Pharmacogenetics of Anti-Diabetes Drugs
Abstract
:1. Introduction
1.1. Pharmacogenetics
1.2. Type 2 diabetes mellitus
2. Pharmacogenetic Studies of Anti-Diabetes Drugs
2.1. Sulfonylureas
2.1.1. Background
2.1.2. Mechanism of action
2.1.2.1. KCNJ11 and ABCC8
2.1.2.2. CYP2C9 and CYP2C19
2.1.2.3. Other genes
2.2. Biguanides (Metformin)
2.2.1. Background
2.2.2. Mechanism of action
2.3. Thiazolidinediones
2.3.1. Mechanism of Action
2.3.2. TZD Kinetics
2.3.3. TZD Efficacy and Risks
2.3.4. Prevention
2.3.5. Response
2.3.5.1. PPARG
2.3.5.2. Adipokines
T/T | T/G | G/G | p-value* | |
---|---|---|---|---|
Total sample size | 86 | 55 | 25 | 0.032 |
Change in Fasting Glucose (mM) | 1.63±2.19 | 1.79±2.74 | 0.25±2.95 | |
Change in HbA1c (%) | 0.83±1.13 | 0.87±0.92 | 0.05±1.43 | 0.006 |
Change in Adiponectin (μg/mL) | 5.52±5.03 | 3.68±4.98 | 1.67±4.45 | 0.002 |
2.3.5.3. Cytochrome P450 Enzymes
3. Future Approaches for Pharmacogenetics Studies of Anti-Diabetes Drugs
4. Conclusions
Acknowledgements
References and Notes
- Buchanan, T.A.; Xiang, A.H.; Peters, R.K.; Kjos, S.L.; Berkowitz, K.; Marroquin, A.; Goico, J.; Ochoa, C.; Azen, S.P. Response of pancreatic beta-cells to improved insulin sensitivity in women at high risk for type 2 diabetes. Diabetes 2000, 49, 782–788. [Google Scholar]
- Gerstein, H.C.; Yusuf, S.; Bosch, J.; Pogue, J.; Sheridan, P.; Dinccag, N.; Hanefeld, M.; Hoogwerf, B.; Laakso, M.; Mohan, V.; et al. Effect of rosiglitazone on the frequency of diabetes in patients with impaired glucose tolerance or impaired fasting glucose: a randomised controlled trial. Lancet 2006, 368, 1096–1105. [Google Scholar]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar]
- Knowler, W.C.; Hamman, R.F.; Edelstein, S.L.; Barrett-Connor, E.; Ehrmann, D.A.; Walker, E.A.; Fowler, S.E.; Nathan, D.M.; Kahn, S.E. Prevention of type 2 diabetes with troglitazone in the Diabetes Prevention Program. Diabetes 2005, 54, 1150–1156. [Google Scholar]
- Xiang, A.H.; Peters, R.K.; Kjos, S.L.; Marroquin, A.; Goico, J.; Ochoa, C.; Kawakubo, M.; Buchanan, T.A. Effect of pioglitazone on pancreatic beta-cell function and diabetes risk in Hispanic women with prior gestational diabetes. Diabetes 2006, 55, 517–522. [Google Scholar]
- Meyer, U.A. Pharmacogenetics - five decades of therapeutic lessons from genetic diversity. Nature Rev. 2004, 5, 669–676. [Google Scholar]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; et al. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar]
- McPherson, J.D.; Marra, M.; Hillier, L.; Waterston, R.H.; Chinwalla, A.; Wallis, J.; Sekhon, M.; Wylie, K.; Mardis, E.R.; Wilson, R.K.; et al. A physical map of the human genome. Nature 2001, 409, 934–941. [Google Scholar]
- The International HapMap Project. Nature 2003, 426, 789–796.
- A haplotype map of the human genome. Nature 2005, 437, 1299–1320.
- Aberg, K.; Adkins, D.E.; Bukszar, J.; Webb, B.T.; Caroff, S.N.; Miller del, D.; Sebat, J.; Stroup, S.; Fanous, A.H.; Vladimirov, V.I.; et al. Genomewide association study of movement-related adverse antipsychotic effects. Biol. Psychiatry 2010, 67, 279–282. [Google Scholar]
- Garriock, H.A.; Kraft, J.B.; Shyn, S.I.; Peters, E.J.; Yokoyama, J.S.; Jenkins, G.D.; Reinalda, M.S.; Slager, S.L.; McGrath, P.J.; Hamilton, S.P. A genomewide association study of citalopram response in major depressive disorder. Biol. Psychiatry 2010, 67, 133–138. [Google Scholar]
- Ising, M.; Lucae, S.; Binder, E.B.; Bettecken, T.; Uhr, M.; Ripke, S.; Kohli, M.A.; Hennings, J.M.; Horstmann, S.; Kloiber, S.; et al. A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch. Gen. Psychiatry 2009, 66, 966–975. [Google Scholar]
- Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [Google Scholar]
- Perlis, R.H.; Smoller, J.W.; Ferreira, M.A.; McQuillin, A.; Bass, N.; Lawrence, J.; Sachs, G.S.; Nimgaonkar, V.; Scolnick, E.M.; Gurling, H.; et al. A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am. J. Psychiatry 2009, 166, 718–725. [Google Scholar]
- Marchetti, P.; Lupi, R.; Del Guerra, S.; Bugliani, M.; D'Aleo, V.; Occhipinti, M.; Boggi, U.; Marselli, L.; Masini, M. Goals of treatment for type 2 diabetes: beta-cell preservation for glycemic control. Diabet. Care 2009, 32, 178–183. [Google Scholar]
- Barnett, A.H.; Eff, C.; Leslie, R.D.; Pyke, D.A. Diabetes in identical twins. A study of 200 pairs. Diabetologia 1981, 20, 87–93. [Google Scholar]
- Newman, B.; Selby, J.V.; King, M.C.; Slemenda, C.; Fabsitz, R.; Friedman, G.D. Concordance for type 2 (non-insulin-dependent) diabetes mellitus in male twins. Diabetologia 1987, 30, 763–768. [Google Scholar]
- Poulsen, P.; Kyvik, K.O.; Vaag, A.; Beck-Nielsen, H. Heritability of type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance--a population-based twin study. Diabetologia 1999, 42, 139–145. [Google Scholar]
- Klein, B.E.; Klein, R.; Moss, S.E.; Cruickshanks, K.J. Parental history of diabetes in a population-based study. Diabet. Care 1996, 19, 827–830. [Google Scholar]
- Knowler, W.C.; Bennett, P.H.; Hamman, R.F.; Miller, M. Diabetes incidence and prevalence in Pima Indians: a 19-fold greater incidence than in Rochester, Minnesota. Am. J. Epidemiol. 1978, 108, 497–505. [Google Scholar]
- Knowler, W.C.; Pettitt, D.J.; Savage, P.J.; Bennett, P.H. Diabetes incidence in Pima indians: contributions of obesity and parental diabetes. Am. J. Epidemiol. 1981, 113, 144–156. [Google Scholar]
- Rushforth, N.B.; Bennett, P.H.; Steinberg, A.G.; Burch, T.A.; Miller, M. Diabetes in the Pima Indians. Evidence of bimodality in glucose tolerance distributions. Diabetes 1971, 20, 756–765. [Google Scholar] [PubMed]
- Zimmet, P.; Dowse, G.; Finch, C.; Serjeantson, S.; King, H. The epidemiology and natural history of NIDDM--lessons from the South Pacific. Diabet. Metab. Rev. 1990, 6, 91–124. [Google Scholar]
- Zimmet, P.; King, H.; Taylor, R.; Raper, L.R.; Balkau, B.; Borger, J.; Heriot, W.; Thoma, K. The high prevalence of diabetes mellitus, impaired glucose tolerance and diabetic retinopathy in Nauru-the 1982 survey. Diabet. Res. (Edinburgh, Lothian) 1984, 1, 13–18. [Google Scholar]
- National Diabetes Statistics 2007 Fact Sheet; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, DC, USA, 2007.
