---|
ON911239 | 3 ± 0.7 | 2.7 ± 0.9 | 3 ± 0.8 | 0.8 ± 0.1 | 99.79 | Apilactobacillus kunkeei | 1446 | NADBB5 |
ON911241 | 3.1 ± 0.7 | 2.7 ± 0.9 | 3 ± 0.8 | 0.6 ± 0.1 | 100.00 | Apilactobacillus kunkeei | 1452 | NADBB7 |
ON911243 | 3.2 ± 0.2 | 2.7 ± 0.4 | 3 ± 0.1 | 0 | 99.86 | Apilactobacillus kunkeei | 1424 | NADBB9 |
ON911252 | 3.5 ± 0.5 | 3.4 ± 0.7 | 2.4 ± 1.4 | 0.7 ± 0.1 | 100.00 | Apilactobacillus kunkeei | 1447 | NADBB20 |
ON911258 | 2.8 ± 1 | 3.4 ± 0.4 | 2.7 ± 1.2 | 0.9 ± 0 | 99.79 | Apilactobacillus kunkeei | 1412 | NADBB27 |
ON911261 | 3 ± 0.9 | 2.8 ± 1 | 3 ± 0.8 | 0.7 ± 0.3 | 99.86 | Apilactobacillus kunkeei | 1433 | NADBB30 |
ON911265 | 3 ± 1.3 | 3.3 ± 0.8 | 2.9 ± 1 | 0.9 ± 0.2 | 100.00 | Apilactobacillus kunkeei | 1413 | NADBB34 |
ON911266 | 3.4 ± 0.8 | 3.2 ± 1.2 | 3.3 ± 0.8 | 1.6 ± 0.4 | 100.00 | Apilactobacillus kunkeei | 1208 | NADBB35 |
ON911268 | 3.3 ± 0.9 | 3 ± 1.3 | 3.4 ± 0.9 | 1.1 ± 0.2 | 100.00 | Apilactobacillus kunkeei | 1446 | NADBB37 |
ON911269 | 3.3 ± 0.9 | 3.1 ± 1.2 | 3.3 ± 1 | 1.1 ± 0.1 | 100.00 | Apilactobacillus kunkeei | 1443 | NADBB38 |
ON911270 | 2.7 ± 0.6 | 1.8 ± 0.3 | 2.4 ± 0.4 | 0 | 99.43 | Fructobacillus fructosus | 1393 | NADBB39 |
ON911279 | 3.3 ± 0.9 | 3 ± 1.2 | 3.3 ± 1 | 1.1 ± 0.4 | 100.00 | Apilactobacillus kunkeei | 1447 | NADBB48 |
Accession Number (GenBank) | Biosynthetic Potential | Antibacterial Activity | % Identity | Identified Bacteria | 16S rRNA Gene Sequence (bp) | Strain |
---|---|---|---|---|---|---|
ON911235 | A, P, R, G, L | 1 *, 3 * | 100.00 | Pseudomonas αeruginosa | 1400 | NADBB1 |
ON911236 | X, X, A, P, G, M | 1 ***, 3 ***, 4 *** | 100.00 | Bacillus sp. | 1395 | NADBB2 |
ON911237 | A, P, G, M, L | 1 *, 3 *, 4 *** | 99.93 | Bacillus thuringiensis | 1400 | NADBB3 |
ON911238 | A, P, R, G, L | 1 ***, 2 ***, 3 *** | 100.00 | Bacillus cereus | 1404 | NADBB4 |
ON911240 | C, X, A, P, GUA | 1 **, 3 *, 4 * | 100.00 | Bacillus siamensis | 1426 | NADBB6 |
ON911242 | X, A, G, M | 1 **, 4 *** | 100.00 | Bacillus sp. | 1416 | NADBB8 |
ON911244 | A, G, L | 3 **, 4 * | 99.86 | Bacillus thuringiensis | 1389 | NADBB10 |
ON911245 | X, X, X, A, P, G, M, | 1 ***, 4 *** | 99.93 | Bacillus sp. | 1417 | NADBB11 |
ON911246 | A, P, R, G, L | 3 *** | 99.93 | Bacillus thuringiensis | 1390 | NADBB13 |
ON911247 | C, X, X, P, R | 1 **, 4 * | 99.93 | Bacillus sp. | 1376 | NADBB14 |
ON911248 | C, A, P, G, M | 1 **, 3 *, 4 *** | 99.57 | Bacillus licheniformis | 1400 | NADBB16 |
ON911249 | C, X, A, P, M, L | 1 ** | 100.00 | Bacillus subtilis | 1425 | NADBB17 |
ON911250 | A, P, G, M, L | 1 **, 3 *, 4 * | 99.86 | Bacillus sp. | 1419 | NADBB18 |
ON911251 | C, X, A, G, L, L | 100.00 | Bacillus subtilis | 1423 | NADBB19 | |
ON911253 | A, P, R, G, L, L | 3 ** | 99.93 | Bacillus cereus | 1398 | NADBB21 |
ON911254 | X, X, P, G, M, | 1 ** | 100.00 | Bacillus sp. | 1420 | NADBB23 |
ON911255 | C, X, X, X, P, G | 1 **, 3 ***, 4 *** | 100.00 | Bacillus sp. | 1414 | NADBB24 |
ON911256 | C, X, A, P, M | 1 * | 100.00 | Bacillus siamensis | 1410 | NADBB25 |
ON911257 | C, X, A, P, G, M | 1 *, 3 *, 4 * | 100.00 | Bacillus subtilis | 1392 | NADBB26 |
ON911259 | A, G, M, L | 99.93 | Bacillus sp. | 1418 | NADBB28 | |
ON911260 | A, P, G | 1 **, 2 ***, 3 ***, 4 *** | 100.00 | Bacillus cereus | 1402 | NADBB29 |
