Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action
Abstract
:1. Introduction
Drug class | Agent | |
---|---|---|
Biguanides | Metformin | |
Sulfonylureas | Acetohexamide | |
Chlorpropamide | ||
Tolazamide | ||
Tolbutamide | ||
Glibenclamide/Gliburide | ||
Glipizide | ||
Glimepiride | ||
Gliclazide | ||
Meglitinides | Repaglinide | |
Nateglinide | ||
Thiazolidinediones | Rosiglitazone | |
Pioglitazone | ||
α-Glucosidase inhibitors | Acarbose | |
Miglitol | ||
Incretin agonists | Exenatide | |
Liraglutide | ||
DPP-4 inhibitors | Sitagliptin | |
Vildagliptin | ||
Saxagliptin |
2. Biguanides
3. Sulfonylureas
4. Meglitinides
5. Thiazolidinediones
6. α-Glucosidase Inhibitors
7. Incretin Mimetics and Incretin Enhancers Drugs
8. Conclusions
Acknowledgements
Abbreviations
ADA | American Diabetes Association |
EASD | European Association for the Study of Diabetes |
DPP-4 | dipeptidyl peptidase |
GFR | Glomerular Filtration Rate |
FPG | fasting plasma glucose |
HR | Hazard ratio |
HbA1C | glycosylated haemoglobin |
PPAR | peroxisome proliferator-activated receptor |
GLP-1 | Glucagon Like Peptide-1 |
GIP | Glucose Dependent Insulinotropic Polypeptide |
MI | myocardial infarction |
CABG | coronary artery bypass graft |
References
- Bailey, J.; Turner, R.C. Metformin. N. Engl. J. Med. 1996, 334, 574–579. [Google Scholar]
- DeFronzo, R.A.; Goodman, A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N. Engl. J. Med. 1995, 333, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K. Efficacy of metformin in the treatment of NIDDM: a metanalysis. Diabetes Care 1999, 22, 33–37. [Google Scholar]
- Campbell, I.W.; Howlett, H.C.S. Worldwide experience of metformin as an effective glucose lowering agent: a metanalysis. Diabetes Metab.Rev. 1995, 11, 57–62. [Google Scholar]
- Currie, C.J.; Poole, C.D.; Gale, E.A. The influence of glucose-lowering therapies on cancer risk in type 2 diabetes. Diabetologia 2009, 52, 1766–1777. [Google Scholar]
- Tahrani, A.A.; Varughese, G.I.; Scarpello, J.H.; Hanna, F.W. Metformin, heart failure, and lactic acidosis: is metformin absolutely contraindicated? Br. Med. J. 2007, 335, 508–512. [Google Scholar]
- Owen, M.R.; Doran, E.; Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 2000, 348, 607–614. [Google Scholar]
- Bruijstens, L.A.; van Luin, M.; Buscher-Jungerhans, P.M.M; Bosch, F.H. Reality of severe metformin-induced lactic acidosis in the absence of chronic renal impairment. Netherlands J. Med. 2008, 66, 185–190. [Google Scholar]
- McCormack, J.; Johns, K.; Tildesley, H. Metformin contraindications should be contraindicated. Ca. Med. Ass. J. 2005, 173, 502–504. [Google Scholar]
- Aguilar-Bryan, L.; Nichols, C.G.; Wechsler, S.W.; Clement, J.P.; Boyd, A.E.; González, G.; Herrera-Sosa, H.; Nguy, K.; Bryan, J.; Nelson, D.A. Cloning the ß cell high-affinity sulfonylurea receptor: A regulator of insulin secretion. Science 1995, 268, 423–426. [Google Scholar] [PubMed]
- Bressler, R.; Johnson, D.G. Pharmacological regulation of blood glucose levels in non-insulin-dependent diabetes mellitus. Arch. Intern. Med. 1997, 157, 836–848. [Google Scholar]
- Malmberg, K. The DIGAMI Study Group. Prospective randomized study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. Br. Med. J. 1997, 314, 1512–1515. [Google Scholar]
- Monami, M.; Balzi, D.; Lamanna, C.; Barchielli, A.; Masotti, G.; Buiatti, E.; Marchionni, N.; Mannucci, E. Are sulphonylureas all the same? A cohort study on cardiovascular and cancer-related mortality. Diabetes Metab.Res. Rev. 2007, 23, 479–484. [Google Scholar]
- United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853, (Published erratum appears in Lancet 1999, 354, 602).. [PubMed]
- Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; Grobbee, D.; Hamet, P.; Harrap, S.; Heller, S.; Liu, L.; Mancia, G.; Mogensen, C.E.; Pan, C.; Poulter, N.; Rodgers, A.; Williams, B.; Bompoint, S.; de Galan, B.E.; Joshi, R.; Travert, F. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Eng.l J. Med. 2008, 358, 2560–2572. [Google Scholar] [CrossRef]
- DeFronzo, R.A. Pharmacologic therapy for type 2 diabetes mellitus. Ann. Intern. Med. 1999, 131, 281–303. [Google Scholar]
- Zoungas, S.; de Galan, B.E.; Ninomiya, T.; Grobbee, D.; Hamet, P.; Heller, S.; MacMahon, S.; Marre, M.; Neal, B.; Patel, A.; Woodward, M.; Chalmers, J; Cass, A.; Glasziou, P.; Harrap, S.; Lisheng, L.; Mancia, G.; Pillai, A.; Poulter, N.; Perkovic, V.; Travert, F. ADVANCE Collaborative Group. Combined effects of routine blood pressure lowering and intensive glucose control on macrovascular and microvascular outcomes in patients with type 2 diabetes: New results from ADVANCE trial. Diabetes Care 2009, 32, 2068–2074. [Google Scholar] [PubMed]
- Tessier, D.; Dawson, K.; Tetrault, J.P.; Bravo, G.; Meneilly, G.S. Glibenclamide vs gliclazide in type 2 diabetes of the elderly. Diabet. Med. 1994, 11, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Fuhlendorff, J.; Rorsman, P.; Kofod, H.; Brand, C.L.; Rolin, B.; MacKay, P.; Shymko, R.; Carr, R.D. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes 1998, 47, 345–351. [Google Scholar] [PubMed]
- Black, O.; Donnelly, P.; McIntyre, L.; Royle, P.L.; Shepherd, J.P.; Thomas, S. Meglitinide analogues for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2007, 2, CD004654. [Google Scholar] [PubMed]
- Hasslacher, C. Multinational Repaglinide Renal Study Group. Safety and efficacy of repaglinide in type 2 diabetic patients with and without impaired renal function. Diabetes Care 2003, 26, 886–891. [Google Scholar] [CrossRef] [PubMed]
- Yki–Jarvinen, H. Drug Therapy: Thiazolidinediones. N. Engl. J. Med. 2004, 351, 1106–1118. [Google Scholar]
- Petersen, K.F.; Krssak, M.; Inzucchi, S.; Cline, G.W.; Dufour, S.; Shulman, G.I. Mechanism of troglitazone action in type 2 diabetes. Diabetes 2000, 49, 827–831. [Google Scholar]
- Kolak, M.; Yki–Jarvinen, H.; Kannisto, K. Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 2007, 92, 720–724. [Google Scholar] [PubMed]
- Vidal-Puig, A.J.; Considine, R.V.; Jimenez-Linan, M.; Werman, A.; Pories, W.J.; Caro, J.F.; Flier, J.S. Peroxisome proliferator-activated receptor gene expression in human tissues. Effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J. Clin. Invest. 1997, 99, 2416–2422. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Ciaraldi, T.P.; Abrams–Carter, L.; Mudaliar, S.; Nikoulina, S.E.; Henry, R.R. PPAR-gamma gene expression is elevated in skeletal muscle of obese and type II diabetic subjects. Diabetes 1997, 46, 1230–1234. [Google Scholar]
- Sharma, A.M.; Staels, B. Review: Peroxisome proliferator-activated receptor gamma and adipose tissue--understanding obesity-related changes in regulation of lipid and glucose metabolism. J. Clin. Endocrinol. Metab. 2007, 92, 386–395. [Google Scholar]
- Nissen, S.E.; Wolski, K.; Topol, E.J. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 2005, 294, 2581–2586. [Google Scholar]
- Henry, R.R.; Lincoff, A.M.; Mudaliar, S.; Rabbia, M.; Chognot, C.; Herz, M. Effect of the dual peroxisome proliferator-activated receptor-alpha/gamma agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet 2009, 374, 126–135. [Google Scholar] [PubMed]
- Stocker, D.J.; Taylor, A.J.; Langley, R.W.; Jezior, M.R.; Vigersky, R.A. A randomized trial of the effects of rosiglitazone and metformin on inflammation and subclinical atherosclerosis in patients with type 2 diabetes. Am. Heart J. 2007, 153, 445.e1–445.e6. [Google Scholar] [CrossRef]
- Mazzone, T.; Meyer, P.M.; Feinstein, S.B.; Davidson, M.H.; Kondos, G.T.; D'Agostino, R.B.; Perez, A., Sr.; Provost, J.C.; Haffner, S.M. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 2006, 296, 2572–2581. [Google Scholar] [PubMed]