- Gungor, N.; Arslanian, S. Pathophysiology of type 2 diabetes mellitus in children and adolescents: treatment implications. Treat. Endocrinol. 2002, 1, 359–371. [Google Scholar]
- Holman, R.R.; Paul, S.K.; Bethel, M.A.; Matthews, D.R.; Neil, H.A. 10-year follow-up of intensive glucose control in type 2 diabetes. N. Engl. J. Med. 2008, 359, 1577–1589. [Google Scholar]
- Hoerger, T.J.; Segel, J.E.; Gregg, E.W.; Saaddine, J.B. Is glycemic control improving in U.S. adults? Diabet. Care 2008, 31, 81–86. [Google Scholar]
- Bozkurt, O.; de Boer, A.; Grobbee, D.E.; Heerdink, E.R.; Burger, H.; Klungel, O.H. Pharmacogenetics of glucose-lowering drug treatment: a systematic review. Mol. Diagn. Ther. 2007, 11, 291–302. [Google Scholar]
- Kahn, S.E.; Haffner, S.M.; Heise, M.A.; Herman, W.H.; Holman, R.R.; Jones, N.P.; Kravitz, B.G.; Lachin, J.M.; O'Neill, M.C.; Zinman, B.; Viberti, G. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 2006, 355, 2427–2443. [Google Scholar]
- Kirchheiner, J.; Roots, I.; Goldammer, M.; Rosenkranz, B.; Brockmoller, J. Effect of genetic polymorphisms in cytochrome p450 (CYP) 2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance. Clin. Pharmacokinet. 2005, 44, 1209–1225. [Google Scholar]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [PubMed]
- Matthews, D.R.; Cull, C.A.; Stratton, I.M.; Holman, R.R.; Turner, R.C. UKPDS 26: Sulphonylurea failure in non-insulin-dependent diabetic patients over six years. Diabet. Med. 1998, 15, 297–303. [Google Scholar]
- Fukui, M.; Nakano, K.; Shigeta, H.; Yoshimori, K.; Fujii, M.; Kitagawa, Y.; Mori, H.; Kajiyama, S.; Nakamura, N.; Abe, N.; et al. Antibodies to glutamic acid decarboxylase in Japanese diabetic patients with secondary failure of oral hypoglycaemic therapy. Diabet. Med. 1997, 14, 148–152. [Google Scholar]
- Levy, J.; Atkinson, A.B.; Bell, P.M.; McCance, D.R.; Hadden, D.R. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet. Med. 1998, 15, 290–296. [Google Scholar]
- Fajans, S.S.; Bell, G.I.; Polonsky, K.S. Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. N. Engl. J. Med. 2001, 345, 971–980. [Google Scholar]
- Sovik, O.; Njolstad, P.; Folling, I.; Sagen, J.; Cockburn, B.N.; Bell, G.I. Hyperexcitability to sulphonylurea in MODY3. Diabetologia 1998, 41, 607–608. [Google Scholar]
- Pearson, E.R.; Liddell, W.G.; Shepherd, M.; Corrall, R.J.; Hattersley, A.T. Sensitivity to sulphonylureas in patients with hepatocyte nuclear factor-1alpha gene mutations: evidence for pharmacogenetics in diabetes. Diabet. Med. 2000, 17, 543–545. [Google Scholar]
- Pearson, E.R.; Starkey, B.J.; Powell, R.J.; Gribble, F.M.; Clark, P.M.; Hattersley, A.T. Genetic cause of hyperglycaemia and response to treatment in diabetes. Lancet 2003, 362, 1275–1281. [Google Scholar]
- Pearson, E.R.; Flechtner, I.; Njolstad, P.R.; Malecki, M.T.; Flanagan, S.E.; Larkin, B.; Ashcroft, F.M.; Klimes, I.; Codner, E.; Iotova, V.; et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N. Engl. J. Med. 2006, 355, 467–477. [Google Scholar] [PubMed]
- Patch, A.M.; Flanagan, S.E.; Boustred, C.; Hattersley, A.T.; Ellard, S. Mutations in the ABCC8 gene encoding the SUR1 subunit of the KATP channel cause transient neonatal diabetes, permanent neonatal diabetes or permanent diabetes diagnosed outside the neonatal period. Diabet. Obes. Metab. 2007, 9, 28–39. [Google Scholar]
- Babenko, A.P.; Polak, M.; Cave, H.; Busiah, K.; Czernichow, P.; Scharfmann, R.; Bryan, J.; Aguilar-Bryan, L.; Vaxillaire, M.; Froguel, P. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med. 2006, 355, 456–466. [Google Scholar]
- Hani, E.H.; Clement, K.; Velho, G.; Vionnet, N.; Hager, J.; Philippi, A.; Dina, C.; Inoue, H.; Permutt, M.A.; Basdevant, A.; et al. Genetic studies of the sulfonylurea receptor gene locus in NIDDM and in morbid obesity among French Caucasians. Diabetes 1997, 46, 688–694. [Google Scholar] [PubMed]
- Inoue, H.; Ferrer, J.; Welling, C.M.; Elbein, S.C.; Hoffman, M.; Mayorga, R.; Warren-Perry, M.; Zhang, Y.; Millns, H.; Turner, R.; et al. Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians. Diabetes 1996, 45, 825–831. [Google Scholar]
- Tarasov, A.I.; Nicolson, T.J.; Riveline, J.P.; Taneja, T.K.; Baldwin, S.A.; Baldwin, J.M.; Charpentier, G.; Gautier, J.F.; Froguel, P.; Vaxillaire, M.; et al. A rare mutation in ABCC8/SUR1 leading to altered ATP-sensitive K+ channel activity and beta-cell glucose sensing is associated with type 2 diabetes in adults. Diabetes 2008, 57, 1595–1604. [Google Scholar]
- Yokoi, N.; Kanamori, M.; Horikawa, Y.; Takeda, J.; Sanke, T.; Furuta, H.; Nanjo, K.; Mori, H.; Kasuga, M.; Hara, K.; et al. Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes 2006, 55, 2379–2386. [Google Scholar]
- Zhang, H.; Liu, X.; Kuang, H.; Yi, R.; Xing, H. Association of sulfonylurea receptor 1 genotype with therapeutic response to gliclazide in type 2 diabetes. Diabet. Res. Clin. Pract. 2007, 77, 58–61. [Google Scholar]
- Feng, Y.; Mao, G.; Ren, X.; Xing, H.; Tang, G.; Li, Q.; Li, X.; Sun, L.; Yang, J.; Ma, W.; et al. Ser1369Ala variant in sulfonylurea receptor gene ABCC8 is associated with antidiabetic efficacy of gliclazide in Chinese type 2 diabetic patients. Diabet. Care 2008, 31, 1939–1944. [Google Scholar]
- Miki, T.; Nagashima, K.; Tashiro, F.; Kotake, K.; Yoshitomi, H.; Tamamoto, A.; Gonoi, T.; Iwanaga, T.; Miyazaki, J.; Seino, S. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA 1998, 95, 10402–10406. [Google Scholar]
- Dunne, M.J.; Kane, C.; Shepherd, R.M.; Sanchez, J.A.; James, R.F.; Johnson, P.R.; Aynsley-Green, A.; Lu, S.; Clement, J.P.T.; Lindley, K.J.; et al. Familial persistent hyperinsulinemic hypoglycemia of infancy and mutations in the sulfonylurea receptor. N. Engl. J. Med. 1997, 336, 703–706. [Google Scholar]
- Nestorowicz, A.; Inagaki, N.; Gonoi, T.; Schoor, K.P.; Wilson, B.A.; Glaser, B.; Landau, H.; Stanley, C.A.; Thornton, P.S.; Seino, S.; et al. A nonsense mutation in the inward rectifier potassium channel gene, Kir6.2, is associated with familial hyperinsulinism. Diabetes 1997, 46, 1743–1748. [Google Scholar]
- Thomas, P.; Ye, Y.; Lightner, E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum. Mol. Genet. 1996, 5, 1809–1812. [Google Scholar]
