CRISPR/Cas9 Screening for Identification of Genes Required for the Growth of Ovarian Clear Cell Carcinoma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Pooled Genome-Wide CRISPR/Cas9 Knockout Screen
2.3. RNA-seq Analysis
2.4. Transfection of siRNAs
2.5. Cell Titer-Glo Assay
2.6. qRT-PCR Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Genome-Wide CRISPR/Cas9 Screens Using OCCC Cell Lines
3.2. Effects of Mutations in ARID1A and PIK3CA on CRISPR/Cas9 Screening
3.3. Knockdown of Either KDM2A or PAIP1 Suppresses the Growth of OCCC Cells
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cancer Facts & Figures 2021, American Cancer Society. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf (accessed on 2 December 2021).
- Matsuda, T.; Marugame, T.; Kamo, K.-I.; Katanoda, K.; Ajiki, W.; Sobue, T. Japan Cancer Surveillance Research Group Cancer Incidence and Incidence Rates in Japan in 2006: Based on Data from 15 Population-Based Cancer Registries in the Monitoring of Cancer Incidence in Japan (MCIJ) Project. Jpn. J. Clin. Oncol. 2012, 42, 139–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takano, M.; Kikuchi, Y.; Yaegashi, N.; Kuzuya, K.; Ueki, M.; Tsuda, H.; Suzuki, M.; Kigawa, J.; Takeuchi, S.; Tsuda, H.; et al. Clear Cell Carcinoma of the Ovary: A Retrospective Multicentre Experience of 254 Patients with Complete Surgical Staging. Br. J. Cancer 2006, 94, 1369–1374. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, M.; Kikkawa, F.; Shibata, K.; Kajiyama, H.; Ino, K.; Kawai, M.; Nagasaka, T.; Nomura, S. Long-Term Follow-up and Prognostic Factor Analysis in Clear Cell Adenocarcinoma of the Ovary. J. Surg. Oncol. 2006, 94, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Gilks, C.B.; Ionescu, D.N.; Kalloger, S.E.; Köbel, M.; Irving, J.; Clarke, B.; Santos, J.; Le, N.; Moravan, V.; Swenerton, K.; et al. Tumor Cell Type Can Be Reproducibly Diagnosed and Is of Independent Prognostic Significance in Patients with Maximally Debulked Ovarian Carcinoma. Hum. Pathol. 2008, 39, 1239–1251. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Okamoto, A.; Hollis, R.L.; Gourley, C.; Herrington, C.S. Clear Cell Carcinoma of the Ovary: A Clinical and Molecular Perspective. Int. J. Gynecol. Cancer 2021, 31, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Ku, F.-C.; Wu, R.-C.; Yang, L.-Y.; Tang, Y.-H.; Chang, W.-Y.; Yang, J.-E.; Wang, C.-C.; Jung, S.-M.; Lin, C.-T.; Chang, T.-C.; et al. Clear Cell Carcinomas of the Ovary Have Poorer Outcomes Compared with Serous Carcinomas: Results from a Single-Center Taiwanese Study. J. Formos. Med. Assoc. 2018, 117, 117–125. [Google Scholar] [CrossRef]
- Tang, H.; Liu, Y.; Wang, X.; Guan, L.; Chen, W.; Jiang, H.; Lu, Y. Clear Cell Carcinoma of the Ovary: Clinicopathologic Features and Outcomes in a Chinese Cohort. Medicine 2018, 97, e10881. [Google Scholar] [CrossRef]
- Crotzer, D.R.; Sun, C.C.; Coleman, R.L.; Wolf, J.K.; Levenback, C.F.; Gershenson, D.M. Lack of Effective Systemic Therapy for Recurrent Clear Cell Carcinoma of the Ovary. Gynecol. Oncol. 2007, 105, 404–408. [Google Scholar] [CrossRef]
