Current and Emerging Treatment Options for Hypertriglyceridemia: State-of-the-Art Review
Abstract
:1. Introduction
2. Pharmacological Targets in Triglyceride-Rich Lipoprotein Metabolism
3. Current Recommendations for the Management of Hypertriglyceridemia
Society | Classification | Triglyceride Levels [mg/dL (mmol/L)] |
---|---|---|
American College of Cardiology/American Heart Association (2018) | Normal | <175 (<2.0) |
Moderate | 175–499 (2.0–5.6) | |
Severe | ≥500 (≥5.6) | |
European Society of Cardiology (2019) | Normal | <150 (<1.7) |
Mild-moderate | 150–880 (1.7–10.0) | |
Severe | ≥880 (≥10.0) | |
European Atherosclerosis Society (2021) | Optimal | <100 (<1.2) |
Borderline | 100–150 (1.2–1.7) | |
Moderately elevated | 150–500 (1.7–5.6) | |
Severe | 500–880 (5.6–10.0) | |
Extreme | >880 (>10.0) | |
Endocrine Society (2012) | Normal | <150 (<1.7) |
Mild | 150–199 (1.7–2.3) | |
Moderate | 200–999 (2.3–11.2) | |
Severe | 1000–1999 (11.2–22.4) | |
Very severe | ≥2000 (≥22.4) |
Drug | Expected Triglyceride Reduction |
---|---|
Statins | 15–30% |
Ezetimibe | 5–10% |
PCSK9 inhibitors | 10–20% |
Bempedoic acid | 0–5% |
Omega-3 fatty acids | 20–50% |
Fibrates | 20–50% |
Niacin | 20–50% |
Lomitapide | 30–70% |
3.1. Low-Density Lipoprotein-Lowering Drugs
3.2. Omega-3 Fatty Acids
3.3. Fibrates
3.4. Niacin
3.5. Lomitapide
4. New Approaches to Triglyceride-Lowering Therapy
4.1. Apolipoprotein C-III Inhibitors
4.1.1. Volanesorsen
4.1.2. Olezarsen
4.1.3. Plozasiran
4.2. Angiopoietin-like 3 Inhibitors
4.2.1. Zodasiran
4.2.2. Evinacumab
4.2.3. Vupanorsen
4.2.4. Monoclonal Antibody Against Angiopoietin-like-3/8 Complex
4.3. Fibroblast Growth Factor 21 Analogs
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bashir, B.; Schofield, J.; Downie, P.; France, M.; Ashcroft, D.M.; Wright, A.K.; Romeo, S.; Gouni-Berthold, I.; Maan, A.; Durrington, P.N.; et al. Beyond LDL-C: Unravelling the residual atherosclerotic cardiovascular disease risk landscape—Focus on hypertriglyceridaemia. Front. Cardiovasc. Med. 2024, 11, 1389106. [Google Scholar] [CrossRef] [PubMed]
- Laufs, U.; Parhofer, K.G.; Ginsberg, H.N.; A Hegele, R. Clinical review on triglycerides. Eur. Heart J. 2020, 41, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Bashir, B.; Ho, J.H.; Downie, P.; Hamilton, P.; Ferns, G.; Datta, D.; Cegla, J.; Wierzbicki, A.S.; Dawson, C.; Jenkinson, F.; et al. Severe Hypertriglyceridaemia and Chylomicronaemia Syndrome—Causes, Clinical Presentation, and Therapeutic Options. Metabolites 2023, 13, 621. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, N.J.; Pando, E.; Alberti, P.; Vidal, L.; Mata, R.; Fernandez, N.; Gomez-Jurado, M.J.; Dopazo, C.; Blanco, L.; Tasayco, S.; et al. Elevated Serum Triglyceride Levels in Acute Pancreatitis: A Parameter to be Measured and Considered Early. World J. Surg. 2022, 46, 1758–1767. [Google Scholar] [CrossRef]
- Parhofer, K.G.; Laufs, U. The diagnosis and treatment of hypertriglyceridemia. Dtsch. Arztebl. Int. 2019, 116, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Dron, J.S.; Wang, J.; Cao, H.; McIntyre, A.D.; Iacocca, M.A.; Menard, J.R.; Movsesyan, I.; Malloy, M.J.; Pullinger, C.R.; Kane, J.P.; et al. Severe hypertriglyceridemia is primarily polygenic. J. Clin. Lipidol. 2019, 13, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Bernard, S.; Hegele, R.A.; Baass, A. Chylomicronemia: Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia. Atherosclerosis 2019, 283, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Dron, J.S.; Hegele, R.A. Genetics of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.M.; Wang, J.; McIntyre, A.D.; A Kennedy, B.; A Hegele, R. Comparison of patients with familial chylomicronemia syndrome and multifactorial chylomicronemia syndrome. J. Clin. Endocrinol. Metab. 2024, dgae613. [Google Scholar] [CrossRef]
- Davidson, M.; Stevenson, M.; Hsieh, A.; Ahmad, Z.; van Lennep, J.R.; Crowson, C.; Witztum, J.L. The burden of familial chylomicronemia syndrome: Results from the global IN-FOCUS study. J. Clin. Lipidol. 2018, 12, 898–907. [Google Scholar] [CrossRef] [PubMed]
