MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion
Abstract
:1. Introduction
2. Results
2.1. Cytokine Quantification
2.2. Next Generation Sequencing (NGS) Quantification
3. Discussion
4. Materials and Methods
4.1. Culture and Expansion of Primary Human Cardiac Myocytes
4.2. Experimental Design
4.3. Hypoxia/Reperfusion Induction and Hypnotic Drug Exposure
4.4. Transfection Protocol
4.5. Cytokine Quantification Assays
4.6. Next Generation Sequencing (NGS) Assay
4.6.1. RNA Quality for Ultra Sequencing
4.6.2. miRNA-Seq and Messenger RNA (mRNA)-Seq
4.7. Analysis Data: Bioinformatics and Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lloyd-Jones, D.; Adams, R.J.; Brown, T.M.; Carnethon, M.; Dai, S.; De Simone, G.; Ferguson, T.B.; Ford, E.; Furie, K.; Gillespie, C. Executive summary: Heart disease and stroke statistics—2010 update: A report from the American Heart Association. Circulation 2010, 121, 948–954, Erratum in Circulation 2010, 121, e259. [Google Scholar] [CrossRef] [PubMed]
- Head, S.J.; Davierwala, P.M.; Serruys, P.W.; Redwood, S.R.; Colombo, A.; Mack, M.J.; Morice, M.-C.; Holmes, D.R.; Feldman, T.E.; Ståhle, E.; et al. Coronary artery bypass grafting vs. percutaneous coronary intervention for patients with three-vessel disease: Final five-year follow-up of the SYNTAX trial. Eur. Heart J. 2014, 35, 2821–2830. [Google Scholar] [CrossRef] [PubMed]
- Binder, A.; Ali, A.; Chawla, R.; Aziz, H.A.; Abbate, A.; Jovin, I.S. Myocardial protection from ischemia-reperfusion injury post coronary revascularization. Expert Rev. Cardiovasc. Ther. 2015, 13, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Orriach, J.L.; Aliaga, M.R.; Ortega, M.G.; Navarro, M.R.; Arce, I.N.; Mañas, J.C. Sevoflurane in intraoperative and postoperative cardiac surgery patients. Our experience in intensive care unit with sevoflurane sedation. Curr. Pharm. Des. 2013, 19, 3996–4002. [Google Scholar] [CrossRef]
- Orriach, J.L.G.; Ortega, M.G.; Aliaga, M.R.; Iglesias, P.; Navarro, M.R.; Mañas, J.C. Prolonged sevoflurane administration in the off-pump coronary artery bypass graft surgery: Beneficial effects. J. Crit. Care 2013, 28, 879.e13–879.e18. [Google Scholar] [CrossRef]
- Orriach, J.L.G.; Belmonte, J.J.E.; Aliaga, M.R.; Fernandez, A.R.; Capitan, M.J.R.; Muñoz, G.Q.; Ponferrada, A.R.; Torres, J.A.; Santiago-Fernandez, C.; Gonzalez, E.M.; et al. NGS of microRNAs Involved in Cardioprotection Induced by Sevoflurane Compared to Propofol in Myocardial Revascularization Surgery: The ACDHUVV-16 Clinical Trial. Curr. Med. Chem. 2021, 28, 4074–4086. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Orriach, J.L.; Carmona-Luque, M.D.; Muñoz, G.Q.; Capitán, M.J.R. miRNA Expression: I/R Cardiomyocyte and Sevoflurane. Biomolecules 2024, 14, 1554. [Google Scholar] [CrossRef]
- Kumar, S.; Saikia, J.; Sharawat, S.K.; Malik, P.S.; Kumar, S.; Mohan, A. Análisis de la expresión de miR-375-3p, miR-197-3p y miR-15a-5p y su relevancia clínica como biomarcadores en el cáncer de pulmón. Technol. Cancer Res. Treat. 2022, 21, 15330338221080981. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hong, S.; Liu, Z. LncRNA LINC00641 predicts prognosis and inhibits bladder cancer progression through miR-197-3p/KLF10/PTEN/PI3K/AKT cascade. Biochem. Biophys. Res. Commun. 2018, 503, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Ma, B.; Su, Y.; Chan, K.; Qu, H.; Huang, J.; Wang, D.; Qiu, J.; Liu, H.; Yang, X.; et al. miR-197-3p Represses the Proliferation of Prostate Cancer by Regulating the VDAC1/AKT/β-catenin Signaling Axis. Int. J. Biol. Sci. 2020, 16, 1417–1426. [Google Scholar] [CrossRef]
- Xie, W.; Shui, C.; Fang, X.; Peng, Y.; Qin, L. miR-197-3p reduces epithelial–mesenchymal transition by targeting ABCA7 in ovarian cancer cells. 3 Biotech 2020, 10, 375. [Google Scholar] [CrossRef]