- Sugiyama, T.; Kamura, T.; Kigawa, J.; Terakawa, N.; Kikuchi, Y.; Kita, T.; Suzuki, M.; Sato, I.; Taguchi, K. Clinical Characteristics of Clear Cell Carcinoma of the Ovary: A Distinct Histologic Type with Poor Prognosis and Resistance to Platinum-Based Chemotherapy. Cancer 2000, 88, 2584–2589. [Google Scholar] [CrossRef]
- Okamoto, A.; Sehouli, J.; Yanaihara, N.; Hirata, Y.; Braicu, I.; Kim, B.-G.; Takakura, S.; Saito, M.; Yanagida, S.; Takenaka, M.; et al. Somatic Copy Number Alterations Associated with Japanese or Endometriosis in Ovarian Clear Cell Adenocarcinoma. PLoS ONE 2015, 10, e0116977. [Google Scholar] [CrossRef]
- Itamochi, H.; Kigawa, J.; Terakawa, N. Mechanisms of Chemoresistance and Poor Prognosis in Ovarian Clear Cell Carcinoma. Cancer Sci. 2008, 99, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Wang, T.-L.; Shih, I.-M.; Mao, T.-L.; Nakayama, K.; Roden, R.; Glas, R.; Slamon, D.; Diaz, L.A., Jr.; Vogelstein, B.; et al. Frequent Mutations of Chromatin Remodeling Gene ARID1A in Ovarian Clear Cell Carcinoma. Science 2010, 330, 228–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, K.-T.; Mao, T.-L.; Jones, S.; Veras, E.; Ayhan, A.; Wang, T.-L.; Glas, R.; Slamon, D.; Velculescu, V.E.; Kuman, R.J.; et al. Frequent Activating Mutations of PIK3CA in Ovarian Clear Cell Carcinoma. Am. J. Pathol. 2009, 174, 1597–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, B.G.; Roberts, C.W.M. SWI/SNF Nucleosome Remodellers and Cancer. Nat. Rev. Cancer 2011, 11, 481–492. [Google Scholar] [CrossRef]
- Samartzis, E.P.; Noske, A.; Dedes, K.J.; Fink, D.; Imesch, P. ARID1A Mutations and PI3K/AKT Pathway Alterations in Endometriosis and Endometriosis-Associated Ovarian Carcinomas. Int. J. Mol. Sci. 2013, 14, 18824–18849. [Google Scholar] [CrossRef] [Green Version]
- Caumanns, J.J.; Wisman, G.B.A.; Berns, K.; van der Zee, A.G.J.; de Jong, S. ARID1A Mutant Ovarian Clear Cell Carcinoma: A Clear Target for Synthetic Lethal Strategies. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 176–184. [Google Scholar] [CrossRef]
- Price, C.; Gill, S.; Ho, Z.V.; Davidson, S.M.; Merkel, E.; McFarland, J.M.; Leung, L.; Tang, A.; Kost-Alimova, M.; Tsherniak, A.; et al. Genome-Wide Interrogation of Human Cancers Identifies EGLN1 Dependency in Clear Cell Ovarian Cancers. Cancer Res. 2019, 79, 2564–2579. [Google Scholar] [CrossRef] [Green Version]
- Caumanns, J.J.; Berns, K.; Wisman, G.B.A.; Fehrmann, R.S.N.; Tomar, T.; Klip, H.; Meersma, G.J.; Hijmans, E.M.; Gennissen, A.M.C.; Duiker, E.W.; et al. Integrative Kinome Profiling Identifies mTORC1/2 Inhibition as Treatment Strategy in Ovarian Clear Cell Carcinoma. Clin. Cancer Res. 2018, 24, 3928–3940. [Google Scholar] [CrossRef] [Green Version]
- Ghandi, M.; Huang, F.W.; Jané-Valbuena, J.; Kryukov, G.V.; Lo, C.C.; McDonald, E.R., 3rd; Barretina, J.; Gelfand, E.T.; Bielski, C.M.; Li, H.; et al. Next-Generation Characterization of the Cancer Cell Line Encyclopedia. Nature 2019, 569, 503–508. [Google Scholar] [CrossRef]