- Uwaifo, G.I.; Ratner, R.E. Differential effects of oral hypoglycemic agents on glucose control and cardiovascular risk. Am. J. Cardiol. 2007, 99, 51B–67B. [Google Scholar]
- Nissen, S.E.; Nicholls, S.J.; Wolski, K. ; Nesto, R.; Kupfer, S.; Perez, A.; Jure, H.; De Larochellière, R.; Staniloae, C.S.; Mavromatis, K.; Saw, J.; Hu, B.; Lincoff, A.M.; Tuzcu, E.M. PERISCOPE Investigators. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 2008, 299, 1561–1573. [Google Scholar] [PubMed]
- Nissen, S.E.; Wolski, K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. N. Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar]
- Lincoff, A.M.; Wolski, K.; Nicholls, S.J.; Nissen, S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007, 298, 1180–1188. [Google Scholar]
- Rosen, C.J. The Rosiglitazone Story - Lessons from an FDA Advisory Committee Meeting. N. Engl. J. Med. 2007, 357, 844–846. [Google Scholar]
- Singh, S. Long-term risk of cardiovascular events with rosiglitazone: a meta-analysis. JAMA 2007, 298, 1189–1195. [Google Scholar]
- Richter, B.; Bandeira–Echtler, E.; Bergerhoff, K.; Clar, C.; Ebrahim, S.H. Rosiglitazone for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2007, 3, CD006063. [Google Scholar] [CrossRef] [PubMed]
- Diamond, G.A.; Bax, L.; Kaul, S. Uncertain effects of rosiglitazone on the risk for myocardial infarction and cardiovascular death. Ann. Intern. Med. 2007, 147, 578–581. [Google Scholar]
- Home, P.D.; Pocock, S.J.; Beck-Nielsen, H.; Gomis, R.; Hanefeld, M.; Dargie, H.; Komajda, M.; Gubb, J.; Biswas, N.; Jones, N.P. Rosiglitazone Evaluated for Cardiac Outcomes and Regulation of Glycaemia in Diabetes (RECORD): study design and protocol. Diabetologia 2005, 48, 1726–1735. [Google Scholar]
- Home, P.D.; Pocock, S.J.; Beck-Nielsen, H.; Curtis, P.S.; Gomis, R.; Hanefeld, M.; Jones, N.P.; Komajda, M.; McMurray, J.J. RECORD Study Team. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009, 373, 2125–2135. [Google Scholar] [PubMed]
- Dormandy, J.A.; Charbonnel, B.; Eckland, D.J.; Erdmann, E.; Massi-Benedetti, M.; Moules, I.K.; Skene, A.M.; Tan, M.H.; Lefèbvre, P.J.; Murray, G.D.; Standl, E.; Wilcox, R.G.; Wilhelmsen, L.; Betteridge, J.; Birkeland, K.; Golay, A.; Heine, R.J.; Korányi, L.; Laakso, M.; Mokán, M.; Norkus, A.; Pirags, V.; Podar, T.; Scheen, A.; Scherbaum, W.; Schernthaner, G.; Schmitz, O.; Skrha, J.; Smith, U.; Taton, J. PROactive investigators. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): A randomised controlled trial. Lancet 2005, 366, 1279–1289. [Google Scholar] [PubMed]
- Guan, Y.; Hao, C.; Cha, D.R. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat. Med. 2005, 11, 861–866. [Google Scholar]
- Kahn, S.E.; Haffner, S.M.; Heise, M.A.; Rao, R.; Lu, W.; Kohan, D.E.; Magnuson, M.A.; Redha, R.; Zhang, Y.; Breyer, M.D. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N. Engl. J. Med. 2006, 355, 2427–2443. [Google Scholar] [PubMed]
- Chiasson, J.L.; Josse, R.G.; Hunt, J.A.; Palmason, C.; Rodger, N.W.; Ross, S.A.; Ryan, E.A.; Tan, M.H.; Wolever, T.M. The efficacy of acarbose in the treatment of patients with non-insulin-dependent diabetes mellitus. A multicenter controlled clinical trial. Ann. Intern. Med. 1994, 121, 928–935. [Google Scholar] [PubMed]
- Chee, W.; Egan, C.; Egan, J.M. Incretin-Based Therapies in Type 2 Diabetes Mellitus. Curr. Protein Pept. Sci. 2009, 10, 46–55. [Google Scholar]
- Rocca, A.S.; Brubaker, P.L. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 1999, 140, 1687–1694. [Google Scholar]
- Demuth, H.U.; McIntosh, C.H.; Pederson, R.A. Type 2 diabetes--therapy with dipeptidyl peptidase IV inhibitors. Biochim. Biophys. Acta 2005, 1751, 33–34. [Google Scholar] [PubMed]