- Gloyn, A.L.; Pearson, E.R.; Antcliff, J.F.; Proks, P.; Bruining, G.J.; Slingerland, A.S.; Howard, N.; Srinivasan, S.; Silva, J.M.; Molnes, J.; et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 2004, 350, 1838–1849. [Google Scholar]
- Barroso, I.; Luan, J.; Middelberg, R.P.; Harding, A.H.; Franks, P.W.; Jakes, R.W.; Clayton, D.; Schafer, A.J.; O'Rahilly, S.; Wareham, N.J. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action. PLoS Biol. 2003, 1, 20. [Google Scholar]
- Florez, J.C.; Burtt, N.; de Bakker, P.I.; Almgren, P.; Tuomi, T.; Holmkvist, J.; Gaudet, D.; Hudson, T.J.; Schaffner, S.F.; Daly, M.J.; Hirschhorn, J.N.; Groop, L.; Altshuler, D. Haplotype structure and genotype-phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes 2004, 53, 1360–1368. [Google Scholar]
- Gloyn, A.L.; Hashim, Y.; Ashcroft, S.J.; Ashfield, R.; Wiltshire, S.; Turner, R.C. Association studies of variants in promoter and coding regions of beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). Diabet. Med. 2001, 18, 206–212. [Google Scholar]
- Gloyn, A.L.; Weedon, M.N.; Owen, K.R.; Turner, M.J.; Knight, B.A.; Hitman, G.; Walker, M.; Levy, J.C.; Sampson, M.; Halford, S.; McCarthy, M.I.; Hattersley, A.T.; Frayling, T.M. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003, 52, 568–572. [Google Scholar] [PubMed]
- Hansen, L.; Echwald, S.M.; Hansen, T.; Urhammer, S.A.; Clausen, J.O.; Pedersen, O. Amino acid polymorphisms in the ATP-regulatable inward rectifier Kir6.2 and their relationships to glucose- and tolbutamide-induced insulin secretion, the insulin sensitivity index, and NIDDM. Diabetes 1997, 46, 508–512. [Google Scholar]
- Hansen, S.K.; Nielsen, E.M.; Ek, J.; Andersen, G.; Glumer, C.; Carstensen, B.; Mouritzen, P.; Drivsholm, T.; Borch-Johnsen, K.; Jorgensen, T.; et al. Analysis of separate and combined effects of common variation in KCNJ11 and PPARG on risk of type 2 diabetes. J. Clin. Endocrinol. Metab. 2005, 90, 3629–3637. [Google Scholar] [PubMed]
- Inoue, H.; Ferrer, J.; Warren-Perry, M.; Zhang, Y.; Millns, H.; Turner, R.C.; Elbein, S.C.; Hampe, C.L.; Suarez, B.K.; Inagaki, N.; et al. Sequence variants in the pancreatic islet beta-cell inwardly rectifying K+ channel Kir6.2 (Bir) gene: identification and lack of role in Caucasian patients with NIDDM. Diabetes 1997, 46, 502–507. [Google Scholar] [PubMed]
- Love-Gregory, L.; Wasson, J.; Lin, J.; Skolnick, G.; Suarez, B.; Permutt, M.A. E23K single nucleotide polymorphism in the islet ATP-sensitive potassium channel gene (Kir6.2) contributes as much to the risk of Type II diabetes in Caucasians as the PPARgamma Pro12Ala variant. Diabetologia 2003, 46, 136–137. [Google Scholar] [PubMed]
- Nielsen, E.M.; Hansen, L.; Carstensen, B.; Echwald, S.M.; Drivsholm, T.; Glumer, C.; Thorsteinsson, B.; Borch-Johnsen, K.; Hansen, T.; Pedersen, O. The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. Diabetes 2003, 52, 573–577. [Google Scholar] [PubMed]
- Sakura, H.; Wat, N.; Horton, V.; Millns, H.; Turner, R.C.; Ashcroft, F.M. Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia 1996, 39, 1233–1236. [Google Scholar]
- Hart, L.M.; van Haeften, T.W.; Dekker, J.M.; Bot, M.; Heine, R.J.; Maassen, J.A. Variations in insulin secretion in carriers of the E23K variant in the KIR6.2 subunit of the ATP-sensitive K(+) channel in the beta-cell. Diabetes 2002, 51, 3135–3138. [Google Scholar]
- Sesti, G.; Laratta, E.; Cardellini, M.; Andreozzi, F.; Del Guerra, S.; Irace, C.; Gnasso, A.; Grupillo, M.; Lauro, R.; Hribal, M.L.; et al. The E23K variant of KCNJ11 encoding the pancreatic beta-cell adenosine 5'-triphosphate-sensitive potassium channel subunit Kir6.2 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2006, 91, 2334–2339. [Google Scholar]
- Holstein, A.; Hahn, M.; Stumvoll, M.; Kovacs, P. The E23K variant of KCNJ11 and the risk for severe sulfonylurea-induced hypoglycemia in patients with type 2 diabetes. Horm. Metab. Res. 2009, 41, 387–390. [Google Scholar]
- Hamming, K.S.; Soliman, D.; Matemisz, L.C.; Niazi, O.; Lang, Y.; Gloyn, A.L.; Light, P.E. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes 2009, 58, 2419–2424. [Google Scholar]
- Kirchheiner, J.; Bauer, S.; Meineke, I.; Rohde, W.; Prang, V.; Meisel, C.; Roots, I.; Brockmoller, J. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002, 12, 101–109. [Google Scholar]
- Kirchheiner, J.; Brockmoller, J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin. Pharmacol. Ther. 2005, 77, 1–16. [Google Scholar]
- Aithal, G.P.; Day, C.P.; Kesteven, P.J.; Daly, A.K. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999, 353, 717–719. [Google Scholar]
- Goldstein, J.A. Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 2001, 52, 349–355. [Google Scholar]
- Rettie, A.E.; Haining, R.L.; Bajpai, M.; Levy, R.H. A common genetic basis for idiosyncratic toxicity of warfarin and phenytoin. Epilepsy Res. 1999, 35, 253–255. [Google Scholar]
- van der Weide, J.; Steijns, L.S.; van Weelden, M.J.; de Haan, K. The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001, 11, 287–291. [Google Scholar]
- Niemi, M.; Cascorbi, I.; Timm, R.; Kroemer, H.K.; Neuvonen, P.J.; Kivisto, K.T. Glyburide and glimepiride pharmacokinetics in subjects with different CYP2C9 genotypes. Clin. Pharmacol. Ther. 2002, 72, 326–332. [Google Scholar]
- Suzuki, K.; Yanagawa, T.; Shibasaki, T.; Kaniwa, N.; Hasegawa, R.; Tohkin, M. Effect of CYP2C9 genetic polymorphisms on the efficacy and pharmacokinetics of glimepiride in subjects with type 2 diabetes. Diabet. Res. Clin. Pract. 2006, 72, 148–154. [Google Scholar]
- Becker, M.L.; Visser, L.E.; Trienekens, P.H.; Hofman, A.; van Schaik, R.H.; Stricker, B.H. Cytochrome P450 2C9 *2 and *3 polymorphisms and the dose and effect of sulfonylurea in type II diabetes mellitus. Clin. Pharmacol. Ther. 2008, 83, 288–292. [Google Scholar]
- Shon, J.H.; Yoon, Y.R.; Kim, K.A.; Lim, Y.C.; Lee, K.J.; Park, J.Y.; Cha, I.J.; Flockhart, D.A.; Shin, J.G. Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenetics 2002, 12, 111–119. [Google Scholar]
- Kirchheiner, J.; Brockmoller, J.; Meineke, I.; Bauer, S.; Rohde, W.; Meisel, C.; Roots, I. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin. Pharmacol. Ther. 2002, 71, 286–296. [Google Scholar]
- Zhang, Y.; Si, D.; Chen, X.; Lin, N.; Guo, Y.; Zhou, H.; Zhong, D. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on pharmacokinetics of gliclazide MR in Chinese subjects. Br. J. Clin. Pharmacol. 2007, 64, 67–74. [Google Scholar]
