Facile Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide Derivatives, Their Antibacterial Activities against Clinically Isolated XDR S. Typhi, Alkaline Phosphatase Inhibitor Activities, and Docking Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antibacterial Activity of the Compound against XDR-S. Typhi Pathogens
2.2.1. Isolate Confirmation
2.2.2. Antibiogram of the Isolates
2.2.3. Antibacterial Activity of Compound against XDR-S. Typhi
2.2.4. MIC and MBC of the Compounds (5a–5d) against XDR-S. Typhi
2.3. In Vitro Biological Activity
Enzyme Kinetics Studies
2.4. Docking Studies
2.4.1. Protein–Ligand Interactions of the Synthesized Compounds (5a–5d) with the Target Protein (PDB ID: 5ztj)
2.4.2. Protein–Ligand Interactions of the Synthesized Compounds (5a–5d) with the Target Protein (PDB ID: 1EW2)
2.5. Pharmacokinetic Profile and ADME Evaluation
2.6. Structure–Activity Relationship
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide
N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide (3)
3.3. General Procedure for the Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamides by Suzuki Coupling
3.3.1. N-(3′-Chloro-4′-fluoro-2-methyl-[1,1′-biphenyl]-4-yl)pyrazine-2-carboxamide (5a)
3.3.2. N-(4′-Chloro-2-methyl-[1,1′-biphenyl]-4-yl)pyrazine-2-carboxamide (5b)
3.3.3. N-(3′-Acetyl-2-methyl-[1,1′-biphenyl]-4-yl)pyrazine-2-carboxamide (5c)
3.3.4. Methyl 2′-Methyl-4′-(pyrazine-2-carboxamido)-[1,1′-biphenyl]-4-carboxylate (5d)
3.4. Isolate Identification
3.5. Agar Well Diffusion Method
3.6. Minimum Inhibitory Concertation of Different Compounds against XDR-S. Typhi
3.7. Minimum Bactericidal Concentration against XDR-S. Typhi
3.8. Alkaline Phosphatase Inhibition Assay
3.9. Molecular Docking Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marchello, C.S.; Birkhold, M.; Crump, J.A. Complications and mortality of typhoid fever: A global systematic review and meta-analysis. J. Infect. 2020, 81, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Connor, B.A.; Schwartz, E. Typhoid and paratyphoid fever in travellers. Lancet Infect. Dis. 2005, 5, 623–628. [Google Scholar] [CrossRef]
- Masuet-Aumatell, C.; Atouguia, J. Typhoid fever infection—Antibiotic resistance and vaccination strategies: A narrative review. Travel Med. Infect. Dis. 2021, 40, 101946. [Google Scholar] [CrossRef] [PubMed]
- Wain, J.; Hendriksen, R.S.; Mikoleit, M.L.; Keddy, K.H.; Ochiai, R.L. Typhoid fever. Lancet 2015, 385, 1136–1145. [Google Scholar] [CrossRef]
- Crump John, A.; Sjölund-Karlsson, M.; Gordon Melita, A.; Parry Christopher, M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [PubMed]
- Holt, K.E.; Phan, M.D.; Baker, S.; Duy, P.T.; Nga, T.V.T.; Nair, S.; Turner, A.K.; Walsh, C.; Fanning, S.; Farrell-Ward, S.; et al. Emergence of a Globally Dominant IncHI1 Plasmid Type Associated with Multiple Drug Resistant Typhoid. PLoS Negl. Trop. Dis. 2011, 5, e1245. [Google Scholar] [CrossRef]
- Yap, K.-P.; Thong, K.L. Salmonella Typhi genomics: Envisaging the future of typhoid eradication. Trop. Med. Int. Health 2017, 22, 918–925. [Google Scholar] [CrossRef]
