The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota
Abstract
:1. Introduction
2. Results and Discussion
2.1. Variation in the Chemical Composition of Propolis Extract Resulted from Different Geographical Origin
2.2. Variation in the Polyphenolic Profile of Propolis Extract According to Geographical Origin
2.3. The Effect of Propolis on Fecal Bacteria In Vitro
3. Materials and Methods
3.1. Chemicals
3.2. Media for Fecal Bacteria Isolation and Antibacterial Activity Testing
3.3. Propolis Samples and Extract Preparation
3.4. Antioxidant Activity Assays
3.5. Total Phenolic and Flavonoid Content Analysis
3.6. HPLC Analysis
3.7. In Vitro Testing of the Propolis Effect on Fecal Bacteria
3.7.1. Isolation of Intestinal Bacteria from Faeces
3.7.2. Well-Diffusion Method
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Özkök, A.; Keskin, M.; Tanuğur Samancı, A.E.; Yorulmaz Önder, E.; Takma, Ç. Determination of antioxidant activity and phenolic compounds for basic standardization of Turkish propolis. Appl. Biol. Chem. 2021, 64, 37. [Google Scholar] [CrossRef] [PubMed]
- Braakhuis, A. Evidence on the health benefits of supplemental propolis. Nutrients 2019, 11, 2705. [Google Scholar] [CrossRef] [PubMed]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid. Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef]
- Woźniak, M.; Mrówczyńska, L.; Waśkiewicz, A.; Rogoziński, T.; Ratajczak, I. Phenolic profile and antioxidant activity of propolis extracts from Poland. Nat. Prod. Commun. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Rivera-Yañez, N.; Rivera-Yañez, C.R.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Méndez-Cruz, A.R.; Nieto-Yañez, O. Biomedical properties of propolis on diverse chronic diseases and its potential applications and health benefits. Nutrients 2021, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Gul, Z.; Aziz, S.; Sadiq, M.B.; Achakzai, J.K.; Saeed, S.; Chein, S.H.; Sher, H. Bio-Functional Potential and Biochemical Properties of Propolis Collected from Different Regions of Balochistan Province of Pakistan. Oxid. Med. Cell. Longev. 2022, 2022, 7585406. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.R.; Kumazawa, S.; Hamasaka, T.; Bang, K.S.; Nakayama, T. Antioxidant activity and constituents of propolis collected in various areas of Korea. J. Agric. Food Chem. 2004, 52, 7286–7292. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Miłek, M.; Ciszkowicz, E.; Tomczyk, M.; Sidor, E.; Zaguła, G.; Lecka-zlachta, K.; Pasternakiewicz, A.; Dżugan, M. Poplar-Type Polish Propolis Considering Local Flora Diversity Breast Cancer Cells. Molecules 2022, 27, 725. [Google Scholar] [CrossRef]
- Woźniak, M.; Sip, A.; Mrówczyńska, L.; Broniarczyk, J.; Waśkiewicz, A.; Ratajczak, I. Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. Molecules 2023, 28, 141. [Google Scholar] [CrossRef] [PubMed]