- Gouni-Berthold, I.; Schwarz, J.; Berthold, H.K. Updates in Drug Treatment of Severe Hypertriglyceridemia. Curr. Atheroscler. Rep. 2023, 25, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Spagnuolo, C.M.; Hegele, R.A. Etiology and emerging treatments for familial chylomicronemia syndrome. Expert. Rev. Endocrinol. Metab. 2024, 19, 299–306. [Google Scholar] [CrossRef]
- Chan, D.C.; Watts, G.F. ANGPTL3 and ApoC-III inhibitors for treating hypertriglyceridemia in context: Horses for courses? Curr. Opin. Lipidol. 2024, 35, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Canfora, I.; Pierno, S. Hypertriglyceridemia Therapy: Past, Present and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 9727. [Google Scholar] [CrossRef] [PubMed]
- Chui, Z.S.W.; Shen, Q.; Xu, A. Current status and future perspectives of FGF21 analogues in clinical trials. Trends Endocrinol. Metab. 2024, 35, 371–384. [Google Scholar] [CrossRef] [PubMed]
- E Stürzebecher, P.; Katzmann, J.L.; Laufs, U. What is ‘remnant cholesterol’? Eur. Heart J. 2023, 44, 1446–1448. [Google Scholar] [CrossRef] [PubMed]
- He, P.-P.; Jiang, T.; OuYang, X.-P.; Liang, Y.-Q.; Zou, J.-Q.; Wang, Y.; Shen, Q.-Q.; Liao, L.; Zheng, X.-L. Lipoprotein lipase: Biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. Clin. Chim. Acta 2018, 480, 126–137. [Google Scholar] [CrossRef] [PubMed]
- Mszar, R.; Bart, S.; Sakers, A.; Soffer, D.; Karalis, D.G. Current and Emerging Therapies for Atherosclerotic Cardiovascular Disease Risk Reduction in Hypertriglyceridemia. J. Clin. Med. 2023, 12, 1382. [Google Scholar] [CrossRef]
- Kiss, L.; Fűr, G.; Pisipati, S.; Rajalingamgari, P.; Ewald, N.; Singh, V.; Rakonczay, Z. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol. 2023, 237, e13916. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Packard, C.J.; Chapman, M.J.; Borén, J.; A Aguilar-Salinas, C.; Averna, M.; A Ference, B.; Gaudet, D.; A Hegele, R.; Kersten, S.; et al. Triglyceride-rich lipoproteins and their remnants: Metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 2021, 42, 4791–4806. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Zhou, X.; Zippi, M.; Goyal, H.; Basharat, Z.; Jagielski, M.; Hong, W. Comprehensive review on the pathogenesis of hypertriglyceridaemia-associated acute pancreatitis. Ann. Med. 2023, 55, 2265939. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, K.; Choi, S.H. Lipoprotein Lipase: Is It a Magic Target for the Treatment of Hypertriglyceridemia. Endocrinol. Metab. 2022, 37, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; de Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Morris, P.B.; Agarwala, A.; Ballantyne, C.M.; Birtcher, K.K.; Kris-Etherton, P.M.; Ladden-Stirling, A.B.; Miller, M.; Orringer, C.E.; Stone, N.J. 2021 ACC Expert Consensus Decision Pathway on the Management of ASCVD Risk Reduction in Patients with Persistent Hypertriglyceridemia: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2021, 78, 960–993. [Google Scholar] [CrossRef]
- Berglund, L.; Brunzell, J.D.; Goldberg, A.C.; Goldberg, I.J.; Sacks, F.; Murad, M.H.; Stalenhoef, A.F.H. Evaluation and treatment of hypertriglyceridemia: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2012, 97, 2969–2989. [Google Scholar] [CrossRef] [PubMed]
- Karlson, B.W.; Palmer, M.K.; Nicholls, S.J.; Lundman, P.; Barter, P.J. A VOYAGER Meta-Analysis of the Impact of Statin Therapy on Low-Density Lipoprotein Cholesterol and Triglyceride Levels in Patients with Hypertriglyceridemia. Am. J. Cardiol. 2016, 117, 1444–1448. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Kei, A.; Rizos, C.V.; Elisaf, M.S. Effects of PCSK9 Inhibitors on Other than Low-Density Lipoprotein Cholesterol Lipid Variables. J. Cardiovasc. Pharmacol. Ther. 2018, 23, 3–12. [Google Scholar] [CrossRef]
- Ray, K.K.; Nicholls, S.J.; Li, N.; Louie, M.J.; Brennan, D.; Lincoff, A.M.; E Nissen, S. Efficacy and safety of bempedoic acid among patients with and without diabetes: Prespecified analysis of the CLEAR Outcomes randomised trial. Lancet Diabetes Endocrinol. 2024, 12, 19–28. [Google Scholar] [CrossRef]