- Kleinbongard, P. Perspective: Mitochondrial STAT3 in cardioprotection. Basic Res. Cardiol. 2023, 118, 32. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Zhao, J.; Guo, R.; Jiao, L.; Zhang, Y.; Lau, W.B.; Lopez, B.; Christopher, T.; Gao, E.; Cao, J.; et al. Sevoflurane Pre-conditioning Ameliorates Diabetic Myocardial Ischemia/Reperfusion Injury Via Differential Regulation of p38 and ERK. Sci. Rep. 2020, 10, 23. [Google Scholar] [CrossRef]
- Guerrero-Orriach, J.L.; Carmona-Luque, M.D.; Raigón-Ponferrada, A. Beneficial Effects of Halogenated Anesthetics in Cardiomyocytes: The Role of Mitochondria. Antioxidants 2023, 12, 1819. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Peng, L.M.; Lv, D.M.; Shang, F.; Yan, J.; Li, G.M.; Li, D.M.; Ouyang, J.; Yang, J. Leonurine Attenuates Myocardial Fibrosis Through Upregulation of miR-29a-3p in Mice Post-myocardial Infarction. J. Cardiovasc. Pharmacol. 2021, 77, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Kriegel, A.J.; Liu, Y.; Fang, Y.; Ding, X.; Liang, M. The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genom. 2012, 44, 237–244. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Lan, D.; Zhao, J.; Wang, L.; Shao, X.; Wang, D.; Wu, K.; Sun, M.; Huang, X.; et al. MicroRNA-24-3p alleviates cardiac fibrosis by suppressing cardiac fibroblasts mitophagy via downregulating PHB2. Pharmacol. Res. 2022, 177, 106124. [Google Scholar] [CrossRef]
- Xiao, X.; Lu, Z.; Lin, V.; May, A.; Shaw, D.H.; Wang, Z.; Che, B.; Tran, K.; Du, H.; Shaw, P.X. MicroRNA miR-24-3p Reduces Apoptosis and Regulates Keap1-Nrf2 Pathway in Mouse Cardiomyocytes Responding to Ischemia/Reperfusion Injury. Oxid. Med. Cell. Longev. 2018, 2018, 7042105. [Google Scholar] [CrossRef] [PubMed]
- Long, X.; Huang, Y.; He, J.; Zhang, X.; Zhou, Y.; Wei, Y.; Tang, Y.; Liu, L. Upregulation of miR-335 exerts protective effects against sepsis-induced myocardial injury. Mol. Med. Rep. 2021, 24, 806. [Google Scholar] [CrossRef] [PubMed]
- Bayoumi, A.S.; Teoh, J.-P.; Aonuma, T.; Yuan, Z.; Ruan, X.; Tang, Y.; Su, H.; Weintraub, N.L.; Kim, I.-M. MicroRNA-532 protects the heart in acute myocardial infarction, and represses prss23, a positive regulator of endothelial-to-mesenchymal transition. Cardiovasc. Res. 2017, 113, 1603–1614. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, X.; Bao, Y.; Yu, H.; Jia, D.; Ma, C. Down-regulation of GAS5 ameliorates myocardial ischaemia/reperfusion injury via the miR-335/ROCK1/AKT/GSK-3β axis. J. Cell. Mol. Med. 2019, 23, 8420–8431. [Google Scholar] [CrossRef] [PubMed]
- Surina, S.; Fontanella, R.A.; Scisciola, L.; Marfella, R.; Paolisso, G.; Barbieri, M. miR-21 in Human Cardiomyopathies. Front. Cardiovasc. Med. 2021, 8, 767064. [Google Scholar] [CrossRef]
- Chang, S.-N.; Chen, J.-J.; Wu, J.-H.; Chung, Y.-T.; Chen, J.-W.; Chiu, C.-H.; Liu, C.-J.; Liu, M.-T.; Chang, Y.-C.; Li, C.; et al. Association between Exosomal miRNAs and Coronary Artery Disease by Next-Generation Sequencing. Cells 2021, 11, 98. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, Y.; Shu, J.; Tang, C.-E.; Jiang, Y.; Luo, F. Identification of microRNAs enriched in exosomes in human pericardial fluid of patients with atrial fibrillation based on bioinformatic analysis. J. Thorac. Dis. 2020, 12, 5617–5627. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yuan, Y. Meta-analysis of the cardioprotective effect of sevoflurane versus propofol during cardiac surgery. BMC Anesthesiol. 2015, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- Orriach, J.L.G.; Belmonte, J.J.E.; Fernandez, A.R.; Aliaga, M.R.; Navarro, M.R.; Manas, J.C. Cardioprotection with halogenated gases: How does it occur? Drug Des. Dev. Ther. 2017, 11, 837–849. [Google Scholar] [CrossRef]