- Yosri, N.; El-Wahed, A.A.A.; Ghonaim, R.; Khattab, O.M.; Sabry, A.; Ibrahim, M.A.A.; Moustafa, M.F.; Guo, Z.; Zou, X.; Algethami, A.F.M.; et al. Anti-Viral and Immunomodulatory Properties of Propolis: Chemical Diversity, Pharmacological Properties, Preclinical and Clinical Applications, and In Silico Potential against SARS-CoV-2. Foods 2021, 10, 1776. [Google Scholar] [CrossRef]
- Rocha, M.P.; Amorim, J.M.; Lima, W.G.; Brito, J.C.M.; da Cruz Nizer, W.S. Effect of honey and propolis, compared to acyclovir, against Herpes Simplex Virus (HSV)-induced lesions: A systematic review and meta-analysis. J. Ethnopharmacol. 2022, 287, 114939. [Google Scholar] [CrossRef] [PubMed]
- Widelski, J.; Gaweł-Bęben, K.; Czech, K.; Paluch, E.; Bortkiewicz, O.; Kozachok, S.; Mroczek, T.; Okińczyc, P. Extracts from European Propolises as Potent Tyrosinase Inhibitors. Molecules 2023, 28, 55. [Google Scholar] [CrossRef] [PubMed]
- Mihai, C.M.; Al Mărghitaş, L.; Dezmirean, D.S.; Bărnuţiu, L. Correlation between Polyphenolic Profile and Antioxidant Activity of Propolis from Transylvania. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 100–103. [Google Scholar]
- Osés, S.M.; Marcos, P.; Azofra, P.; de Pabl, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic profile, antioxidant capacities and enzymatic inhibitory activities of propolis from different geographical areas: Needs for analytical harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Pobiega, K.; Kot, A.M.; Przybył, J.L.; Synowiec, A.; Gniewosz, M. Comparison of the Chemical Composition and Antioxidant Properties of Propolis from Urban Apiaries. Molecules 2023, 28, 6744. [Google Scholar] [CrossRef]
- Ozdal, T.; Ceylan, F.D.; Eroglu, N.; Kaplan, M.; Olgun, E.O.; Capanoglu, E. Investigation of antioxidant capacity, bioaccessibility and LC-MS/MS phenolic profile of Turkish propolis. Food Res. Int. 2019, 122, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Kurek-Górecka, A.; Rzepecka-Stojko, A.; Górecki, M.; Stojko, J.; Sosada, M.; Swierczek-Zieba, G. Structure and antioxidant activity of polyphenols derived from propolis. Molecules 2014, 19, 78–101. [Google Scholar] [CrossRef]
- Socha, R.; Gałkowska, D.; Bugaj, M.; Juszczak, L. Phenolic composition and antioxidant activity of propolis from various regions of Poland. Nat. Prod. Res. 2015, 29, 416–422. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The interactions between polyphenols and microorganisms, especially gut microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, H.; Liu, R.; Huang, C.L.; Li, H.; Deng, Z.Y.; Tsao, R. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects?—New insights from a TNF-α-induced Caco-2 cell model. Food Res. Int. 2021, 139, 109833. [Google Scholar] [CrossRef] [PubMed]