- Phan, M.-D.; Kidgell, C.; Nair, S.; Holt Kathryn, E.; Turner Arthur, K.; Hinds, J.; Butcher, P.; Cooke Fiona, J.; Thomson Nicholas, R.; Titball, R.; et al. Variation in Salmonella enterica Serovar Typhi IncHI1 Plasmids during the Global Spread of Resistant Typhoid Fever. Antimicrob. Agents Chemother. 2009, 53, 716–727. [Google Scholar] [CrossRef]
- Qamar, M.U.; Ambreen, A.; Batool, A.; Rasool, M.H.; Shafique, M.; Khan, A.; Nisar, M.A.; Khalid, A.; Junaid, K.; Abosalif, K.O.A.; et al. Molecular Detection of Extensively Drug-Resistant Salmonella Typhi and Carbapenem-Resistant Pathogens in Pediatric Septicemia Patients in Pakistan—A Public Health Concern. Future Microbiol. 2021, 16, 731–739. [Google Scholar] [CrossRef]
- Ahmad, G.; Rasool, N.; Qamar, M.U.; Alam, M.M.; Kosar, N.; Mahmood, T.; Imran, M. Facile synthesis of 4-aryl-N-(5-methyl-1H-pyrazol-3-yl)benzamides via Suzuki Miyaura reaction: Antibacterial activity against clinically isolated NDM-1-positive bacteria and their Docking Studies. Arab. J. Chem. 2021, 14, 103270. [Google Scholar] [CrossRef]
- Fischbach, M.A.; Walsh, C.T. Antibiotics for emerging pathogens. Science 2009, 325, 1089–1093. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.D.; Coast, J. Antimicrobial resistance: A global response. Bull. World Health Organ. 2002, 80, 126–133. [Google Scholar] [PubMed]
- Serafini, M.; Cargnin, S.; Massarotti, A.; Pirali, T.; Genazzani, A.A. Essential Medicinal Chemistry of Essential Medicines. J. Med. Chem. 2020, 63, 10170–10187. [Google Scholar] [CrossRef] [PubMed]
- Huigens, R.W.; Brummel, B.R.; Tenneti, S.; Garrison, A.T.; Xiao, T. Pyrazine and Phenazine Heterocycles: Platforms for Total Synthesis and Drug Discovery. Molecules 2022, 27, 1112. [Google Scholar] [CrossRef]
- Piddock, L.J.V. The 2019 Garrod Lecture: MDR efflux in Gram-negative bacteria—How understanding resistance led to a new tool for drug discovery. J. Antimicrob. Chemother. 2019, 74, 3128–3134. [Google Scholar] [CrossRef]
- Foks, H.; Pancechowska-Ksepko, D.; Kędzia, A.; Zwolska, Z.; Janowiec, M.; Augustynowicz-Kopeć, E. Synthesis and antibacterial activity of 1H-pyrazolo [3,4-b]pyrazine and -pyridine derivatives. Il Farm. 2005, 60, 513–517. [Google Scholar] [CrossRef]
- Bonde, C.G.; Gaikwad, N.J. Synthesis and preliminary evaluation of some pyrazine containing thiazolines and thiazolidinones as antimicrobial agents. Bioorg. Med. Chem. 2004, 12, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Abro, A.H.; Abdou, A.; Gangwani, J.L.; Ustadi, A.M.; Younis, N.J.; Hussaini, H.S. Hematological and biochemical changes in typhoid fever. Pak. J. Med. Sci. 2009, 25, 166–171. [Google Scholar]
- Mirsadraee, M.; Shirdel, A.; Roknee, F. Typhoid myopathy or typhoid hepatitis: A matter of debate. Indian J. Med. Microbiol. 2007, 25, 351–353. [Google Scholar] [CrossRef]
- Kamath, P.S.; Jalihal, A.; Chakraborty, A. Differentiation of Typhoid Fever from Fulminant Hepatic Failure in Patients Presenting with Jaundice and Encephalopathy; Mayo Clinic Proceedings; Elsevier: Amsterdam, The Netherlands, 2000; pp. 462–466. [Google Scholar]
- Khosla, S. Typhoid hepatitis. Postgrad. Med. J. 1990, 66, 923–925. [Google Scholar] [CrossRef]
- Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother. 2018, 103, 923–938. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.K.; Barrett, J.F.; Ohemeng, K. Advances in DNA gyrase inhibitors. Expert Opin. Investig. Drugs 2001, 10, 199–212. [Google Scholar] [CrossRef] [PubMed]
- Kukulski, F.; Lévesque, S.; Lavoie, E.; Lecka, J.; Bigonnesse, F.; Knowles, A.; Robson, S.; Kirley, T.; Sévigny, J. Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal. 2005, 1, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Belli, S.; Sali, A.; Goding, J. Divalent cations stabilize the conformation of plasma cell membrane glycoprotein PC-1 (alkaline phosphodiesterase I). Biochem. J. 1994, 304, 75–80. [Google Scholar] [CrossRef]
- Saeed, A.; Ejaz, S.A.; Khurshid, A.; Hassan, S.; al-Rashida, M.; Latif, M.; Lecka, J.; Sévigny, J.; Iqbal, J. Synthesis, characterization and biological evaluation of N-(2, 3-dimethyl-5-oxo-1-phenyl-2, 5-dihydro-1 H-pyrazol-4-yl) benzamides. RSC Adv. 2015, 5, 86428–86439. [Google Scholar] [CrossRef]
- Jassas, R.S.; Naeem, N.; Sadiq, A.; Mehmood, R.; Alenazi, N.A.; Al-Rooqi, M.M.; Mughal, E.U.; Alsantali, R.I.; Ahmed, S.A. Current status of N-, O-, S-heterocycles as potential alkaline phosphatase inhibitors: A medicinal chemistry overview. RSC Adv. 2023, 13, 16413–16452. [Google Scholar] [CrossRef]
- Jakhar, R.; Khichi, A.; Kumar, D.; Dangi, M.; Chhillar, A.K. Discovery of novel inhibitors of bacterial DNA gyrase using a QSAR-based approach. ACS Omega 2022, 7, 32665–32678. [Google Scholar] [CrossRef]
- Aziz, H.A.; El-Saghier, A.M.; Badr, M.; Abuo-Rahma, G.E.-D.A.; Shoman, M.E. Thiazolidine-2, 4-dione-linked ciprofloxacin derivatives with broad-spectrum antibacterial, MRSA and topoisomerase inhibitory activities. Mol. Divers. 2022, 26, 1743–1759. [Google Scholar] [CrossRef]
- Mohammed, H.H.; Ali, D.M.E.; Badr, M.; Habib, A.G.; Mahmoud, A.M.; Farhan, S.M.; Gany, S.S.H.A.E.; Mohamad, S.A.; Hayallah, A.M.; Abbas, S.H. Synthesis and molecular docking of new N 4-piperazinyl ciprofloxacin hybrids as antimicrobial DNA gyrase inhibitors. Mol. Divers. 2023, 27, 1751–1765. [Google Scholar] [CrossRef]
- Shivakumar, R.; Venkatarangaiah, K.; Shastri, S.; Nagaraja, R.B.; Sheshagiri, A. Antibacterial Property and Molecular Docking Studies of Leaf Calli Phytochemicals of Bridelia scandens Wild. Pharmacogn. J. 2018, 10, 1221–1229. [Google Scholar] [CrossRef]
- Khan, I.; Shah, S.J.A.; Ejaz, S.A.; Ibrar, A.; Hameed, S.; Lecka, J.; Millán, J.L.; Sévigny, J.; Iqbal, J. Investigation of quinoline-4-carboxylic acid as a highly potent scaffold for the development of alkaline phosphatase inhibitors: Synthesis, SAR analysis and molecular modelling studies. RSC Adv. 2015, 5, 64404–64413. [Google Scholar] [CrossRef]
- Saeed, A.; Saddique, G.; Channar, P.A.; Larik, F.A.; Abbas, Q.; Hassan, M.; Raza, H.; Fattah, T.A.; Seo, S.-Y. Synthesis of sulfadiazinyl acyl/aryl thiourea derivatives as calf intestinal alkaline phosphatase inhibitors, pharmacokinetic properties, lead optimization, Lineweaver-Burk plot evaluation and binding analysis. Bioorg. Med. Chem. 2018, 26, 3707–3715. [Google Scholar]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Ahmad, G.; Khalid, A.; Qamar, M.U.; Rasool, N.; Saadullah, M.; Bilal, M.; Bajaber, M.A.; Obaidullah, A.J.; Alotaibi, H.F.; Alotaibi, J.M. Antibacterial Efficacy of N-(4-methylpyridin-2-yl) Thiophene-2-Carboxamide Analogues against Extended-Spectrum-β-Lactamase Producing Clinical Strain of Escherichia coli ST 131. Molecules 2023, 28, 3118. [Google Scholar] [CrossRef]