- Kaur, G.; Mason, R.P.; Steg, P.G.; Bhatt, D.L. Omega-3 fatty acids for cardiovascular event lowering. Eur. J. Prev. Cardiol. 2024, 31, 1005–1014. [Google Scholar] [CrossRef]
- McKenney, J. New Perspectives on the Use of Niacin in the Treatment of Lipid Disorders. Arch. Intern. Med. 2004, 164, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Cefalù, A.B.; D’Erasmo, L.; Iannuzzo, G.; Noto, D.; Giammanco, A.; Montali, A.; Zambon, A.; Forte, F.; Suppressa, P.; Giannini, S.; et al. Efficacy and safety of lomitapide in familial chylomicronaemia syndrome. Atherosclerosis 2022, 359, 13–19. [Google Scholar] [CrossRef]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T., Jr.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Hamilton-Craig, C.; Kostner, K.; Colquhoun, D.; Nicholls, S.J. Omega-3 fatty acids and cardiovascular prevention: Is the jury still out? Intern. Med. J. 2023, 53, 2330–2335. [Google Scholar] [CrossRef] [PubMed]
- Kastelein, J.J.; Stroes, E.S. FISHing for the Miracle of Eicosapentaenoic Acid. N. Engl. J. Med. 2019, 380, 89–90. [Google Scholar] [CrossRef]
- Skulas-Ray, A.C.; Wilson, P.W.; Harris, W.S.; Brinton, E.A.; Kris-Etherton, P.M.; Richter, C.K.; Jacobson, T.A.; Engler, M.B.; Miller, M.; Robinson, J.G.; et al. Omega-3 Fatty Acids for the Management of Hypertriglyceridemia: A Science Advisory from the American Heart Association. Circulation 2019, 140, e673–e691. [Google Scholar] [CrossRef] [PubMed]
- Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J.-C. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998, 98, 2088–2093. [Google Scholar] [CrossRef] [PubMed]
- Das Pradhan, A.; Glynn, R.J.; Fruchart, J.-C.; MacFadyen, J.G.; Zaharris, E.S.; Everett, B.M.; Campbell, S.E.; Oshima, R.; Amarenco, P.; Blom, D.J.; et al. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N. Engl. J. Med. 2022, 387, 1923–1934. [Google Scholar] [CrossRef]
- Kim, N.H.; Lee, J.; Chon, S.; Yu, J.M.; Jeong, I.-K.; Lim, S.; Kim, W.J.; Song, K.; Cho, H.C.; Yu, H.M.; et al. Study Design and Protocol for a Randomized Controlled Trial to Assess Long-Term Efficacy and Safety of a Triple Combination of Ezetimibe, Fenofibrate, and Moderate- Intensity Statin in Patients with Type 2 Diabetes and Modifiable Cardiovascular Risk Factors (ENSEMBLE). Endocrinol. Metab. 2024, 39, 722–731. [Google Scholar] [CrossRef]
- Keech, A.C.; Simes, R.J.; Barter, P.J.; Best, J.D.; Scott, R.A.P.; Taskinen, M.R.; Forder, P.M.; Pillai, A.; Davis, T.M.; Glasziou, P.; et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet 2005, 366, 1849–1861. [Google Scholar] [CrossRef]
- ACCORD Study Group. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2010, 362, 1563–1574. [Google Scholar] [CrossRef] [PubMed]
- Elam, M.B.; Ginsberg, H.N.; Lovato, L.C.; Corson, M.; Largay, J.; Leiter, L.A.; Lopez, C.; O’connor, P.J.; Sweeney, M.E.; Weiss, D.; et al. Association of fenofibrate therapy with long-term cardiovascular risk in statin-treated patients with type 2 diabetes. JAMA Cardiol. 2017, 2, 370–380. [Google Scholar] [CrossRef]
- The BIP Study Group. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease. Bezafibrate Infarction Prevention (BIP) study. Circulation 2000, 102, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Haim, M.; Benderly, M.; Boyko, V.; Goldenberg, I.; Tanne, D.; Battler, A.; Goldbourt, U.; Behar, S. Decrease in triglyceride level by bezafibrate is related to reduction of recurrent coronary events: A Bezafibrate Infarction Prevention substudy. Coron. Artery Dis. 2006, 17, 455–461. [Google Scholar] [CrossRef]
- BIP Study Group; Arbel, Y.; Klempfner, R.; Erez, A.; Goldenberg, I.; Benzekry, S.; Shlomo, N.; Fisman, E.Z.; Tenenbaum, A. Bezafibrate for the treatment of dyslipidemia in patients with coronary artery disease: 20-year mortality follow-up of the BIP randomized control trial. Cardiovasc. Diabetol. 2016, 15, 11. [Google Scholar] [CrossRef]
- Kim, K.A.; Kim, N.J.; Choo, E.H. The effect of fibrates on lowering low-density lipoprotein cholesterol and cardiovascular risk reduction: A systemic review and meta-analysis. Eur. J. Prev. Cardiol. 2024, 31, 291–301. [Google Scholar] [CrossRef] [PubMed]