- Xu, H.; Murray, M.; McLachlan, A.J. Influence of genetic polymorphisms on the pharmacokinetics and pharmaco-dynamics of sulfonylurea drugs. Curr. Drug Metab. 2009, 10, 643–658. [Google Scholar]
- Rogers, J.F.; Nafziger, A.N.; Bertino, J.S., Jr. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am. J. Med. 2002, 113, 746–750. [Google Scholar]
- Wijnen, P.A.; Op den Buijsch, R.A.; Drent, M.; Kuijpers, P.M.; Neef, C.; Bast, A.; Bekers, O.; Koek, G.H. Review article: The prevalence and clinical relevance of cytochrome P450 polymorphisms. Aliment. Pharmacol. Ther. 2007, 26, 211–219. [Google Scholar]
- Porzio, O.; Federici, M.; Hribal, M.L.; Lauro, D.; Accili, D.; Lauro, R.; Borboni, P.; Sesti, G. The Gly972-->Arg amino acid polymorphism in IRS-1 impairs insulin secretion in pancreatic beta cells. J. Clin. Invest. 1999, 104, 357–364. [Google Scholar]
- Marchetti, P.; Lupi, R.; Federici, M.; Marselli, L.; Masini, M.; Boggi, U.; Del Guerra, S.; Patane, G.; Piro, S.; Anello, M.; et al. Insulin secretory function is impaired in isolated human islets carrying the Gly(972)->Arg IRS-1 polymorphism. Diabetes 2002, 51, 1419–1424. [Google Scholar]
- Sesti, G.; Marini, M.A.; Cardellini, M.; Sciacqua, A.; Frontoni, S.; Andreozzi, F.; Irace, C.; Lauro, D.; Gnasso, A.; Federici, M.; et al. The Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2 diabetes. Diabet. Care 2004, 27, 1394–1398. [Google Scholar]
- Cauchi, S.; Meyre, D.; Choquet, H.; Dina, C.; Born, C.; Marre, M.; Balkau, B.; Froguel, P. TCF7L2 variation predicts hyperglycemia incidence in a French general population: the data from an epidemiological study on the Insulin Resistance Syndrome (DESIR) study. Diabetes 2006, 55, 3189–3192. [Google Scholar]
- Cauchi, S.; Meyre, D.; Dina, C.; Choquet, H.; Samson, C.; Gallina, S.; Balkau, B.; Charpentier, G.; Pattou, F.; Stetsyuk, V.; et al. Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. Diabetes 2006, 55, 2903–2908. [Google Scholar]
- Damcott, C.M.; Pollin, T.I.; Reinhart, L.J.; Ott, S.H.; Shen, H.; Silver, K.D.; Mitchell, B.D.; Shuldiner, A.R. Polymorphisms in the transcription factor 7-like 2 (TCF7L2) gene are associated with type 2 diabetes in the Amish: replication and evidence for a role in both insulin secretion and insulin resistance. Diabetes 2006, 55, 2654–2659. [Google Scholar]
- Florez, J.C.; Jablonski, K.A.; Bayley, N.; Pollin, T.I.; de Bakker, P.I.; Shuldiner, A.R.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med. 2006, 355, 241–250. [Google Scholar]
- Grant, S.F.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Manolescu, A.; Sainz, J.; Helgason, A.; Stefansson, H.; Emilsson, V.; Helgadottir, A.; et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006, 38, 320–328. [Google Scholar]
- Groves, C.J.; Zeggini, E.; Minton, J.; Frayling, T.M.; Weedon, M.N.; Rayner, N.W.; Hitman, G.A.; Walker, M.; Wiltshire, S.; Hattersley, A.T.; et al. Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes 2006, 55, 2640–2644. [Google Scholar]
- Helgason, A.; Palsson, S.; Thorleifsson, G.; Grant, S.F.; Emilsson, V.; Gunnarsdottir, S.; Adeyemo, A.; Chen, Y.; Chen, G.; Reynisdottir, I.; et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nat. Genet. 2007, 39, 218–225. [Google Scholar] [PubMed]
- Humphries, S.E.; Gable, D.; Cooper, J.A.; Ireland, H.; Stephens, J.W.; Hurel, S.J.; Li, K.W.; Palmen, J.; Miller, M.A.; Cappuccio, F.P.; et al. Common variants in the TCF7L2 gene and predisposition to type 2 diabetes in UK European Whites, Indian Asians and Afro-Caribbean men and women. J. Mol. Med. 2006, 84, 1005–1014. [Google Scholar]
- Kimber, C.H.; Doney, A.S.; Pearson, E.R.; McCarthy, M.I.; Hattersley, A.T.; Leese, G.P.; Morris, A.D.; Palmer, C.N. TCF7L2 in the Go-DARTS study: evidence for a gene dose effect on both diabetes susceptibility and control of glucose levels. Diabetologia 2007, 50, 1186–1191. [Google Scholar]
- Melzer, D.; Murray, A.; Hurst, A.J.; Weedon, M.N.; Bandinelli, S.; Corsi, A.M.; Ferrucci, L.; Paolisso, G.; Guralnik, J.M.; Frayling, T.M. Effects of the diabetes linked TCF7L2 polymorphism in a representative older population. BMC Med. 2006, 4, 34. [Google Scholar]
- Saxena, R.; Gianniny, L.; Burtt, N.P.; Lyssenko, V.; Giuducci, C.; Sjogren, M.; Florez, J.C.; Almgren, P.; Isomaa, B.; Orho-Melander, M.; et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006, 55, 2890–2895. [Google Scholar] [PubMed]
- Scott, L.J.; Bonnycastle, L.L.; Willer, C.J.; Sprau, A.G.; Jackson, A.U.; Narisu, N.; Duren, W.L.; Chines, P.S.; Stringham, H.M.; Erdos, M.R.; et al. Association of transcription factor 7-like 2 (TCF7L2) variants with type 2 diabetes in a Finnish sample. Diabetes 2006, 55, 2649–2653. [Google Scholar] [PubMed]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [PubMed]
- Zhang, C.; Qi, L.; Hunter, D.J.; Meigs, J.B.; Manson, J.E.; van Dam, R.M.; Hu, F.B. Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men. Diabetes 2006, 55, 2645–2648. [Google Scholar] [PubMed]
- Pearson, E.R.; Donnelly, L.A.; Kimber, C.; Whitley, A.; Doney, A.S.; McCarthy, M.I.; Hattersley, A.T.; Morris, A.D.; Palmer, C.N. Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. Diabetes 2007, 56, 2178–2182. [Google Scholar]
- Newton-Cheh, C.; Guo, C.Y.; Wang, T.J.; O'Donnell, C.J.; Levy, D.; Larson, M.G. Genome-wide association study of electrocardiographic and heart rate variability traits: the Framingham Heart Study. BMC Med. Genet. 2007, 1, 7. [Google Scholar]
- Chu, A.Y.; Coresh, J.; Arking, D.E.; Pankow, J.S.; Tomaselli, G.F.; Chakravarti, A.; Post, W.S.; Spooner, P.H.; Boerwinkle, E.; Kao, W.H. NOS1AP variant associated with incidence of type 2 diabetes in calcium channel blocker users in the Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 2010, 53, 510–516. [Google Scholar]
- Becker, M.L.; Aarnoudse, A.J.; Newton-Cheh, C.; Hofman, A.; Witteman, J.C.; Uitterlinden, A.G.; Visser, L.E.; Stricker, B.H. Common variation in the NOS1AP gene is associated with reduced glucose-lowering effect and with increased mortality in users of sulfonylurea. Pharmacogenet. Genomics 2008, 18, 591–597. [Google Scholar]
- Kirpichnikov, D.; McFarlane, S.I.; Sowers, J.R. Metformin: an update. Ann. Intern. Med. 2002, 137, 25–33. [Google Scholar]
- Standards of medical care in diabetes—2009. Diabet. Care 2009, 32, 13–61.