- Kanwal, I.; Rasool, N.; Zaidi, S.H.M.; Zakaria, Z.A.; Bilal, M.; Hashmi, M.A.; Mubarik, A.; Ahmad, G.; Shah, S.A.A. Synthesis of Functionalized Thiophene Based Pyrazole Amides via Various Catalytic Approaches: Structural Features through Computational Applications and Nonlinear Optical Properties. Molecules 2022, 27, 360. [Google Scholar] [CrossRef]
- Wolfe, J.P.; Singer, R.A.; Yang, B.H.; Buchwald, S.L. Highly active palladium catalysts for Suzuki coupling reactions. J. Am. Chem. Soc. 1999, 121, 9550–9561. [Google Scholar] [CrossRef]
- Siddiqa, A.; Zubair, M.; Bilal, M.; Rasool, N.; Qamar, M.U.; Khalid, A.; Ahmad, G.; Imran, M.; Mahmood, S.; Ashraf, G.A. Synthesis of Functionalized N-(4-Bromophenyl)furan-2-carboxamides via Suzuki-Miyaura Cross-Coupling: Anti-Bacterial Activities against Clinically Isolated Drug Resistant A. baumannii, K. pneumoniae, E. cloacae and MRSA and Its Validation via a Computational Approach. Pharmaceuticals 2022, 15, 841. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Chowdhury, S.M.; Aziz, M.A.; Shahriar, A.; Ahmed, H.; Khan, M.A.; Mahmud, S.; Emran, T.B. In silico analysis of ciprofloxacin analogs as inhibitors of DNA gyrase of Staphylococcus aureus. Inform. Med. Unlocked 2021, 26, 100748. [Google Scholar] [CrossRef]
- Rehman, I.; Gul, S.; Akhtar, M.; Amin, R. Design, synthesis and docking studies of ciprofloxacin analogues as potential antimicrobial agents against resistant pathogens. J. Mol. Struct. 2024, 1295, 136810. [Google Scholar] [CrossRef]
- Adetutu, A.; Olaniyi, T.D.; Owoade, O.A. GC-MS analysis and in silico assessment of constituents of Psidium guajava leaf extract against DNA gyrase of Salmonella enterica serovar Typhi. Inform. Med. Unlocked 2021, 26, 100722. [Google Scholar] [CrossRef]
- Ameji, P.; Uzairu, A.; Shallangwa, A.; Uba, S. Molecular docking study and insilico design of novel drug candidates against Salmonella typhi. Adv. J. Chem.-Sect. B 2022, 4, 281–298. [Google Scholar]
- Philip, J.; Uzairu, A.; Shallangwa, G.; Uba, S. Virtual screening of novel pyridine derivatives as effective inhibitors of DNA gyrase (GyrA) of salmonella typhi. Curr. Chem. Lett. 2023, 12, 1–16. [Google Scholar] [CrossRef]
- Nazeer, W.; Qamar, M.U.; Rasool, N.; Taibi, M.; Salamatullah, A.M. Synthesis of 2-Ethylhexyl 5-Bromothiophene-2-Carboxylates; Antibacterial Activities against Salmonella Typhi, Validation via Docking Studies, Pharmacokinetics, and Structural Features Determination through DFT. Molecules 2024, 29, 3005. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
Antibiotics | MIC (µg/mL) Break Points | S. Typhi |
---|---|---|
AMP | ≤8–≥32 | ≥512 |
CRO | ≤1–≥4 | ≥256 |
IMP | ≤1–≥4 | 2 |
MEM | ≤1–≥4 | 2 |
CIP | ≤0.25–≥1 | ≥8 |
SXT | ≤2/38–≥4/76 | ≥4/152 |
AZT | ≤16–≥32 | 4 |
Compound Name | IC50 ± SEM |
---|---|
5a | 3.281 ± 0.23 |
5b | 5.022 ± 0.20 |
5c | 2.864 ± 0.12 |
5d | 1.469 ± 0.02 |
Compound Code | Interactions | Free Energy ΔG (kCal/mole) |
---|---|---|