ON911262 | A, M, L | 99.25 | Staphylococcus hominis | 1341 | NADBB31 | |
ON911263 | C, X, X, P, G, M | 1 ***, 3 ***, 4 *** | 100.00 | Bacillus sp. | 1371 | NADBB32 |
ON911264 | C, X, A, P, M, G, L | 1 ***, 3 *** | 99.86 | Bacillus siamensis | 1417 | NADBB33 |
ON911267 | A, P, G, L, L | 1 *, 3 *, 4 * | 100.00 | Bacillus thuringiensis | 1313 | NADBB36 |
ON911271 | C, X, X, P, R, G, L | 1 ***, 3 **, 4 *** | 100.00 | Bacillus safensis | 1416 | NADBB40 |
ON911272 | C, X, X, P, G | 1 ***, 4 *** | 99.93 | Bacillus sp. | 1419 | NADBB41 |
ON911273 | C, X, A, P, G | 1 **, 3 ***, 4 *** | 99.71 | Bacillus halotolerans | 1393 | NADBB42 |
ON911274 | C, A, P, G, M | 1 *, 4 ** | 99.86 | Bacillus licheniformis | 1395 | NADBB43 |
ON911275 | X, P, R, G | 1 **, 4 ** | 100.00 | Bacillus safensis | 1383 | NADBB44 |
ON911276 | C, X, X, A, M; | 1 * | 100.00 | Bacillus pumilus | 1391 | NADBB45 |
ON911277 | C, X, P, R, G, M | 1 **, 3 *** | 100.00 | Bacillus aerophilus | 1412 | NADBB46 |
ON911278 | A, P, R, G, L | 3 *** | 100.00 | Bacillus thuringiensis | 1396 | NADBB47 |
ON911280 | X, X, X, P, G | 1 * | 99.85 | Bacillus safensis | 1323 | NADBB49 |
ON911281 | X, X, X, P, G | 1 **, 3 **, 4 ** | 99.93 | Bacillus safensis | 1379 | NADBB50 |
S. enterica ser. Typhimurium | S. aureus | Samples | ||
---|---|---|---|---|
MBC w/v | MIC w/v | MBC w/v | MIC w/v | |
>12.5% | 12.5% | >12.5% | 12.5% | AF1 |
>12.5% | >12.5% | >12.5% | 12.5% | AF46D |
>12.5% | 6.25% | >12.5% | 12.5% | AF42D |
12.5% | 6.25% | >12.5% | 12.5% | AF43D |
>12.5% | 12.5% | >12.5% | 12.5% | AF44D |
6.25% | 6.25% | 12.5% | 6.25% | AF5 |
Botanic Origin | Region | Month | Age of BB and BCP Samples | Samples |
---|---|---|---|---|
Multifloral | Pelion, Thessaly | May | 1-day-old BCP | S1 and S6 |
Multifloral | Pelion, Thessaly | May | 1-day-old BB | S2 and S7 |
Multifloral | Pelion, Thessaly | May | 11-day-old BB | S3 and S8 |
Multifloral | Pelion, Thessaly | June | 27-day-old BB | S4 and S9 |
Multifloral | Pelion, Thessaly | June | 41-day-old BB | S5 |
Multifloral | Rethymno, Crete | May | Not determined | S11 |
Multifloral | Thessaly | May | BCP 24 h | AF1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asoutis Didaras, N.; Karaiskou, I.; Nikolaidis, M.; Siaperopoulou, C.; Georgi, I.; Tsadila, C.; Karatasou, K.; Amoutzias, G.D.; Mossialos, D. Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals 2024, 17, 761. https://doi.org/10.3390/ph17060761
Asoutis Didaras N, Karaiskou I, Nikolaidis M, Siaperopoulou C, Georgi I, Tsadila C, Karatasou K, Amoutzias GD, Mossialos D. Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals. 2024; 17(6):761. https://doi.org/10.3390/ph17060761
Chicago/Turabian StyleAsoutis Didaras, Nikos, Ioanna Karaiskou, Marios Nikolaidis, Christina Siaperopoulou, Irini Georgi, Christina Tsadila, Katerina Karatasou, Grigoris D. Amoutzias, and Dimitris Mossialos. 2024. "Contribution of Microbiota to Bioactivity Exerted by Bee Bread" Pharmaceuticals 17, no. 6: 761. https://doi.org/10.3390/ph17060761
APA StyleAsoutis Didaras, N., Karaiskou, I., Nikolaidis, M., Siaperopoulou, C., Georgi, I., Tsadila, C., Karatasou, K., Amoutzias, G. D., & Mossialos, D. (2024). Contribution of Microbiota to Bioactivity Exerted by Bee Bread. Pharmaceuticals, 17(6), 761. https://doi.org/10.3390/ph17060761