- Hermann, L.S.; Schersten, B.; Bitzen, P.O.; Kjellstrom, T.; Lindgarde, F.; Melander, A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabet. Care 1994, 17, 1100–1109. [Google Scholar]
- Hermann, L.S.; Schersten, B.; Melander, A. Antihyperglycaemic efficacy, response prediction and dose-response relations of treatment with metformin and sulphonylurea, alone and in primary combination. Diabet. Med. 1994, 11, 953–960. [Google Scholar]
- Robert, F.; Fendri, S.; Hary, L.; Lacroix, C.; Andrejak, M.; Lalau, J.D. Kinetics of plasma and erythrocyte metformin after acute administration in healthy subjects. Diabet. Metab. 2003, 29, 279–283. [Google Scholar]
- Leabman, M.K.; Huang, C.C.; DeYoung, J.; Carlson, E.J.; Taylor, T.R.; de la Cruz, M.; Johns, S.J.; Stryke, D.; Kawamoto, M.; Urban, T.J.; et al. Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc. Natl. Acad. Sci. USA 2003, 100, 5896–5901. [Google Scholar]
- Yin, O.Q.; Tomlinson, B.; Chow, M.S. Variability in renal clearance of substrates for renal transporters in chinese subjects. J. Clin. Pharmacol. 2006, 46, 157–163. [Google Scholar] [PubMed]
- Abbud, W.; Habinowski, S.; Zhang, J.Z.; Kendrew, J.; Elkairi, F.S.; Kemp, B.E.; Witters, L.A.; Ismail-Beigi, F. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Arch. Biochem. Biophys. 2000, 380, 347–352. [Google Scholar]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108, 1167–1174. [Google Scholar] [PubMed]
- Kim, Y.D.; Park, K.G.; Lee, Y.S.; Park, Y.Y.; Kim, D.K.; Nedumaran, B.; Jang, W.G.; Cho, W.J.; Ha, J.; Lee, I.K.; et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 2008, 57, 306–314. [Google Scholar] [PubMed]
- Shaw, R.J.; Lamia, K.A.; Vasquez, D.; Koo, S.H.; Bardeesy, N.; Depinho, R.A.; Montminy, M.; Cantley, L.C. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 2005, 310, 1642–1646. [Google Scholar]
- Saeedi, R.; Parsons, H.L.; Wambolt, R.B.; Paulson, K.; Sharma, V.; Dyck, J.R.; Brownsey, R.W.; Allard, M.F. Metabolic actions of metformin in the heart can occur by AMPK-independent mechanisms. Am. J. Physiol. 2008, 294, 2497–2506. [Google Scholar]
- Marchetti, P.; Scharp, D.W.; Giannarelli, R.; Benzi, L.; Cicchetti, P.; Ciccarone, A.M.; Lacy, P.E.; Navalesi, R. Metformin potentiates glucose-stimulated insulin secretion. Diabet. Care 1996, 19, 781–782. [Google Scholar]
- Patane, G.; Piro, S.; Rabuazzo, A.M.; Anello, M.; Vigneri, R.; Purrello, F. Metformin restores insulin secretion altered by chronic exposure to free fatty acids or high glucose: a direct metformin effect on pancreatic beta-cells. Diabetes 2000, 49, 735–740. [Google Scholar]
- Dresser, M.J.; Leabman, M.K.; Giacomini, K.M. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. 2001, 90, 397–421. [Google Scholar]
- Dresser, M.J.; Xiao, G.; Leabman, M.K.; Gray, A.T.; Giacomini, K.M. Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm. Res. 2002, 19, 1244–1247. [Google Scholar]
- Wang, D.S.; Jonker, J.W.; Kato, Y.; Kusuhara, H.; Schinkel, A.H.; Sugiyama, Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exper. Ther. 2002, 302, 510–515. [Google Scholar]
- Zhang, L.; Dresser, M.J.; Gray, A.T.; Yost, S.C.; Terashita, S.; Giacomini, K.M. Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol. 1997, 51, 913–921. [Google Scholar]
- Shu, Y.; Sheardown, S.A.; Brown, C.; Owen, R.P.; Zhang, S.; Castro, R.A.; Ianculescu, A.G.; Yue, L.; Lo, J.C.; Burchard, E.G.; et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 2007, 117, 1422–1431. [Google Scholar] [PubMed]
- Shu, Y.; Brown, C.; Castro, R.A.; Shi, R.J.; Lin, E.T.; Owen, R.P.; Sheardown, S.A.; Yue, L.; Burchard, E.G.; Brett, C.M.; et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 2008, 83, 273–280. [Google Scholar]
- Shikata, E.; Yamamoto, R.; Takane, H.; Shigemasa, C.; Ikeda, T.; Otsubo, K.; Ieiri, I. Human organic cation transporter (OCT1 and OCT2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet. 2007, 52, 117–122. [Google Scholar]
- Tzvetkov, M.V.; Vormfelde, S.V.; Balen, D.; Meineke, I.; Schmidt, T.; Sehrt, D.; Sabolic, I.; Koepsell, H.; Brockmoller, J. The effects of genetic polymorphisms in the organic cation transporters OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 2009, 86, 299–306. [Google Scholar]
- Kimura, N.; Masuda, S.; Tanihara, Y.; Ueo, H.; Okuda, M.; Katsura, T.; Inui, K. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinetics 2005, 20, 379–386. [Google Scholar]
- Wang, Z.J.; Yin, O.Q.; Tomlinson, B.; Chow, M.S. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet. Genomics 2008, 18, 637–645. [Google Scholar]
- Song, I.S.; Shin, H.J.; Shim, E.J.; Jung, I.S.; Kim, W.Y.; Shon, J.H.; Shin, J.G. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 2008, 84, 559–562. [Google Scholar]
- Fujita, T.; Urban, T.J.; Leabman, M.K.; Fujita, K.; Giacomini, K.M. Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J. Pharm. Sci. 2006, 95, 25–36. [Google Scholar]
- Kang, H.J.; Song, I.S.; Shin, H.J.; Kim, W.Y.; Lee, C.H.; Shim, J.C.; Zhou, H.H.; Lee, S.S.; Shin, J.G. Identification and functional characterization of genetic variants of human organic cation transporters in a Korean population. Drug Metab. Dispos. 2007, 35, 667–675. [Google Scholar]
- Chen, Y.; Li, S.; Brown, C.; Cheatham, S.; Castro, R.A.; Leabman, M.K.; Urban, T.J.; Chen, L.; Yee, S.W.; Choi, J.H.; et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genomics 2009, 19, 497–504. [Google Scholar] [PubMed]
- Otsuka, M.; Matsumoto, T.; Morimoto, R.; Arioka, S.; Omote, H.; Moriyama, Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA 2005, 102, 17923–17928. [Google Scholar] [Green Version]
- Becker, M.L.; Visser, L.E.; van Schaik, R.H.; Hofman, A.; Uitterlinden, A.G.; Stricker, B.H. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study. Diabetes 2009, 58, 745–749. [Google Scholar]
- Otto, C.; Lehrke, M.; Goke, B. Novel insulin sensitizers: pharmacogenomic aspects. Pharmacogenomics 2002, 3, 99–116. [Google Scholar]
- Watkins, P.B.; Whitcomb, R.W. Hepatic dysfunction associated with troglitazone. N. Engl. J. Med. 1998, 338, 916–917. [Google Scholar]
- Braissant, O.; Foufelle, F.; Scotto, C.; Dauca, M.; Wahli, W. Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 1996, 137, 354–366. [Google Scholar]
- Spiegelman, B.M. PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998, 47, 507–514. [Google Scholar]
- Aronoff, S.; Rosenblatt, S.; Braithwaite, S.; Egan, J.W.; Mathisen, A.L.; Schneider, R.L. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabet. Care 2000, 23, 1605–1611. [Google Scholar]