- Kemperman, R.A.; Bolca, S.; Roger, L.C.; Vaughan, E.E. Novel approaches for analysing gut microbes and dietary polyphenols: Challenges and opportunities. Microbiology 2010, 156, 3224–3231. [Google Scholar] [CrossRef] [PubMed]
- Van Duynhoven, J.; Vaughan, E.E.; Jacobs, D.M.; Kemperman, R.A.; Van Velzen, E.J.J.; Gross, G.; Roger, L.C.; Possemiers, S.; Smilde, A.K.; Doré, J.; et al. Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. USA 2011, 108, 4531–4538. [Google Scholar] [CrossRef]
- Wang, L.-Q.; Meselhy, M.R.; Li, Y.; Nakamura, N.; Min, B.-S.; Qin, G.-W.; Hattori, M. The Heterocyclic Ring Fission and Dehydroxylation of Catechins and Related Compounds by Eubacterium sp. Strain SDG-2, a Human Intestinal Bacterium. Chem. Pharm. Bull. 2001, 49, 1640–1643. [Google Scholar] [CrossRef] [PubMed]
- Unno, T.; Tamemoto, K.; Yayabe, F.; Kakuda, T. Urinary Excretion of 5-(3′,4′-Dihydroxyphenyl)-γ-valerolactone, a Ring-Fission Metabolite of (−)-Epicatechin, in Rats and Its in Vitro. J. Agric. Food Chem. 2003, 51, 6893–6898. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ho, L.; Faith, J.; Ono, K.; Janle, E.M.; Lachcik, P.J.; Cooper, B.R.; Jannasch, A.H.; D’Arcy, B.R.; Williams, B.A.; et al. Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol. Nutr. Food Res. 2015, 59, 1025–1040. [Google Scholar] [CrossRef]
- Okińczyc, P.; Widelski, J.; Szperlik, J.; Żuk, M.; Mroczek, T.; Skalicka-Woźniak, K.; Sakipova, Z.; Widelska, G.; Kuś, P.M. Impact of plant origin on eurasian propolis on phenolic profile and classical antioxidant activity. Biomolecules 2021, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Tumbarski, Y.; Todorova, M.; Topuzova, M.; Gineva, G.; Yanakieva, V.; Ivanov, I.; Petkova, N. Comparative Study on Physicochemical, Antioxidant and Antimicrobial Properties of Propolis Collected from Different Regions of Bulgaria. J. Apic. Sci. 2023, 67, 37–56. [Google Scholar] [CrossRef]
- Ristivojević, P.; Trifković, J.; Andrić, F.; Milojković-Opsenica, D. Poplar-type propolis: Chemical composition, botanical origin and biological activity. Nat. Prod. Commun. 2015, 10, 1869–1876. [Google Scholar] [CrossRef]
- Altuntaş, Ü.; Güzel, İ.; Özçelik, B. Phenolic Constituents, Antioxidant and Antimicrobial Activity and Clustering Analysis of Propolis Samples Based on PCA from Different Regions of Anatolia. Molecules 2023, 28, 1121. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, J.; Yang, H.; Li, G.; Li, H.; Deng, Z.; Zhang, B. Propolis polyphenols: A review on the composition and anti-obesity mechanism of different types of propolis polyphenols. Front. Nutr. 2023, 10, 1066789. [Google Scholar] [CrossRef] [PubMed]
- Pobiega, K.; Gniewosz, M.; Kraśniewska, K. Antimicrobial and antiviral properties of different types of propolis. Zesz. Probl. Postępów Nauk Rol. 2018, 589, 69–79. [Google Scholar] [CrossRef]