- AIM-HIGH Investigators. Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy. N. Engl. J. Med. 2011, 365, 2255–2267. [Google Scholar] [CrossRef]
- HPS2-THRIVE Collaborative Group. Effects of Extended-Release Niacin with Laropiprant in High-Risk Patients. N. Engl. J. Med. 2014, 371, 203–212. [Google Scholar] [CrossRef] [PubMed]
- D’erasmo, L.; Steward, K.; Cefalù, A.B.; Di Costanzo, A.; Boersma, E.; Bini, S.; Arca, M.; van Lennep, J.R. Efficacy and safety of lomitapide in homozygous familial hypercholesterolaemia: The pan-European retrospective observational study. Eur. J. Prev. Cardiol. 2022, 29, 832–841. [Google Scholar] [CrossRef]
- Sacks, F.M.; Stanesa, M.; Hegele, R.A. Severe hypertriglyceridemia with pancreatitis: Thirteen years’ treatment with lomitapide. JAMA Intern. Med. 2014, 174, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Cefalù, A.B.; Giammanco, A.; Noto, D.; Spina, R.; Cabibi, D.; Barbagallo, C.M.; Averna, M. Effectiveness and safety of lomitapide in a patient with familial chylomicronemia syndrome. Endocrine 2021, 71, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Bornfeldt, K.E. Apolipoprotein C3: Form begets function. J. Lipid Res. 2024, 65, 100475. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.N.; Goldberg, I.J. Broadening the Scope of Dyslipidemia Therapy by Targeting APOC3 (Apolipoprotein C3) and ANGPTL3 (Angiopoietin-Like Protein 3). Arterioscler. Thromb. Vasc. Biol. 2023, 43, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Dib, I.; Khalil, A.; Chouaib, R.; El-Makhour, Y.; Noureddine, H. Apolipoprotein C-III and cardiovascular diseases: When genetics meet molecular pathologies. Mol. Biol. Rep. 2021, 48, 875–996. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, D.; Brisson, D.; Tremblay, K.; Alexander, V.J.; Singleton, W.; Hughes, S.G.; Geary, R.S.; Baker, B.F.; Graham, M.J.; Crooke, R.M.; et al. Targeting APOC3 in the Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2014, 371, 2200–2206. [Google Scholar] [CrossRef]
- Gaudet, D.; Alexander, V.J.; Baker, B.F.; Brisson, D.; Tremblay, K.; Singleton, W.; Geary, R.S.; Hughes, S.G.; Viney, N.J.; Graham, M.J.; et al. Antisense Inhibition of Apolipoprotein C-III in Patients with Hypertriglyceridemia. N. Engl. J. Med. 2015, 373, 438–447. [Google Scholar] [CrossRef] [PubMed]
- Gouni-Berthold, I.; Alexander, V.J.; Yang, Q.; Hurh, E.; Steinhagen-Thiessen, E.; Moriarty, P.M.; Hughes, S.G.; Gaudet, D.; A Hegele, R.; O’Dea, L.S.L.; et al. Efficacy and safety of volanesorsen in patients with multifactorial chylomicronaemia (COMPASS): A multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Diabetes Endocrinol. 2021, 9, 264–275. [Google Scholar] [CrossRef]
- Witztum, J.L.; Gaudet, D.; Freedman, S.D.; Alexander, V.J.; Digenio, A.; Williams, K.R.; Yang, Q.; Hughes, S.G.; Geary, R.S.; Arca, M.; et al. Volanesorsen and Triglyceride Levels in Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2019, 381, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Witztum, J.L.; Gaudet, D.; Arca, M.; Jones, A.; Soran, H.; Gouni-Berthold, I.; Stroes, E.S.; Alexander, V.J.; Jones, R.; Watts, L.; et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome: Long-term efficacy and safety data from patients in an open-label extension trial. J. Clin. Lipidol. 2023, 17, 342–355. [Google Scholar] [CrossRef]
- Jones, A.; Peers, K.; Wierzbicki, A.S.; Ramachandran, R.; Mansfield, M.; Dawson, C.; Ochoa-Ferraro, A.; Soran, H.; Jenkinson, F.; McDowell, I.; et al. Long-term effects of volanesorsen on triglycerides and pancreatitis in patients with familial chylomicronaemia syndrome (FCS) in the UK Early Access to Medicines Scheme (EAMS). Atherosclerosis 2023, 375, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Oral, E.A.; Garg, A.; Tami, J.; Huang, E.A.; O’Dea, L.S.; Schmidt, H.; Tiulpakov, A.; Mertens, A.; Alexander, V.J.; Watts, L.; et al. Assessment of efficacy and safety of volanesorsen for treatment of metabolic complications in patients with familial partial lipodystrophy: Results of the BROADEN study: Volanesorsen in FPLD; The BROADEN Study. J. Clin. Lipidol. 2022, 16, 833–849. [Google Scholar] [CrossRef] [PubMed]