- Baba, S. Pioglitazone: a review of Japanese clinical studies. Curr. Med. Res. Opin. 2001, 17, 166–189. [Google Scholar]
- Scherbaum, W.A.; Goke, B. Metabolic efficacy and safety of once-daily pioglitazone monotherapy in patients with type 2 diabetes: a double-blind, placebo-controlled study. Horm. Metab. Res. 2002, 34, 589–595. [Google Scholar]
- Diani, A.R.; Sawada, G.; Wyse, B.; Murray, F.T.; Khan, M. Pioglitazone preserves pancreatic islet structure and insulin secretory function in three murine models of type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 2004, 286, 116–122. [Google Scholar]
- Gavrilova, O.; Haluzik, M.; Matsusue, K.; Cutson, J.J.; Johnson, L.; Dietz, K.R.; Nicol, C.J.; Vinson, C.; Gonzalez, F.J.; Reitman, M.L. Liver peroxisome proliferator-activated receptor gamma contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 2003, 278, 34268–34276. [Google Scholar]
- Lupi, R.; Del Guerra, S.; Marselli, L.; Bugliani, M.; Boggi, U.; Mosca, F.; Marchetti, P.; Del Prato, S. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARgamma2 in the modulation of insulin secretion. Am. J. Physiol. Endocrinol. Metab. 2004, 286, 560–567. [Google Scholar]
- Rosen, E.D.; Kulkarni, R.N.; Sarraf, P.; Ozcan, U.; Okada, T.; Hsu, C.H.; Eisenman, D.; Magnuson, M.A.; Gonzalez, F.J.; Kahn, C.R.; et al. Targeted elimination of peroxisome proliferator-activated receptor gamma in beta cells leads to abnormalities in islet mass without compromising glucose homeostasis. Mol. Cell Biol. 2003, 23, 7222–7229. [Google Scholar] [PubMed]
- Goldstein, B.J. Differentiating members of the thiazolidinedione class: a focus on efficacy. Diabet. Metab. Res. Rev. 2002, 18, 16–22. [Google Scholar]
- Willson, T.M.; Cobb, J.E.; Cowan, D.J.; Wiethe, R.W.; Correa, I.D.; Prakash, S.R.; Beck, K.D.; Moore, L.B.; Kliewer, S.A.; Lehmann, J.M. The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic activity of thiazolidinediones. J. Med. Chem. 1996, 39, 665–668. [Google Scholar]
- Izumi, T.; Enomoto, S.; Hoshiyama, K.; Sasahara, K.; Sugiyama, Y. Pharmacokinetic stereoselectivity of troglitazone, an antidiabetic agent, in the KK mouse. Biopharm. Drug Dispos. 1997, 18, 305–324. [Google Scholar]
- Yamazaki, H.; Shibata, A.; Suzuki, M.; Nakajima, M.; Shimada, N.; Guengerich, F.P.; Yokoi, T. Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P-450 2C8 and P-450 3A4 in human liver microsomes. Drug Metab. Dispos. 1999, 27, 1260–1266. [Google Scholar]
- Tanis, S.P.; Parker, T.T.; Colca, J.R.; Fisher, R.M.; Kletzein, R.F. Synthesis and biological activity of metabolites of the antidiabetic, antihyperglycemic agent pioglitazone. J. Med. Chem. 1996, 39, 5053–5063. [Google Scholar]
- Fujita, Y.; Yamada, Y.; Kusama, M.; Yamauchi, T.; Kamon, J.; Kadowaki, T.; Iga, T. Sex differences in the pharmacokinetics of pioglitazone in rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2003, 136, 85–94. [Google Scholar]
- Nowak, S.N.; Edwards, D.J.; Clarke, A.; Anderson, G.D.; Jaber, L.A. Pioglitazone: effect on CYP3A4 activity. J. Clin. Pharmacol. 2002, 42, 1299–1302. [Google Scholar]
- Herz, M.; Johns, D.; Reviriego, J.; Grossman, L.D.; Godin, C.; Duran, S.; Hawkins, F.; Lochnan, H.; Escobar-Jimenez, F.; Hardin, P.A.; et al. A randomized, double-blind, placebo-controlled, clinical trial of the effects of pioglitazone on glycemic control and dyslipidemia in oral antihyperglycemic medication-naive patients with type 2 diabetes mellitus. Clin. Ther. 2003, 25, 1074–1095. [Google Scholar] [PubMed]
- Rajagopalan, R.; Iyer, S.; Khan, M. Effect of pioglitazone on metabolic syndrome risk factors: results of double-blind, multicenter, randomized clinical trials. Curr. Med. Res. Opin. 2005, 21, 163–172. [Google Scholar]
- Yamanouchi, T.; Sakai, T.; Igarashi, K.; Ichiyanagi, K.; Watanabe, H.; Kawasaki, T. Comparison of metabolic effects of pioglitazone, metformin, and glimepiride over 1 year in Japanese patients with newly diagnosed Type 2 diabetes. Diabet. Med. 2005, 22, 980–985. [Google Scholar]
- Akazawa, S.; Sun, F.; Ito, M.; Kawasaki, E.; Eguchi, K. Efficacy of troglitazone on body fat distribution in type 2 diabetes. Diabet. Care 2000, 23, 1067–1071. [Google Scholar]
- Gorson, D.M. Significant weight gain with rezulin therapy. Arch. Int. Med. 1999, 159, 99. [Google Scholar]
- Hanefeld, M.; Belcher, G. Safety profile of pioglitazone. Int. J. Clin. Pract. 2001, 121, 27–31. [Google Scholar]
- Kawai, T.; Takei, I.; Oguma, Y.; Ohashi, N.; Tokui, M.; Oguchi, S.; Katsukawa, F.; Hirose, H.; Shimada, A.; Watanabe, K.; Saruta, T. Effects of troglitazone on fat distribution in the treatment of male type 2 diabetes. Metabolism 1999, 48, 1102–1107. [Google Scholar]
- Larsen, T.M.; Toubro, S.; Astrup, A. PPARgamma agonists in the treatment of type II diabetes: is increased fatness commensurate with long-term efficacy? Int. J. Obes. Relat. Metab. Disord. 2003, 27, 147–161. [Google Scholar]
- Nesto, R.W.; Bell, D.; Bonow, R.O.; Fonseca, V.; Grundy, S.M.; Horton, E.S.; Le Winter, M.; Porte, D.; Semenkovich, C.F.; Smith, S.; et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabet. Care 2004, 27, 256–263. [Google Scholar]
- Nissen, S.E.; Wolski, K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N. Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar]
- Lincoff, A.M.; Wolski, K.; Nicholls, S.J.; Nissen, S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007, 298, 1216–1218. [Google Scholar]
- Graham, M.; Adams, J.M. Chromosome 8 breakpoint far 3' of the c-myc oncogene in a Burkitt's lymphoma 2;8 variant translocation is equivalent to the murine pvt-1 locus. Embo. J. 1986, 5, 2845–2851. [Google Scholar]
- Kaul, S.; Bolger, A.F.; Herrington, D.; Giugliano, R.P.; Eckel, R.H. Thiazolidinedione drugs and cardiovascular risks: a science advisory from the American Heart Association and American College Of Cardiology Foundation. J. Am. Coll. Cardiol. 2010, 55, 1885–1894. [Google Scholar]
- Simo, R.; Rodriguez, A.; Caveda, E. Different Effects of Thiazolidinediones on Cardiovascular Risk in Patients with Type 2 Diabetes Mellitus: Pioglitazone versus Rosiglitazone. Curr. Drug Saf. 2010, 5, 234–244. [Google Scholar]
- Kawai, K.; Odaka, T.; Tsuruta, T.; Tokui, F.; Ikeda, T.; Nakamura, K. Stereoselective metabolism of the new oral antidiabetic drug troglitazone in rats, mice and dogs. Xenobio. Metab. Disp. 1998, 13, 362–368. [Google Scholar]
- Kahn, S.E.; Zinman, B.; Lachin, J.M.; Haffner, S.M.; Herman, W.H.; Holman, R.R.; Kravitz, B.G.; Yu, D.; Heise, M.A.; Aftring, R.P.; Viberti, G. Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabet. Care. 2008, 31, 845–851. [Google Scholar]