5a | Hydrogen bonding: Lys550, Arg612 C-H bonds: Glu575 π–Alkyl interactions: Tyr548 | −6.1165 |
5b | Hydrogen bonding: Arg612 C-H bonds: Val540, Arg612 π–Alkyl interactions: Val540, Ile578, Arg612, Leu804, Val839, Met796 π–Sulfur interactions: Met796 | −6.2706 |
5c | Hydrogen bonding: Gln546, Lys550, Arg612 C-H bonds: Glu575 π–Alkyl interactions: Arg612, Arg615 | −6.1208 |
5d | Hydrogen bonding: Gln546, Lys550 C-H bonds: Tyr557, Glu575, Arg612 π–Alkyl interactions: Ile578, Arg615 | −6.3891 |
Ciprofloxacin | H bonding: Lys550, Arg612, Gly613 C-H interactions: Tyr557, Asp576, Arg615 Alkyl and π–alkyl interactions: Ile578, Arg615 | −5.61799 |
Compound Code | Interactions | Free Energy ΔG (kCal/mole) |
---|---|---|
5a | H-bonding: His153, His317, Glu429 C-H bonding: Gly313, Glu429 π–Anion interaction: Asp316 π–π interaction: His317 | −6.3287 |
5b | H-bonding: His153, His317, Glu429 C-H bonding: Gly313, Glu429 π–Anion interaction: Asp316 π–π interaction: His317 | −6.2019 |
5c | H-bonding: His153, His317, Glu429 C-H bonding: Gly313, Glu429 π–Anion interaction: Asp316 π–π interaction: His317 | −6.5274 |
5d | H-bonding: His153, His317, Arg420, Glu429 C-H bonding: Asp42, Gly313, Glu321 π–Anion interaction: His317 π–π interaction: Asp316 | −7.5648 |
Code | TPSA a | Lipinski Violation | PAINS b | MLOGP c | NRB d | HBD e | GI Absorption f | HBA g | BBB h |
---|---|---|---|---|---|---|---|---|---|
5a | 54.88 | 0 | 0 | 2.79 | 4 | 1 | High | 4 | Yes |
5b | 54.88 | 0 | 0 | 2.41 | 4 | 1 | High | 3 | Yes |
5c | 71.95 | 0 | 0 | 1.47 | 5 | 1 | High | 4 | Yes |
5d | 81.18 | 0 | 0 | 1.74 | 6 | 1 | High | 5 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.H.; Bilal, M.; Mahmood, A.; Rasool, N.; Qamar, M.U.; Imran, M.; Toma, S.I.; Andreescu, O. Facile Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide Derivatives, Their Antibacterial Activities against Clinically Isolated XDR S. Typhi, Alkaline Phosphatase Inhibitor Activities, and Docking Studies. Pharmaceuticals 2024, 17, 1241. https://doi.org/10.3390/ph17091241
Khan AH, Bilal M, Mahmood A, Rasool N, Qamar MU, Imran M, Toma SI, Andreescu O. Facile Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide Derivatives, Their Antibacterial Activities against Clinically Isolated XDR S. Typhi, Alkaline Phosphatase Inhibitor Activities, and Docking Studies. Pharmaceuticals. 2024; 17(9):1241. https://doi.org/10.3390/ph17091241
Chicago/Turabian StyleKhan, Abdul Hannan, Muhammad Bilal, Abid Mahmood, Nasir Rasool, Muhammad Usman Qamar, Muhammad Imran, Sebastian Ionut Toma, and Oana Andreescu. 2024. "Facile Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide Derivatives, Their Antibacterial Activities against Clinically Isolated XDR S. Typhi, Alkaline Phosphatase Inhibitor Activities, and Docking Studies" Pharmaceuticals 17, no. 9: 1241. https://doi.org/10.3390/ph17091241
APA StyleKhan, A. H., Bilal, M., Mahmood, A., Rasool, N., Qamar, M. U., Imran, M., Toma, S. I., & Andreescu, O. (2024). Facile Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide Derivatives, Their Antibacterial Activities against Clinically Isolated XDR S. Typhi, Alkaline Phosphatase Inhibitor Activities, and Docking Studies. Pharmaceuticals, 17(9), 1241. https://doi.org/10.3390/ph17091241