- Prohaska, T.A.; Alexander, V.J.; Karwatowska-Prokopczuk, E.; Tami, J.; Xia, S.; Witztum, J.L.; Tsimikas, S. APOC3 inhibition with volanesorsen reduces hepatic steatosis in patients with severe hypertriglyceridemia. J. Clin. Lipidol. 2023, 17, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Alexander, V.J.; Karwatowska-Prokopczuk, E.; Prohaska, T.A.; Li, L.; Geary, R.S.; Gouni-Berthold, I.; Oral, E.A.; Hegele, R.A.; Stroes, E.S.; Witztum, J.L.; et al. Volanesorsen to Prevent Acute Pancreatitis in Hypertriglyceridemia. N. Engl. J. Med. 2024, 390, 476–477. [Google Scholar] [CrossRef] [PubMed]
- Hooper, A.J.; Bell, D.A.; Burnett, J.R. Olezarsen, a liver-directed APOC3 ASO therapy for hypertriglyceridemia. Expert. Opin. Pharmacother. 2024, 25, 1861–1866. [Google Scholar] [CrossRef]
- Karwatowska-Prokopczuk, E.; Lesogor, A.; Yan, J.-H.; Hoenlinger, A.; Margolskee, A.; Li, L.; Tsimikas, S. Efficacy and safety of olezarsen in lowering apolipoprotein C-III and triglycerides in healthy Japanese Americans. Lipids Health Dis. 2024, 23, 329. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Karwatowska-Prokopczuk, E.; Amour, E.S.; Ballantyne, C.M.; Shapiro, M.D.; Moriarty, P.M.; Baum, S.J.; Hurh, E.; Bartlett, V.J.; Kingsbury, J.; et al. Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. Eur. Heart J. 2022, 43, 1401–1412. [Google Scholar] [CrossRef]
- Karwatowska-Prokopczuk, E.; Tardif, J.-C.; Gaudet, D.; Ballantyne, C.M.; Shapiro, M.D.; Moriarty, P.M.; Baum, S.J.; Amour, E.S.; Alexander, V.J.; Xia, S.; et al. Effect of olezarsen targeting APOC-III on lipoprotein size and particle number measured by NMR in patients with hypertriglyceridemia. J. Clin. Lipidol. 2022, 16, 617–625. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, B.A.; Marston, N.A.; Prohaska, T.A.; Alexander, V.J.; Zimerman, A.; Moura, F.A.; Murphy, S.A.; Goodrich, E.L.; Zhang, S.; Gaudet, D.; et al. Olezarsen for Hypertriglyceridemia in Patients at High Cardiovascular Risk. N. Engl. J. Med. 2024, 390, 1770–1780. [Google Scholar] [CrossRef] [PubMed]
- Stroes, E.S.; Alexander, V.J.; Karwatowska-Prokopczuk, E.; Hegele, R.A.; Arca, M.; Ballantyne, C.M.; Soran, H.; Prohaska, T.A.; Xia, S.; Ginsberg, H.N.; et al. Olezarsen, Acute Pancreatitis, and Familial Chylomicronemia Syndrome. N. Engl. J. Med. 2024, 390, 1781–1792. [Google Scholar] [CrossRef]
- Chebli, J.; Larouche, M.; Gaudet, D. APOC3 siRNA and ASO therapy for dyslipidemia. Curr. Opin. Endocrinol. Diabetes Obes. 2024, 31, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, D.; Clifton, P.; Sullivan, D.; Baker, J.; Schwabe, C.; Thackwray, S.; Scott, R.; Hamilton, J.; Given, B.; Melquist, S.; et al. RNA Interference Therapy Targeting Apolipoprotein C-III in Hypertriglyceridemia. NEJM Evid. 2023, 2, EVIDoa2200325. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, D.; Pall, D.; Watts, G.F.; Nicholls, S.J.; Rosenson, R.S.; Modesto, K.; Martin, J.S.; Hellawell, J.; Ballantyne, C.M. Plozasiran (ARO-APOC3) for Severe Hypertriglyceridemia: The SHASTA-2 Randomized Clinical Trial. JAMA Cardiol. 2024, 9, 620–630. [Google Scholar] [CrossRef]
- Ballantyne, C.M.; Vasas, S.; Azizad, M.; Clifton, P.; Rosenson, R.S.; Chang, T.; Melquist, S.; Zhou, R.; Mushin, M.; Leeper, N.J.; et al. Plozasiran, an RNA Interference Agent Targeting APOC3, for Mixed Hyperlipidemia. N. Engl. J. Med. 2024, 391, 899–912. [Google Scholar] [CrossRef]
- Watts, G.F.; Rosenson, R.S.; Hegele, R.A.; Goldberg, I.J.; Gallo, A.; Mertens, A.; Baass, A.; Zhou, R.; Muhsin, M.; Hellawell, J.; et al. Plozasiran for Managing Persistent Chylomicronemia and Pancreatitis Risk. N. Engl. J. Med. 2024; online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-Y.; Gao, W.-Y.; Liou, J.-W.; Lin, C.-Y.; Wu, M.-J.; Yen, J.-H. Angiopoietin-like protein 3 (Angptl3) modulates lipoprotein metabolism and dyslipidemia. Int. J. Mol. Sci. 2021, 22, 7310. [Google Scholar] [CrossRef] [PubMed]