- Omidi, B.; Sarveahrabi, Y.; Nejati Khoei, S. Comparison of the Effect of Fluoride 0.2% and a Combined Mouthwash (Flavonoid Compounds and Fluoride 0.2%) Against Streptococcus mutans and Lactobacillus acidophilus: In Silico and In Vitro Study. Avicenna J. Dent. Res. 2023, 15, 142–149. [Google Scholar] [CrossRef]
- Wexler, H.M. Bacteroides: The good, the bad, and the nitty-gritty. Clin. Microbiol. Rev. 2007, 20, 593–621. [Google Scholar] [CrossRef] [PubMed]
- Alkhaldy, A.; Edwards, C.A.; Combet, E. The urinary phenolic acid profile varies between younger and older adults after a polyphenol-rich meal despite limited differences in in vitro colonic catabolism. Eur. J. Nutr. 2019, 58, 1095–1111. [Google Scholar] [CrossRef] [PubMed]
- Kawabata, K.; Sugiyama, Y.; Sakano, T.; Ohigashi, H. Flavonols enhanced production of anti-inflammatory substance(s) by bifidobacterium adolescentis: Prebiotic actions of galangin, quercetin, and fisetin. BioFactors 2013, 39, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Alves-Santos, A.M.; Sugizaki, C.S.A.; Lima, G.C.; Naves, M.M.V. Prebiotic effect of dietary polyphenols: A systematic review. J. Funct. Foods 2020, 74, 104169. [Google Scholar] [CrossRef]
- Ferreira de Brito, L.; Bergara Pereira, F.; Lorenzon, M.C.; Castro, R.N.; Laureano Melo, R.; Guerra, A.F.; Luchese, R.H. What is the Effect of Propolis Extracts against Pathogenic Microorganisms and on Potentially Probiotic Strains of Lacticaseibacillus and Limosilactobacillus? ACS Food Sci. Technol. 2022, 2, 493–502. [Google Scholar] [CrossRef]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef]
- Liu, H.N.; Liu, Y.; Hu, L.L.; Suo, Y.L.; Zhang, L.; Jin, F.; Feng, X.A.; Teng, N.; Li, Y. Effects of dietary supplementation of quercetin on performance, egg quality, cecal microflora populations, and antioxidant status in laying hens. Poult. Sci. 2014, 93, 347–353. [Google Scholar] [CrossRef]
- Kačániová, M.; Rovná, K.; Arpášová, H.; Čuboň, J.; Hleba, L.; Pochop, J.; Kunová, S.; Haščík, P. In vitro and In vivo antimicrobial activity of propolis on the microbiota from gastrointestinal tract of chickens. J. Environ. Sci. Health Part A Toxic/Hazardous Subst. Environ. Eng. 2012, 47, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Garzarella, E.U.; Navajas-Porras, B.; Pérez-Burillo, S.; Ullah, H.; Esposito, C.; Santarcangelo, C.; Hinojosa-Nogueira, D.; Pastoriza, S.; Zaccaria, V.; Xiao, J.; et al. Evaluating the effects of a standardized polyphenol mixture extracted from poplar-type propolis on healthy and diseased human gut microbiota. Biomed. Pharmacother. 2022, 148, 112759. [Google Scholar] [CrossRef] [PubMed]