- Abraham, E.J.; Leech, C.A.; Lin, J.C.; Zulewski, H.; Habener, J.F. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002, 143, 3152–3161. [Google Scholar]
- Drucker, D.J. The biology of incretin hormones. Cell. Metab. 2006, 3, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Kolterman, O.G.; Buse, J.B.; Fineman, M.S.; Gaines, E.; Heintz, S.; Bicsak, T.A.; Taylor, K.; Kim, D.; Aisporna, M.; Wang, Y.; Baron, A.D. Synthetic exendin-4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 2003, 88, 3082–3089. [Google Scholar] [PubMed]
- Verspohl, E.J. Novel therapeutics for type 2 diabetes: Incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors. Pharmacol. Ther. 2009, 124, 113–138. [Google Scholar] [PubMed]
- Buse, J.B.; Henry, R.R.; Han, J.; Kim, D.D.; Fineman, M.S.; Baron, A.D. Exenatide-113 Clinical Study Group; Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care 2004, 27, 2628–2635. [Google Scholar] [PubMed]
- Drucker, D.J.; Buse, J.B.; Taylor, K.; Kendall, D.M.; Trautmann, M.; Zhuang, D.; Porter, L. DURATION-1 Study Group. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. Lancet 2008, 372, 1240–1250. [Google Scholar] [PubMed]
- Heine, R.J.; Van Gaal, L.F.; Johns, D.; Mihm, M.J.; Widel, M.H.; Brodows, R.G. GWAA Study Group. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann. Intern. Med. 2005, 143, 559–569. [Google Scholar] [PubMed]
- De Fronzo, R.A.; Ratner, R.E.; Han, J.; Kim, D.D.; Fineman, M.S.; Baron, A.D. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin treated patients with type 2 diabetes. Diabetes Care 2005, 28, 1092–1100. [Google Scholar]
- FDC reports. The Pink Sheet. 2008; 70, 9.
- Juhl, C.B.; Hollingdal, M.; Sturis, J.; Jakobsen, G.; Agersø, H.; Veldhuis, J.; Pørksen, N.; Schmitz, O. Bedtime administration of NN2211, a long-acting GLP-1 derivative, substantially reducesfasting and postprandial glycemia in type 2 diabetes. Diabetes 2002, 51, 424–429. [Google Scholar] [PubMed]
- Kim, D.; MacConell, L.; Zhuang, D.; Kothare, P.A.; Trautmann, M.; Fineman, M.; Taylor, K. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care 2007, 30, 1487–1493. [Google Scholar]
- Bergman, A.J.; Cote, J.; Yi, B.; Marbury, T.; Swan, S.K.; Smith, W.; Gottesdiener, K.; Wagner, J.; Herman, G.A. Effect of renal insufficiency on the pharmacokinetics of sitagliptin, a dipeptidyl peptidase-4 inhibitor. Diabetes Care 2007, 30, 1862–1864. [Google Scholar]
- Wright, D.; Maes, A.L.; Yi, B.; Liu, Q.; Johnson-Levonas, A.O.; Wagner, J.A. Multiple dose administration ofMK-0431 (sitagliptin), an inhibitor of dipeptidyl peptidase-IV, does not meaningfully alter the plasma pharmacokinetics or pharmacodynamics of single doses of warfarin. Clin. Pharmacol. Ther. 2006, 79, 76–76. [Google Scholar]
- Wani, J.H.; John-Kalarickal, J.; Fonseca, V.A. Dipeptidyl peptidase-4 as a new target of action for type 2 diabetes mellitus: a systematic review. Cardiol.Clin. 2008, 26, 639–648. [Google Scholar]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lorenzati, B.; Zucco, C.; Miglietta, S.; Lamberti, F.; Bruno, G. Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. Pharmaceuticals 2010, 3, 3005-3020. https://doi.org/10.3390/ph3093005
Lorenzati B, Zucco C, Miglietta S, Lamberti F, Bruno G. Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. Pharmaceuticals. 2010; 3(9):3005-3020. https://doi.org/10.3390/ph3093005
Chicago/Turabian StyleLorenzati, Bartolomeo, Chiara Zucco, Sara Miglietta, Federico Lamberti, and Graziella Bruno. 2010. "Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action" Pharmaceuticals 3, no. 9: 3005-3020. https://doi.org/10.3390/ph3093005
APA StyleLorenzati, B., Zucco, C., Miglietta, S., Lamberti, F., & Bruno, G. (2010). Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action. Pharmaceuticals, 3(9), 3005-3020. https://doi.org/10.3390/ph3093005