- Jin, N.; Matter, W.F.; Michael, L.F.; Qian, Y.; Gheyi, T.; Cano, L.; Perez, C.; Lafuente, C.; Broughton, H.B.; Espada, A. The Angiopoietin-Like Protein 3 and 8 Complex Interacts with Lipoprotein Lipase and Induces LPL Cleavage. ACS Chem. Biol. 2021, 16, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Larouche, M.; Khoury, E.; Brisson, D.; Gaudet, D. Inhibition of Angiopoietin-Like Protein 3 or 3/8 Complex and ApoC-III in Severe Hypertriglyceridemia. Curr. Atheroscler. Rep. 2023, 25, 1101–1111. [Google Scholar] [CrossRef]
- Chan, D.C.; Watts, G.F. Inhibition of the ANGPTL3/8 Complex for the Prevention and Treatment of Atherosclerotic Cardiovascular Disease. Curr. Atheroscler. Rep. 2024, 27, 6. [Google Scholar] [CrossRef]
- Watts, G.F.; Schwabe, C.; Scott, R.; Gladding, P.A.; Sullivan, D.; Baker, J.; Clifton, P.; Hamilton, J.; Given, B.; Melquist, S.; et al. RNA interference targeting ANGPTL3 for triglyceride and cholesterol lowering: Phase 1 basket trial cohorts. Nat. Med. 2023, 29, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Gaudet, D.; Hegele, R.A.; Ballantyne, C.M.; Nicholls, S.J.; Lucas, K.J.; Martin, J.S.; Zhou, R.; Muhsin, M.; Chang, T.; et al. Zodasiran, an RNAi Therapeutic Targeting ANGPTL3, for Mixed Hyperlipidemia. N. Engl. J. Med. 2024, 391, 913–925. [Google Scholar] [CrossRef]
- Gaudet, D.; Gipe, D.A.; Pordy, R.; Ahmad, Z.; Cuchel, M.; Shah, P.K.; Chyu, K.-Y.; Sasiela, W.J.; Chan, K.-C.; Brisson, D.; et al. ANGPTL3 Inhibition in Homozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2017, 377, 296–297. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Burgess, L.J.; Ebenbichler, C.F.; Baum, S.J.; Stroes, E.S.; Ali, S.; Khilla, N.; Hamlin, R.; Pordy, R.; Dong, Y.; et al. Evinacumab in Patients with Refractory Hypercholesterolemia. N. Engl. J. Med. 2020, 383, 2307–2319. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, D.; Greber-Platzer, S.; Reeskamp, L.F.; Iannuzzo, G.; Rosenson, R.S.; Saheb, S.; Stefanutti, C.; Stroes, E.; Wiegman, A.; Turner, T.; et al. Evinacumab in homozygous familial hypercholesterolaemia: Long-term safety and efficacy. Eur. Heart J. 2024, 45, 2422–2434. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Banerjee, P.; Hamon, S.; Chan, K.-C.; Bouzelmat, A.; Sasiela, W.J.; Pordy, R.; Mellis, S.; Dansky, H.; Gipe, D.A.; et al. Inhibition of Angiopoietin-Like Protein 3 with a Monoclonal Antibody Reduces Triglycerides in Hypertriglyceridemia. Circulation 2019, 140, 470–486. [Google Scholar] [CrossRef] [PubMed]
- Rosenson, R.S.; Gaudet, D.; Ballantyne, C.M.; Baum, S.J.; Bergeron, J.; Kershaw, E.E.; Moriarty, P.M.; Rubba, P.; Whitcomb, D.C.; Banerjee, P.; et al. Evinacumab in severe hypertriglyceridemia with or without lipoprotein lipase pathway mutations: A phase 2 randomized trial. Nat. Med. 2023, 29, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Gaudet, D.; Karwatowska-Prokopczuk, E.; Baum, S.J.; Hurh, E.; Kingsbury, J.; Bartlett, V.J.; Figueroa, A.L.; Piscitelli, P.; Singleton, W.; Witztum, J.L.; et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur. Heart J. 2020, 41, 3936–3945. [Google Scholar] [CrossRef]
- Foss-Freitas, M.C.; Akinci, B.; Neidert, A.; Bartlett, V.J.; Hurh, E.; Karwatowska-Prokopczuk, E.; Oral, E.A. Selective targeting of angiopoietin-like 3 (ANGPTL3) with vupanorsen for the treatment of patients with familial partial lipodystrophy (FPLD): Results of a proof-of-concept study. Lipids Health Dis. 2021, 20, 174. [Google Scholar] [CrossRef] [PubMed]
- Bergmark, B.A.; Marston, N.A.; Bramson, C.R.; Curto, M.; Ramos, V.; Jevne, A.; Kuder, J.F.; Park, J.-G.; Murphy, S.A.; Verma, S.; et al. Effect of Vupanorsen on Non-High-Density Lipoprotein Cholesterol Levels in Statin-Treated Patients with Elevated Cholesterol: TRANSLATE-TIMI 70. Circulation 2022, 145, 1377–1386. [Google Scholar] [CrossRef]
- Gaudet, D.; Gonciarz, M.; Shen, X.; Mullins, G.; Leohr, J.; Benichou, O.; Beyer, T.; Ruotolo, G. A first-in-human single ascending dose study of a monoclonal antibody against the ANGPTL3/8 complex in subjects with mixed hyperlipidemia. Atherosclerosis 2022, 355, 12. [Google Scholar] [CrossRef]