- Buchanan, T.A.; Xiang, A.H.; Peters, R.K.; Kjos, S.L.; Marroquin, A.; Goico, J.; Ochoa, C.; Tan, S.; Berkowitz, K.; Hodis, H.N.; Azen, S.P. Preservation of pancreatic beta-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk hispanic women. Diabetes 2002, 51, 2796–2803. [Google Scholar]
- Kjos, S.L.; Peters, R.K.; Xiang, A.; Henry, O.A.; Montoro, M.; Buchanan, T.A. Predicting future diabetes in Latino women with gestational diabetes. Diabetes 1995, 44, 586–591. [Google Scholar]
- Aronoff, S.; Rosenblatt, S.; Braithwaite, S.; Egan, J.W.; Mathisen, A.L.; Schneider, R.L.; The Pioglitazone 001 Study Group. Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes. Diabet. Care 2000, 23, 1605–1611. [Google Scholar]
- Herz, M.; Johns, D.; Reviriego, J.; Grossman, L.D.; Godin, C.; Duran, S.; Hawkins, F.; Lochnan, H.; Escobar-Jimenez, F.; Hardin, P.A.; Konkoy, C.S.; Tan, M.H.; the G.S.G. A randomized, double-blind, placebo-controlled, clinical trial of the effects of pioglitazone on glycemic control and dyslipidemia in oral antihyperglycemic medication-naive patients with type 2 diabetes mellitus. Clin. Ther. 2003, 25, 1074–1095. [Google Scholar]
- Lawrence, J.M.; Reckless, J.P.D. Pioglitazone. Int. J. Clin. Pract. 2000, 54, 614–618. [Google Scholar]
- Nolan, J.J.; Ludvik, B.; Beerdsen, P.; Joyce, M.; Olefsky, J. Improvement in glucose tolerance and insulin resistance in obese subjects treated with Troglitazone. N. Engl. J. Med. 1994, 331, 1188–1193. [Google Scholar]
- Day, C. Thiazolidinediones: a new class of antidiabetic drugs. Diabet. Med. 1999, 16, 179–192. [Google Scholar]
- Azen, S.P.; Peters, R.K.; Berkowitz, K.; Kjos, S.L.; Xiang, A.; Buchanan, T.A.; the T.S.G. TRIPOD (TRoglitazone In the Prevention Of Diabetes): A randomized, placebo-controlled trial of Troglitazone in women with prior gestational diabetes mellitus. Control. Clin. Trials 1998, 19, 217–231. [Google Scholar]
- Deeb, S.S.; Fajas, L.; Nemoto, M.; Pihlajamaki, J.; Mykkanen, L.; Kuusisto, J.; Laakso, M.; Fujimoto, W.; Auwerx, J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998, 20, 284–287. [Google Scholar]
- Altshuler, D.; Hirschhorn, J.N.; Klannemark, M.; Lindgren, C.M.; Vohl, M.C.; Nemesh, J.; Lane, C.R.; Schaffner, S.F.; Bolk, S.; Brewer, C.; et al. The common PPARg Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat. Genet. 2000, 26, 76–80. [Google Scholar] [PubMed]
- Snitker, S.; Watanabe, R.M.; Ani, I.; Xiang, A.H.; Marroquin, A.; Ochoa, C.; Goico, J.; Shuldiner, A.R.; Buchanan, T.A. Changes in insulin sensitivity in response to troglitazone do not differ between subjects with and without the common, functional Pro12Ala PPAR-g-2 gene variant: Results from the Troglitazone in Prevention of Diabetes (TRIPOD) Study. Diabet. Care 2004, 27, 1365–1368. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and b-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar]
- Florez, J.C.; Jablonski, K.A.; Sun, M.W.; Bayley, N.; Kahn, S.E.; Shamoon, H.; Hamman, R.F.; Knowler, W.C.; Nathan, D.M.; Altshuler, D. Effects of the type 2 diabetes-associated PPARG P12A polymorphism on progression to diabetes and response to troglitazone. J. Clin. Endocrinol. Metab. 2007, 92, 1502–1509. [Google Scholar]
- Bluher, M.; Lubben, G.; Paschke, R. Analysis of the relationship between the Pro12Ala variant in the PPAR-gamma2 gene and the response rate to therapy with pioglitazone in patients with type 2 diabetes. Diabet. Care 2003, 26, 825–831. [Google Scholar]
- Wolford, J.K.; Yeatts, K.A.; Dhanjal, S.K.; Black, M.H.; Xiang, A.H.; Buchanan, T.A.; Watanabe, R.M. Sequence Variation in PPARG May Underlie Differential Response to Troglitazone. Diabetes 2005, 54, 3319–3325. [Google Scholar]
- Florez, J.C. Clinical review: the genetics of type 2 diabetes: a realistic appraisal in 2008. J. Clin. Endocrinol. Metab. 2008, 93, 4633–4642. [Google Scholar]
- Nelson, M.R.; Bacanu, S.A.; Mosteller, M.; Li, L.; Bowman, C.E.; Roses, A.D.; Lai, E.H.; Ehm, M.G. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J. 2009, 9, 23–33. [Google Scholar]
- Mason, C.C.; Hanson, R.L.; Knowler, W.C. Progression to type 2 diabetes characterized by moderate then rapid glucose increases. Diabetes 2007, 56, 2054–2061. [Google Scholar]
- Xiang, A.H.; Wang, C.; Peters, R.K.; Trigo, E.; Kjos, S.L.; Buchanan, T.A. Coordinate changes in plasma glucose and pancreatic b-cell function in Latino women at high risk for type 2 diabetes. Diabetes 2006, 55, 1074–1079. [Google Scholar]
- Bergman, R.N.; Zaccaro, D.J.; Watanabe, R.M.; Haffner, S.M.; Saad, M.F.; Norris, J.M.; Wagenknecht, L.E.; Hokason, J.E.; Rotter, J.I.; Rich, S.S. Minimal model-based insulin sensitivity has greater heritability and a different genetic basis than homeostasis model assessment or fasting insulin. Diabetes 2003, 52, 2168–2174. [Google Scholar]
- Hucking, K.; Watanabe, R.M.; Stefanovski, D.; Bergman, R.N. OGTT-derived measures of insulin sensitivity are confounded by factors other than insulin sensitivity itself. Obesity 2008, 16, 1938–1945. [Google Scholar]
- Okuno, A.; Tamemoto, H.; Tobe, K.; Ueki, K.; Mori, Y.; Iwamoto, K.; Umesono, K.; Akanuma, Y.; Fujiwara, T.; Horikoshi, H.; et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J. Clin. Invest. 1998, 101, 1354–1361. [Google Scholar] [PubMed]
- Antonucci, T.; Whitcomb, R.; McLain, R.; Lockwood, D. Impaired glucose tolerance is normalized by treatment with the thiazolidinedione troglitazone. Diabet. Care 1997, 20, 188–193. [Google Scholar]
- Abbott, W.G.H.; Foley, J.E. Comparison of body composition, adipocyte size, and glucose and insulin concentrations in Pima Indians and Caucasian children. Metabolism 1987, 36, 576–579. [Google Scholar]
- Kubota, N.; Terauchi, Y.; Miki, H.; Tamemoto, H.; Yamauchi, T.; Komeda, K.; Satoh, S.; Nakano, R.; Ishii, C.; Sugiyama, T.; et al. PPARg mediates high-fat diet-induced adpoctye hypertrophy and insulin resistance. Mol. Cell 1999, 4, 597–609. [Google Scholar] [PubMed]
- Yamauchi, T.; Waki, H.; Kamon, J.; Murakami, K.; Motojima, K.; Komeda, K.; Miki, H.; Kubota, N.; Terauchi, Y.; Tsuchida, A.; et al. Inhibition of RXR and PPARg ameliorates diet-induced obesity and type 2 diabetes. J. Clin. Invest. 2001, 108, 1001–1013. [Google Scholar] [PubMed]
- Izumi, T.; Hoshiyama, K.; Enomoto, S.; Sasahara, K.; Sugiyama, Y. Pharmacokinetic steroselectivity of troglitazone, an antidiabetic agent, in the KK mouse. Biopharm. Drug Dispos. 1997, 18, 305–324. [Google Scholar]