- Dżugan, M.; Miłek, M.; Kielar, P.; Stępień, K.; Sidor, E.; Bocian, A. SDS-PAGE Protein and HPTLC Polyphenols Profiling as a Promising Tool for Authentication of Goldenrod Honey. Foods 2022, 11, 2390. [Google Scholar] [CrossRef] [PubMed]
- Komprda, T.; Sládková, P.; Kolářová, M.; Zorníková, G.; Sládek, Z.; Rožnovská, D. Effect of probiotic and symbiotic yoghurt consumption on counts of human faecal bacteria and tyramine production. J. Food Nutr. Res. 2013, 52, 230–238. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI standard M7; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria, 9th ed.; CLSI standard M11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
Sample | TPC [mg GAE/g] | TFC [mg QE/g] | DPPH [μmol TE/g] | FRAP [μmol TE/g] | CUPRAC [μmol TE/g] |
---|---|---|---|---|---|
890 (BG) | 80.51 ± 4.44 a | 90.99 ± 4.78 c | 171.63 ± 7.41 ab | 284.49 ± 34.15 ab | 1412.82 ± 138.91 a |
891 (BG) | 97.26 ± 5.65 bde | 130.48 ± 5.66 d | 207.48 ± 12.00 bdef | 354.36 ± 6.45 ce | 1874.36 ± 282.25 af |
894 (TR) | 67.38 ± 4.72 a | 73.84 ± 2.88 bc | 183.95 ± 23.54 acdk | 330.16 ± 6.34 bcd | 1667.95 ± 109.62 acdi |
879 (TR) | 78.97 ± 3.60 a | 84.48 ± 3.64 c | 201.38 ± 14.00 ae | 306.83 ± 30.30 ac | 1602.56 ± 193.59 ab |
885 (TR) | 109.74 ± 8.33 b | 133.74 ± 5.03 df | 287.25 ± 7.69 l | 523.65 ± 26.99 g | 2685.90 ± 276.99 h |
892 (RO) | 91.51 ± 7.75 aef | 95.83 ± 4.82 c | 236.47 ± 18.80 e | 328.73 ± 29.89 bcde | 1915.38 ± 362.21 ag |
893 (RO) | 98.15 ± 5.22 bdf | 63.21 ± 2.54 b | 209.47 ± 5.29 bdeg | 364.21 ± 21.50 cf | 2132.05 ± 311.05 befgh |
895 (UA) | 130.00 ± 5.45 c | 160.46 ± 9.34 e | 225.65 ± 11.79 ejk | 390.49 ± 25.75 ef | 2308.97 ± 99.88 defgh |
896 (UA) | 84.42 ± 6.69 ad | 75.47 ± 2.95 bc | 167.27 ± 8.44 a | 278.03 ± 8.85 ab | 1671.79 ± 207.70 ae |
886 (PL) | 121.48 ± 2.97 bc | 151.60 ± 7.81 e | 244.19 ± 12.96 fghij | 358.96 ± 33.66 ce | 2252.56 ± 180.99 bcefgh |
887 (PL) | 115.78 ± 3.75 bc | 148.80 ± 10.69 ef | 222.41 ± 11.20 cei | 401.55 ± 24.78 ef | 2271.79 ± 235.66 efghi |
888 (PL) | 117.52 ± 6.74 bc | 143.31 ± 7.10 de | 219.92 ± 11.79 ceh | 386.77 ± 13.80 def | 2021.79 ± 169.94 ah |
889 (PL) | 85.41 ± 4.17 ad | 36.64 ± 1.59 a | 163.17 ± 14.01 a | 241.46 ± 0.57 a | 1676.92 ± 182.48 ae |
Min | 61.98 | 34.81 | 148.98 | 241.13 | 1280.77 |
Max | 136.30 | 167.02 | 293.10 | 545.34 | 2900.00 |
Mean | 98.32 | 106.84 | 210.79 | 349.98 | 1961.14 |
SD | 19.20 | 39.07 | 35.61 | 71.46 | 396.14 |
Variability [%] | 19.53 | 36.57 | 16.89 | 20.42 | 20.20 |
F-value | 35.42 | 135.74 | 21.26 | 28.17 | 7.67 |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Polyphenol Content [mg/100 g] | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Caffeic Acid | p-Coumaric Acid | Ferulic Acid | Isoferulic Acid | Caffeic Acid Derivative | Benzoic Acid | Vanillin | Quercetin | Kaempferol | Apigenin | Flavanone I | Pinobanksin | Chrysin | Pinocembrin | Galangin | Flavanone II | Galangin Derivative | Sum of polyphenols | ||