- Gusarova, V.; Banfi, S.; Alexa-Braun, C.A.; Shihanian, L.M.; Mintah, I.J.; Lee, J.S.; Xin, Y.; Su, Q.; Kamat, V.; Cohen, J.C.; et al. ANGPTL8 blockade with a monoclonal antibody promotes triglyceride clearance, energy expenditure, and weight loss in mice. Endocrinology 2017, 158, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Szczepańska, E.; Gietka-Czernel, M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm. Metab. Res. 2022, 54, 203–211. [Google Scholar] [CrossRef]
- Geng, L.; Lam, K.S.L.; Xu, A. The therapeutic potential of FGF21 in metabolic diseases: From bench to clinic. Nat. Rev. Endocrinol. 2020, 16, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Schlein, C.; Talukdar, S.; Heine, M.; Fischer, A.W.; Krott, L.M.; Nilsson, S.K.; Brenner, M.B.; Heeren, J.; Scheja, L. FGF21 lowers plasma triglycerides by accelerating lipoprotein catabolism in white and brown adipose tissues. Cell Metab. 2016, 23, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Schönke, M.; Zhou, E.; Li, Z.; Kooijman, S.; Boon, M.R.; Larsson, M.; Wallenius, K.; Dekker, N.; Barlind, L.; et al. Pharmacological treatment with FGF21 strongly improves plasma cholesterol metabolism to reduce atherosclerosis. Cardiovasc. Res. 2022, 118, 489–502. [Google Scholar] [CrossRef] [PubMed]
- Malick, W.A.; Waksman, O.; Do, R.; Koenig, W.; Pradhan, A.D.; Stroes, E.S.; Rosenson, R.S. Clinical Trial Design for Triglyceride-Rich Lipoprotein-Lowering Therapies: JACC Focus Seminar 3/3. J. Am. Coll. Cardiol. 2023, 81, 1646–1658. [Google Scholar] [CrossRef]
- Rader, D.J.; Maratos-Flier, E.; Nguyen, A.; Hom, D.; Ferriere, M.; Li, Y.; Kompa, J.; Martic, M.; Hinder, M.; Basson, C.T.; et al. LLF580, an FGF21 Analog, Reduces Triglycerides and Hepatic Fat in Obese Adults with Modest Hypertriglyceridemia. J. Clin. Endocrinol. Metab. 2022, 107, e57–e70. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Bays, H.E.; Miller, M.; Cain, J.E.; Wasilewska, K.; Andrawis, N.S.; Parli, T.; Feng, S.; Sterling, L.; Tseng, L.; et al. The FGF21 analog pegozafermin in severe hypertriglyceridemia: A randomized phase 2 trial. Nat. Med. 2023, 29, 1782–1792. [Google Scholar] [CrossRef]
- Hartsfield, C.; Bhatt, D.; Bays, H.; Maki, K.; Feng, S.; Agollah, G.; Mansbach, H.; Kastelein, J.; Parli, T. Study Design of a Phase 3 Randomized Controlled Trial Evaluating the Efficacy and Safety of Pegozafermin in Patients with Severe Hypertriglyceridemia. J. Clin. Lipidol. 2024, 18, e552–e553. [Google Scholar] [CrossRef]
- Nordestgaard, B.G.; Varbo, A. Triglycerides and cardiovascular disease. Lancet 2014, 384, 626–635. [Google Scholar] [CrossRef] [PubMed]
- TRYNGOLZA™ (Olezarsen) Approved in U.S. as First-Ever Treatment for Adults Living with Familial Chylomicronemia Syndrome as an Adjunct to Diet. Available online: https://ir.ionis.com/news-releases/news-release-details/tryngolzatm-olezarsen-approved-us-first-ever-treatment-adults (accessed on 22 December 2024).
- EU/3/24/2973—Orphan Designation for Treatment of Familial Chylomicronaemia Syndrome. Available online: https://www.ema.europa.eu/en/medicines/human/orphan-designations/eu-3-24-2973 (accessed on 7 December 2024).
- Arrowhead Pharmaceuticals Receives FDA Breakthrough Therapy Designation for Plozasiran. Available online: https://ir.arrowheadpharma.com/news-releases/news-release-details/arrowhead-pharmaceuticals-receives-fda-breakthrough-therapy (accessed on 7 December 2024).
- Arrowhead Pharmaceuticals to Advance RNAi-Based Plozasiran into Phase 3 CAPITAN Cardiovascular Outcomes Trial. Available online: https://ir.arrowheadpharma.com/news-releases/news-release-details/arrowhead-pharmaceuticals-advance-rnai-based-plozasiran-phase-3 (accessed on 22 December 2024).
- Olezarsen. Available online: https://ctv.veeva.com/study-search?query=olezarsen (accessed on 18 January 2025).
- Clinical Trials. Available online: https://arrowheadpharma.com/science-and-innovation/clinical-trials (accessed on 18 January 2025).