- Shirai, T.; Rao, V.; Weisel, R.D.; Ikonomidis, J.S.; Li, R.-K.; Tumiati, L.C.; Merante, F.; Mickle, D.A. Preconditioning human cardiomyocytes and endothelial cells. J. Thorac. Cardiovasc. Surg. 1998, 115, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Luque, M.D.; Gonzalez-Alvarez, L.; Orriach, J.L.G. Identification of miRNAs as Biomarkers of Cardiac Protection in Non-Genetically Modified Primary Human Cardiomyocytes Exposed to Halogenated Hypnotics in an In Vitro Model of Transfection and Ischemia/Reperfusion: A New Model in Translational Anesthesia. Life 2022, 13, 64. [Google Scholar] [CrossRef]
- Men, H.; Cai, H.; Cheng, Q.; Zhou, W.; Wang, X.; Huang, S.; Zheng, Y.; Cai, L. The regulatory roles of p53 in cardiovascular health and disease. Cell. Mol. Life Sci. 2021, 78, 2001–2018. [Google Scholar] [CrossRef]
- Pillai, V.B.; Sundaresan, N.R.; Gupta, M.P. Regulation of Akt signaling by sirtuins: Its implication in cardiac hypertrophy and ageing. Circ. Res. 2014, 114, 368–378. [Google Scholar] [CrossRef]
Genes | Statistically Significant Difference (p-Value) |
---|---|
5_8S_rRNA_8 | 0.001155384 |
hsa-miR-197-3p | 0.001155384 |
hsa-let-7c-5p | 0.001155384 |
hsa-let-7b-5p | 0.001155384 |
hsa-miR-323b-3p | 0.001155384 |
hsa-piR-23511 | 0.001155384 |
hsa-piR-33031 | 0.001155384 |
ACA18 | 0.001155384 |
hsa-piR-33185 | 0.001155384 |
tRNA-Met-CAT-2-1 | 0.001155384 |
ACA20 | 0.001155384 |
hsa-piR-31082 | 0.001155384 |
ACA2b | 0.001155384 |
tRNA-Val-AAC-5-1 | 0.001451398 |
U23 | 0.001451398 |
hsa-let-7f-5p | 0.001867351 |
hsa-miR-23b-5p | 0.001867351 |
hsa-piR-32990 | 0.001867351 |
hsa-piR-33005 | 0.002369099 |
U79 | 0.002369099 |
hsa-let-7d-5p | 0.002369099 |
hsa-miR-193a-5p | 0.002369099 |
hsa-miR-654-5p | 0.003025987 |
hsa-piR-33197 | 0.003025987 |
hsa-miR-758-3p | 0.003025987 |
hsa-miR-423-5p | 0.003025987 |
hsa-piR-28727 | 0.003025987 |
hsa-piR-3440 | 0.003025987 |
hsa-miR-98-5p | 0.003025987 |
ACA11 | 0.003025987 |
hsa-miR-1307-3p | 0.003025987 |
tRNA-Gly-CCC-2-2 | 0.003025987 |
tRNA-Pro-AGG-2-6 | 0.003025987 |
tRNA-Val-CAC-chr1-134 | 0.003025987 |
hsa-piR-33123 | 0.003906234 |
hsa-miR-432-5p | 0.003906234 |
hsa-piR-29204 | 0.003906234 |
tRNA-Gly-CCC-chr1-135 | 0.003906234 |
hsa-piR-33155 | 0.003906234 |
hsa-piR-22236 | 0.004996605 |
tRNA-Pro-AGG-2-4 | 0.004996605 |
ACA26 | 0.004996605 |
tRNA-Arg-CCT-4-1 | 0.004996605 |
hsa-piR-33165 | 0.004996605 |
hsa-piR-33057 | 0.004996605 |
ACA9 | 0.004996605 |
hsa-piR-32298 | 0.004996605 |
hsa-piR-33115 | 0.004996605 |
U65 | 0.004996605 |
hsa-miR-370-3p | 0.004996605 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerrero-Orriach, J.L.; Carmona-Luque, M.D.; Rodriguez-Capitan, M.J.; Quesada-Muñoz, G. MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion. Pharmaceuticals 2025, 18, 146. https://doi.org/10.3390/ph18020146
Guerrero-Orriach JL, Carmona-Luque MD, Rodriguez-Capitan MJ, Quesada-Muñoz G. MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion. Pharmaceuticals. 2025; 18(2):146. https://doi.org/10.3390/ph18020146
Chicago/Turabian StyleGuerrero-Orriach, Jose Luis, Maria Dolores Carmona-Luque, Maria Jose Rodriguez-Capitan, and Guillermo Quesada-Muñoz. 2025. "MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion" Pharmaceuticals 18, no. 2: 146. https://doi.org/10.3390/ph18020146
APA StyleGuerrero-Orriach, J. L., Carmona-Luque, M. D., Rodriguez-Capitan, M. J., & Quesada-Muñoz, G. (2025). MicroRNA-197-3p Transfection: Variations in Cardiomyocyte Gene Expression with Anaesthetics Drugs in a Model of Hypoxia/Reperfusion. Pharmaceuticals, 18(2), 146. https://doi.org/10.3390/ph18020146