Propolis sample no. (country of origin) | 890 (BG) | 148.86 ± 11.22 | 181.47 ± 8.62 | 142.41 ± 18.53 | 82.13 ± 4.20 | 92.53 ± 7.08 | 72.80 ± 4.45 | nd | 240.80 ± 17.95 | 75.44 ± 22.95 | 188.87 ± 5.00 | 366.66 ± 31.11 | 688.68 ± 42.82 | 1873.22 ± 145.29 | 1155.22 ± 81.09 | nd | 1704.02 ± 136.13 | nd | 7013.11 |
891 (BG) | 210.87 ± 12.05 | 135.56 ± 14.14 | 82.39 ± 3.73 | 132.68 ± 13.60 | 140.46 ± 12.11 | 92.58 ± 13.72 | nd | 423.88 ± 32.97 | 99.86 ± 38.84 | 268.00 ± 5.88 | 599.16 ± 24.41 | 815.14 ± 29.98 | 2694.24 ± 100.37 | 1699.43 ± 17.82 | nd | 2893.38 ± 123.84 | nd | 10,287.63 | |
894 (TR) | 127.81 ± 17.02 | 126.43 ± 34.37 | 58.71 ± 19.49 | 203.85 ± 27.46 | 127.35 ± 20.50 | 88.65 ± 28.87 | 12.45 ± 5.12 | 92.57 ± 7.59 | 64.44 ± 13.53 | 191.56 ± 11.05 | 298.86 ± 63.28 | 468.03 ± 42.33 | 2290.17 ± 208.16 | 739.58 ± 206.56 | nd | 1537.51 ± 352.02 | nd | 6427.97 | |
879 (TR) | 153.43 ± 4.12 | 159.28 ± 10.23 | 75.61 ± 5.08 | 168.92 ± 5.27 | 143.99 ± 9.99 | 179.63 ± 2.11 | 13.81 ± 0.66 | 85.30 ± 3.27 | 62.41 ± 4.92 | 191.90 ± 2.32 | 364.34 ± 35.14 | 492.12 ± 27.07 | 2432.83 ± 142.29 | 1065.96 ± 41.07 | nd | 1715.16 ± 71.17 | 96.15 ± 12.81 | 7400.84 | |
885 (TR) | 272.16 ± 6.54 | 302.83 ± 12.39 | 104.39 ± 10.69 | 433.07 ± 10.49 | 341.31 ± 9.76 | 458.91 ± 18.49 | 32.84 ± 1.95 | nd | 63.81 ± 4.09 | 144.26 ± 6.04 | 582.62 ± 25.43 | 675.30 ± 32.23 | 3728.38 ± 173.08 | 1697.07 ± 64.99 | nd | 2123.39 ± 20.86 | 141.93 ± 13.07 | 11,102.27 | |
892 (RO) | 156.98 ± 9.17 | 206.40 ± 19.80 | 142.43 ± 16.47 | 173.07 ± 9.85 | 184.61 ± 8.85 | 227.68 ± 13.72 | 48.54 ± 6.86 | 95.69 ± 6.82 | 54.91 ± 22.21 | 167.20 ± 22.24 | 500.10 ± 20.00 | 563.59 ± 28.81 | 2310.67 ± 85.51 | 1457.63 ± 63.02 | nd | 2056.45 ± 90.63 | 94.55 ± 3.77 | 8440.43 | |
893 (RO) | 112.47 ± 17.02 | 540.85 ± 51.52 | 482.88 ± 47.51 | 169.79 ± 28.36 | 175.53 ± 20.64 | 328.85 ± 33.85 | 113.71 ± 11.37 | nd | nd | 175.01 ± 11.37 | 270.26 ± 41.58 | 335.62 ± 51.79 | 1819.02 ± 561.25 | 781.53 ± 123.86 | nd | 1195.44 ± 173.84 | nd | 6500.96 | |
895 (UA) | 191.50 ± 13.89 | 950.12 ± 50.39 | 810.50 ± 37.69 | 180.15 ± 14.75 | 400.27 ± 23.10 | 569.85 ± 24.30 | 40.66 ± 1.95 | 159.04 ± 10.14 | 179.10 ± 19.98 | 540.27 ± 11.80 | 683.40 ± 39.44 | 862.48 ± 50.05 | 3723.49 ± 117.67 | 1906.02 ± 86.07 | nd | 3115.29 ± 167.31 | 380.85 ± 11.04 | 14,692.99 | |
896 (UA) | 122.90 ± 64.48 | 660.11 ± 273.44 | 429.33 ± 5.10 | 54.28 ± 7.02 | nd | 321.63 ± 6.40 | 139.57 ± 8.48 | nd | 108.51 ± 12.47 | nd | 190.22 ± 19.43 | 335.82 ± 38.95 | 2220.39 ± 348.32 | 350.84 ± 118.32 | nd | 837.42 ± 151.35 | 227.00 ± 21.54 | 5998.02 | |
886 (PL) | 300.24 ± 5.54 | 847.40 ± 96.13 | 492.66 ± 55.14 | 299.82 ± 8.20 | 130.60 ± 9.90 | 379.81 ± 67.42 | 50.03 ± 6.47 | 202.44 ± 5.57 | 164.31 ± 22.85 | 470.48 ± 23.75 | 757.57 ± 7.56 | 1068.69 ± 25.30 | 3140.17 ± 166.06 | 574.12 ± 26.69 | 2201.42 ± 2.29 | 3301.33 ± 113.70 | 234.24 ± 6.30 | 14,615.33 | |