- Mehta, N.; Gilbert, R.; Chahal, P.S.; Moreno, M.J.; Nassoury, N.; Coulombe, N.; Lytvyn, V.; Mercier, M.; Fatehi, D.; Lin, W.; et al. Preclinical Development and Characterization of Novel Adeno-Associated Viral Vectors for the Treatment of Lipoprotein Lipase Deficiency. Hum. Gene Ther. 2023, 34, 927–946. [Google Scholar] [CrossRef] [PubMed]
Trial | Population | TG Reduction | Lipid Profile Changes |
---|---|---|---|
Volanesorsen | |||
COMPASS Phase 3 [58] | Multifactorial chylomicronemia or FCS with TG ≥ 500 mg/dL (≥5.6 mmol/L) N = 114 | −71.2% at 3 months with 300 mg | ApoC-III: −76.1% Non-HDL-C: −27.3% ApoB: +5.8% LDL-C: +95.5% HDL-C: +61.2% |
APPROACH Phase 3 [59] | FCS N = 67 | −76.5% at 3 months with 300 mg | ApoC-III: −84.2% Non-HDL-C: −45.9% ApoB: +19.5% LDL-C: +135.6% HDL-C: +46.1% |
Olezarsen | |||
Phase 2 [67] | TG 200–500 mg/dL (2.3–5.6 mmol/L) with established ASCVD or high ASCVD risk N = 114 | −62% at 6 months with 50 mg | ApoC-III: −74% Non-HDL-C: −20% ApoB: −10% LDL-C: +10% HDL-C: +30% |
Bridge-TIMI 73a Phase 2b [69] | TG 150–499 mg/dL (1.7–5.6 mmol/) with increased ASCVD risk, or TG ≥ 500 mg/dL N = 154 | −53.1 at 6 months with 80 mg | ApoC-III: −73.2 Non-HDL-C: −23.1 ApoB: −18.5 LDL-C: −7.7 HDL-C: +39.6 |
Balance Phase 3 [70] | FCS N = 66 | −43.5 at 6 months with 80 mg | ApoC-III: −73.7 ApoB-48: −84.0 Non-HDL-C: −24.2 |
Plozasiran | |||
SHASTA-2 Phase 2 [73] | TG 500–4000 mg/dL (5.6–45 mmol/L) N = 226 | −57.0% at 24 weeks with 50 mg | ApoC-III: −77.4% Non-HDL-C: −20.2% ApoB: −7.3% LDL-C: +60.3% HDL-C: +57.0% |
MUIR Phase 2b [74] | TG 150–499 mg/dL (1.7–5.6 mmol/) with LDL-C ≥ 70 mg/dL or non-HDL-C ≥ 100 mg/dL N = 353 | −62.4 at 24 weeks with 50 mg quarterly | ApoC-III: −78.5 Non-HDL-C: −24.2 ApoB: −19.1 LDL-C: −13.5 HDL-C: +45.8 |
PALISADE Phase 3 [75] | TG >1000 mg/dL (>11.3 mmol/L) with FCS, low LPL activity or a history of acute pancreatitis N = 75 | −59.0 at 10 months with 25 mg | ApoC-III: −91 |
Zodasiran | |||
Phase 1 [80] | TG > 100 mg/dL (>1.1 mmol/L) and LDL-C > 70 mg/dL N = 52 | −58.6% at 85 days with 300 mg | ANGPTL3: −84.3% Non-HDL-C: −17.6% ApoB: −9.4% LDL-C: −9.1% HDL-C: −18.6% |
Phase 2 ARCHES-2 [81] | TG 150–499 mg/dL (1.7–5.6 mmol/L) with LDL-C ≥ 70 mg/dL or non-HDL-C ≥ 100 mg/dL N = 204 | −63.1 at 24 weeks with 200 mg | ANGPTL3: −73.3 Non-HDL-C: −36.4 ApoB: −21.9 LDL-C: −19.9 HDL-C: −24.5 |
Trial | Condition | Estimated End Date |
---|---|---|
Olezarsen | ||
Phase 3 NCT05185843 | FCS | January 2025 |
ESSENCE CS9—TIMI 73b Phase 3 NCT05610280 | TG 200–500 mg/dL (2.3–5.6 mmol/L) with established ASCVD or high ASCVD risk, or TG ≥ 500 mg/dL (≥5.6 mmol/L) | March 2025 |
CORE—TIMI 72a Phase 3 NCT05079919 | sHTG TG ≥ 500 mg/dL (≥5.6 mmol/L) | April 2025 |
CORE2 CS6—TIMI 72b Phase 3 NCT05552326 | sHTG TG ≥ 500 mg/dL (≥5.6 mmol/L) | June 2025 |
CORE-OLE Phase 3 NCT05681351 | sHTG TG ≥ 500 mg/dL (≥5.6 mmol/L) | May 2026 |
Phase 3 NCT05185842 | FCS previously treated with volanesorsen | June 2027 |
Plozasiran | ||
MUIR-3 Phase 3 NCT06347133 | HTG TG 150–499 mg/dL (1.7–5.6 mmol/L) | October 2026 |
SHASTA-3 Phase 3 NCT06347003 | sHTG TG ≥ 500 mg/dL (≥5.6 mmol/L) | October 2026 |
SHASTA-4 Phase 3 NCT06347016 | sHTG TG ≥ 500 mg/dL (≥5.6 mmol/L) | October 2026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimodro, J.M.; Rizzo, M.; Gouni-Berthold, I. Current and Emerging Treatment Options for Hypertriglyceridemia: State-of-the-Art Review. Pharmaceuticals 2025, 18, 147. https://doi.org/10.3390/ph18020147
Zimodro JM, Rizzo M, Gouni-Berthold I. Current and Emerging Treatment Options for Hypertriglyceridemia: State-of-the-Art Review. Pharmaceuticals. 2025; 18(2):147. https://doi.org/10.3390/ph18020147
Chicago/Turabian StyleZimodro, Jakub Michal, Manfredi Rizzo, and Ioanna Gouni-Berthold. 2025. "Current and Emerging Treatment Options for Hypertriglyceridemia: State-of-the-Art Review" Pharmaceuticals 18, no. 2: 147. https://doi.org/10.3390/ph18020147
APA StyleZimodro, J. M., Rizzo, M., & Gouni-Berthold, I. (2025). Current and Emerging Treatment Options for Hypertriglyceridemia: State-of-the-Art Review. Pharmaceuticals, 18(2), 147. https://doi.org/10.3390/ph18020147