- Pajvani, U.B.; Hawkins, M.; Combs, T.P.; Rajala, M.W.; Doebber, T.; Berger, J.P.; Wagner, J.A.; Wu, M.; Knopps, A.; Xiang, A.H.; et al. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. J. Biol. Chem. 2004, 279, 12152–12162. [Google Scholar] [PubMed]
- Kang, E.S.; Park, S.Y.; Kim, H.J.; Ahn, C.W.; Nam, M.; Cha, B.S.; Lim, S.K.; Kim, K.R.; Lee, H.C. The influence of adiponectin gene polymorphism on the rosiglitazone response in patients with type 2 diabetes. Diabet. Care 2005, 28, 1139–1144. [Google Scholar]
- Sun, H.; Gong, Z.C.; Yin, J.Y.; Liu, H.L.; Liu, Y.Z.; Guo, Z.W.; Zhou, H.H.; Wu, J.; Liu, Z.Q. The association of adiponectin allele 45T/G and -11377C/G polymorphisms with type 2 diabetes and rosiglitazone response in Chinese patients. Br. J. Clin. Pharmacol. 2008, 65, 917–926. [Google Scholar]
- Liu, H.L.; Lin, Y.G.; Wu, J.; Sun, H.; Gong, Z.C.; Hu, P.C.; Yin, J.Y.; Zhang, W.; Wang, D.; Zhou, H.H.; et al. Impact of genetic polymorphisms of leptin and TNF-a on rosiglitazone response in Chinese patients with type 2 diabetes. Eur. J. Clin. Pharmacol. 2008, 64, 663–671. [Google Scholar] [PubMed]
- Makino, H.; Shimizu, I.; Murao, S.; Kondo, S.; Tabara, Y.; Fujiyama, M.; Fujii, Y.; Takada, Y.; Nakai, K.; Izumi, K.; et al. A pilot study suggests that the G/G genotype of resistin single nucleotide polymorphism at -420 may be an independent predictor of a reduction in fasting plasma glucose and insulin resistance by pioglitazone in type 2 diabetes. Endocr. J. 2009, 56, 1049–1058. [Google Scholar]
- Kirchheiner, J.; Thomas, S.; Bauer, S.; Tomalik-Scharte, D.; Hering, U.; Doroshyenko, O.; Jetter, A.; Stehle, S.; Tsahuridu, M.; Meineke, I.; et al. Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin. Pharmacol. Ther. 2006, 80, 657–667. [Google Scholar] [PubMed]
- Tornio, A.; Niemi, M.; Neuvonen, P.J.; Backman, J.T. Trimethoprim and the CYP2C8*3 allele have opposite effects on the pharmacokinetics of pioglitazone. Drug Metab. Dispos. 2008, 36, 73–80. [Google Scholar]
- Aquilante, C.L.; Bushman, L.R.; Knutsen, S.D.; Burt, L.E.; Rome, L.C.; Kosmiski, L.A. Influence of SLCO1B1 and CYP2C8 gene polymorphisms on rosiglitazone pharmacokinetics in healthy volunteers. Hum. Genomics 2008, 3, 7–16. [Google Scholar]
- Takane, H.; Miyata, M.; Burioka, N.; Shigemasa, C.; Shimizu, E.; Otsubo, K.; Ieiri, I. Pharmacogenetic determinants of variability in lipid-lowering response to pravastatin therapy. J. Hum. Genet. 2006, 51, 822–826. [Google Scholar]
- Group, S.C.; Link, E.; Parish, S.; Armitage, J.; Bowman, L.; Heath, S.; Matsuda, F.; Gut, I.; Lathrop, M.; Collins, R. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N. Engl. J. Med. 2008, 359, 789–799. [Google Scholar]
- Dupuis, J.; Langenberg, C.; Prokopenko, I.; Saxena, R.; Soranzo, N.; Jackson, A.U.; Wheeler, E.; Glazer, N.L.; Bouatia-Naji, N.; Gloyn, A.L.; et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116.
- Florez, J.C.; Jablonski, K.A.; McAteer, J.; Sandhu, M.S.; Wareham, N.J.; Barroso, I.; Franks, P.W.; Altshuler, D.; Knowler, W.C. Testing of diabetes-associated WFS1 polymorphisms in the Diabetes Prevention Program. Diabetologia 2008, 51, 451–457. [Google Scholar]
- Prokopenko, I.; Langenberg, C.; Florez, J.C.; Saxena, R.; Soranzo, N.; Thorleifsson, G.; Loos, R.J.; Manning, A.K.; Jackson, A.U.; Aulchenko, Y.; et al. Variants in MTNR1B influence fasting glucose levels. Nat. Genet. 2009, 41, 77–81. [Google Scholar] [PubMed]
- Saxena, R.; Hivert, M.F.; Langenberg, C.; Tanaka, T.; Pankow, J.S.; Vollenweider, P.; Lyssenko, V.; Bouatia-Naji, N.; Dupuis, J.; Jackson, A.U.; et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nat. Genet. 42, 142–148.
- Saxena, R.; Voight, B.F.; Lyssenko, V.; Burtt, N.P.; de Bakker, P.I.; Chen, H.; Roix, J.J.; Kathiresan, S.; Hirschhorn, J.N.; Daly, M.J.; et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316, 1331–1336. [Google Scholar]
- Scott, L.J.; Mohlke, K.L.; Bonnycastle, L.L.; Willer, C.J.; Li, Y.; Duren, W.L.; Erdos, M.R.; Stringham, H.M.; Chines, P.S.; Jackson, A.U.; et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007, 316, 1341–1345. [Google Scholar] [PubMed]
- Sladek, R.; Rocheleau, G.; Rung, J.; Dina, C.; Shen, L.; Serre, D.; Boutin, P.; Vincent, D.; Belisle, A.; Hadjadj, S.; et al. A genome-wide association study identified novel risk loci for type 2 diabetes. Nature 2007, 445, 881–885. [Google Scholar] [PubMed]
- Steinthorsdottir, V.; Thorleifsson, G.; Reynisdottir, I.; Benediktsson, R.; Jonsdottir, T.; Walters, G.B.; Styrkarsdottir, U.; Gretarsdottir, S.; Emilsson, V.; Ghosh, S.; et al. A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat. Genet. 2007, 39, 770–775. [Google Scholar] [PubMed]
- Unoki, H.; Takahashi, A.; Kawaguchi, T.; Hara, K.; Horikoshi, M.; Andersen, G.; Ng, D.P.; Holmkvist, J.; Borch-Johnsen, K.; Jorgensen, T.; et al. SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations. Nat. Genet. 2008, 40, 1098–1102. [Google Scholar] [PubMed]
- Yasuda, K.; Miyake, K.; Horikawa, Y.; Hara, K.; Osawa, H.; Furuta, H.; Hirota, Y.; Mori, H.; Jonsson, A.; Sato, Y.; et al. Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus. Nat. Genet. 2008, 40, 1092–1097. [Google Scholar] [PubMed]
- Zeggini, E.; Scott, L.J.; Saxena, R.; Voight, B.F.; Diabetes Genetics Replication and Meta-analysis, C. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat. Genet. 2008, 40, 638–645. [Google Scholar]
- Zeggini, E.; Weedon, M.N.; Lindgren, C.M.; Frayling, T.M.; Elliott, K.S.; Lango, H.; Timpson, N.J.; Perry, J.R.B.; Rayner, N.W.; Freathy, R.M.; et al. Replication of genome-wide association signals in U.K. samples reveals risk loci for type 2 diabetes. Science 2007, 316, 1336–1341. [Google Scholar] [PubMed]
- Metzker, M.L. Sequencing technologies-the next generation. Nat. Rev. Genet. 2009, 11, 31–46. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
DiStefano, J.K.; Watanabe, R.M. Pharmacogenetics of Anti-Diabetes Drugs. Pharmaceuticals 2010, 3, 2610-2646. https://doi.org/10.3390/ph3082610
DiStefano JK, Watanabe RM. Pharmacogenetics of Anti-Diabetes Drugs. Pharmaceuticals. 2010; 3(8):2610-2646. https://doi.org/10.3390/ph3082610
Chicago/Turabian StyleDiStefano, Johanna K., and Richard M. Watanabe. 2010. "Pharmacogenetics of Anti-Diabetes Drugs" Pharmaceuticals 3, no. 8: 2610-2646. https://doi.org/10.3390/ph3082610
APA StyleDiStefano, J. K., & Watanabe, R. M. (2010). Pharmacogenetics of Anti-Diabetes Drugs. Pharmaceuticals, 3(8), 2610-2646. https://doi.org/10.3390/ph3082610