887 (PL) | 251.81 ± 17.78 | 881.74 ± 21.56 | 515.37 ± 24.51 | 333.98 ± 27.94 | 148.32 ± 6.86 | 479.56 ± 21.30 | 77.81 ± 7.52 | 187.61 ± 16.85 | 163.82 ± 41.05 | 600.26 ± 31.72 | 674.49 ± 63.06 | 897.59 ± 100.91 | 3011.42 ± 213.99 | 497.22 ± 43.88 | 1933.68 ± 161.43 | 2883.25 ± 187.57 | 216.46 ± 15.16 | 13,754.39 | |
888 (PL) | 254.47 ± 25.51 | 738.65 ± 38.42 | 454.18 ± 48.15 | 306.31 ± 31.70 | 139.60 ± 18.84 | 341.33 ± 29.98 | 76.12 ± 8.49 | 198.94 ± 19.80 | 171.21 ± 34.64 | 507.80 ± 23.33 | 687.67 ± 44.90 | 1048.45 ± 82.87 | 2749.43 ± 324.41 | 456.49 ± 100.49 | 1673.06 ± 408.42 | 2370.49 ± 676.23 | 186.04 ± 109.80 | 12,360.24 | |
889 (PL) | 68.34 ± 7.85 | 1541.54 ± 198.10 | 717.36 ± 84.59 | nd | nd | 571.73 ± 59.60 | 61.74 ± 6.27 | nd | nd | 39.81 ± 6.27 | nd | 288.67 ± 40.08 | nd | 183.17 ± 67.96 | nd | 335.74 ± 95.02 | nd | 3808.1 | |
Min | 59.29 | 101.07 | 41.63 | 49.36 | 0.00 | 63.82 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 262.25 | 0.00 | 108.27 | 0.00 | 259.74 | 0.00 | ||
Max | 304.12 | 1739.98 | 839.53 | 439.35 | 421.47 | 638.47 | 146.71 | 460.84 | 187.68 | 700.08 | 765.78 | 1143.39 | 3856.90 | 1986.22 | 2202.94 | 3369.82 | 391.47 | ||
Mean | 182.45 | 559.26 | 346.79 | 195.23 | 316.39 | 155.74 | 51.33 | 129.71 | 92.91 | 268.11 | 459.64 | 656.94 | 2461.03 | 966.48 | 446.78 | 2005.30 | 121.32 | ||
SD | 71.77 | 425.86 | 254.38 | 118.76 | 172.67 | 109.42 | 41.75 | 121.35 | 60.73 | 192.82 | 226.22 | 264.33 | 954.23 | 563.96 | 839.08 | 903.22 | 122.06 | ||
Variability [%] | 38.98 | 76.15 | 73.35 | 60.83 | 54.57 | 70.26 | 81.35 | 93.55 | 65.37 | 71.92 | 49.22 | 40.24 | 38.77 | 58.35 | 187.81 | 45.04 | 100.61 | ||
F-value | 45,535 | 54.18 | 146.09 | 138.91 | 207.55 | 93.29 | 143.68 | 257.60 | 86.73 | 82.76 | 117.80 | 84.66 | 47.10 | 113.15 | 148.11 | 41.62 | 44.09 | ||
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Sample | EEP Concentration | Bifidobacterium spp. | L. rhamnosus | L. acidophilus | E. coli | Bacteroides spp. |
---|---|---|---|---|---|---|
891 (BG) | 70 mg/mL | 16.3 ± 0.5 c | 18.3 ± 05 d | 28.3 ± 0.5 e | 12.3 ± 0.5 b | 8.3 ± 0.5 a |
40 mg/mL | 13.7 ± 0.5 c | 16.3 ± 0.5 d | 23.7 ± 0.5 e | 10.3 ± 0.5 b | 8.3 ± 0.5 a | |
10 mg/mL | 11.7 ± 0.5 b | 15.7 ± 0.5 c | 20.3 ± 0.5 d | 7.7 ± 0.5 a | 7.3 ± 0.5 a | |
1 mg/mL | 8.7 ± 0.5 bc | 7.7 ± 0.5 b | 9.3 ± 0.5 c | nd | nd | |
100 μg/mL | nd | nd | nd | nd | nd | |
10 μg/mL | nd | nd | nd | nd | nd | |
885 (TR) | 70 mg/mL | 14.3 ± 0.5 d | 18.3 ± 0.5 a | 18.3 ± 0.5 a | 12.3 ± 0.5 c | 10.7 ± 0.5 b |
40 mg/mL | 11.7 ± 0.5 b | 15.7 ± 0.5 c | 14.3 ± 0.5 c | 10.3 ± 0.5 ab | 9.7 ± 0.5 a | |
10 mg/mL | 9.7 ± 0.5 b | 13.7 ± 0.5 d | 11.7 ± 0.5 c | 7.7 ± 0.5 a | 7.7 ± 0.5 a | |
1 mg/mL | 8.3 ± 0.5 a | 7.7 ± 0.5 a | 7.7 ± 0.5 a | nd | 7.3 ± 0.5 a | |
100 μg/mL | nd | nd | nd | nd | nd | |
10 μg/mL | nd | nd | nd | nd | nd | |
886 (PL) | 70 mg/mL | 14.3 ± 0.5 c | 16.7 ± 0.5 a | 12.3 ± 0.5 b | 24.3 ± 0.5 d | 16.3 ± 0.5 a |
40 mg/mL | 13.7 ± 0.5 a | 15.7 ± 0.5 b | 12.3 ± 0.5 a | 20.3 ± 0.5 c | 12.3 ± 0.5 a | |
10 mg/mL | 11.7 ± 0.5 a | 13.7 ± 0.5 b | 10.3 ± 0.5 a | 14.3 ± 0.5 b | 10.3 ± 0.5 a | |
1 mg/mL | 8.3 ± 0.5 a | 8.7 ± 0.5 a | nd | 7.7 ± 0.5 a | 7.7 ± 0.5 a | |
100 μg/mL | nd | 7.3 ± 0.5 a | nd | nd | 7.3 ± 0.5 a | |
10 μg/mL | nd | nd | nd | nd | nd | |
889 (PL) | 70 mg/mL | 18.3 ± 0.5 a | 9.3 ± 0.5 b | 18.3 ± 0.5 a | 12.7 ± 0.5 c | 16.3 ± 0.5 d |
40 mg/mL | 14.7 ± 0.5 a | 7.7 ± 0.5 b | 14.3 ± 0.5 a | 12.3 ± 0.5 d | 10.3 ± 0.5 c | |
10 mg/mL | 13.7 ± 0.5 c | 7.3 ± 0.5 a | 11.7 ± 0.5 b | 11.3 ± 0.5 b | 8.3 ± 0.5 a | |
1 mg/mL | 7.3 ± 0.5 b | nd | 7.3 ± 0.5 b | nd | nd | |
100 μg/mL | nd | nd | nd | nd | nd | |
10 μg/mL | nd | nd | nd | nd | nd | |
893 (RO) | 70 mg/mL | 10.7 ± 0.5 a | 12.3 ± 0.5 b | 16.3 ± 0.5 c | 10.3 ± 0.5 a | 12.7 ± 0.5 b |
40 mg/mL | 9.7 ± 0.5 b | 11.7 ± 0.5 a | 12.3 ± 0.5 a | 8.3 ± 0.5 b | 11.7 ± 0.5 a | |
10 mg/mL | 9.7 ± 0.5 a | 10.3 ± 0.5 a | 9.7 ± 0.5 a | 6.7 ± 0.5 b | 9.7 ± 0.5 a | |
1 mg/mL | 7.7 ± 0.5 b | nd | nd | nd | nd | |
100 μg/mL | nd | nd | nd | nd | nd | |
10 μg/mL | nd | nd | nd | nd | nd | |
895 (UA) | 70 mg/mL | 14.3 ± 0.5 c | 16.3 ± 0.5 d | 10.3 ± 0.5 a | 12.3 ± 0.5 b | 10.3 ± 0.5 a |
40 mg/mL | 13.7 ± 0.5 d | 13.7 ± 0.5 d | 8.3 ± 0.5 a | 10.3 ± 0.5 c | 9.7 ± 0.5 ab | |
10 mg/mL | 11.7 ± 0.5 b | 11.7 ± 0.5 b | 7.3 ± 0.5 a | 8.3 ± 0.5 a | 7.7 ± 0.5 a | |
1 mg/mL | 7.7 ± 0.5 b | 8.3 ± 0.5 b | nd | nd | nd | |
100 μg/mL | nd | nd | nd | nd | nd | |
10 μg/mL | nd | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miłek, M.; Franke, G.; Tomczyk, M.; Górecki, M.; Cwiková, O.; Jarošová, A.; Dżugan, M. The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota. Pharmaceuticals 2024, 17, 768. https://doi.org/10.3390/ph17060768
Miłek M, Franke G, Tomczyk M, Górecki M, Cwiková O, Jarošová A, Dżugan M. The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota. Pharmaceuticals. 2024; 17(6):768. https://doi.org/10.3390/ph17060768
Chicago/Turabian StyleMiłek, Michał, Gabriela Franke, Monika Tomczyk, Miłosz Górecki, Olga Cwiková, Alžbeta Jarošová, and Małgorzata Dżugan. 2024. "The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota" Pharmaceuticals 17, no. 6: 768. https://doi.org/10.3390/ph17060768
APA StyleMiłek, M., Franke, G., Tomczyk, M., Górecki, M., Cwiková, O., Jarošová, A., & Dżugan, M. (2024). The Influence of Geographical Origin on Poplar Propolis Composition and the Impact of Human Microbiota. Pharmaceuticals, 17(6), 768. https://doi.org/10.3390/ph17060768