- Devor, E.J.; Lapierre, J.R.; Bender, D.P. ES-2 Ovarian Cancer Cells Present a Genomic Profile Inconsistent with Their Reported History. Obstet. Gynecol. Res. 2021, 4, 233–238. [Google Scholar] [CrossRef]
- Kwok, A.L.M.; Wong, O.G.-W.; Wong, E.S.Y.; Tsun, O.K.-L.; Chan, K.-K.; Cheung, A.N.-Y. Caution over Use of ES2 as a Model of Ovarian Clear Cell Carcinoma. J. Clin. Pathol. 2014, 67, 921–922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, T.; Tong, A.H.Y.; Chan, K.; Van Leeuwen, J.; Seetharaman, A.; Aregger, M.; Chandrashekhar, M.; Hustedt, N.; Seth, S.; Noonan, A.; et al. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens. G3 2017, 7, 2719–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Xu, H.; Xiao, T.; Cong, L.; Love, M.I.; Zhang, F.; Irizarry, R.A.; Liu, J.S.; Brown, M.; Liu, X.S. MAGeCK Enables Robust Identification of Essential Genes from Genome-Scale CRISPR/Cas9 Knockout Screens. Genome Biol. 2014, 15, 554. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Wang, M.; Zhang, W.; Xiao, T.; Chen, C.-H.; Wu, A.; Wu, F.; Traugh, N.; Wang, X.; Li, Z.; et al. Integrative Analysis of Pooled CRISPR Genetic Screens Using MAGeCKFlute. Nat. Protoc. 2019, 14, 756–780. [Google Scholar] [CrossRef]
- Anglesio, M.S.; Wiegand, K.C.; Melnyk, N.; Chow, C.; Salamanca, C.; Prentice, L.M.; Senz, J.; Yang, W.; Spillman, M.A.; Cochrane, D.R.; et al. Type-Specific Cell Line Models for Type-Specific Ovarian Cancer Research. PLoS ONE 2013, 8, e72162. [Google Scholar] [CrossRef]
- Tan, T.Z.; Ye, J.; Yee, C.V.; Lim, D.; Ngoi, N.Y.L.; Tan, D.S.P.; Huang, R.Y.-J. Analysis of Gene Expression Signatures Identifies Prognostic and Functionally Distinct Ovarian Clear Cell Carcinoma Subtypes. EBioMedicine 2019, 5, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Kolendowski, B.; Valdes, Y.R.; Hirte, H.; Itamochi, H.; Lee, W.; Carey, M.; Shepherd, T.G.; DiMattia, G.E. Characterization of Mutational Status, Spheroid Formation, and Drug Response of a New Genomically-Stable Human Ovarian Clear Cell Carcinoma Cell Line, 105C. Cells 2020, 9, 2408. [Google Scholar] [CrossRef] [PubMed]
- Mirgayazova, R.; Khadiullina, R.; Chasov, V.; Mingaleeva, R.; Miftakhova, R.; Rizvanov, A.; Bulatov, E. Therapeutic Editing of the TP53 Gene: Is CRISPR/Cas9 an Option? Genes 2020, 11, 704. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Lin, Q. Histone Demethylase KDM2A: Biological Functions and Clinical Values (Review). Exp. Ther. Med. 2021, 22, 723. [Google Scholar] [CrossRef]
- Lu, D.-H.; Yang, J.; Gao, L.-K.; Min, J.; Tang, J.-M.; Hu, M.; Li, Y.; Li, S.-T.; Chen, J.; Hong, L. Lysine Demethylase 2A Promotes the Progression of Ovarian Cancer by Regulating the PI3K Pathway and Reversing Epithelial-mesenchymal Transition. Oncol. Rep. 2019, 41, 917–927. [Google Scholar] [CrossRef]
- Wang, Y.; Piao, J.; Wang, Q.; Cui, X.; Meng, Z.; Jin, T.; Lin, Z. Paip1 Predicts Poor Prognosis and Promotes Tumor Progression through AKT/GSK-3β Pathway in Lung Adenocarcinoma. Hum. Pathol. 2019, 86, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Li, N.; Wang, X.; Shan, X.; Li, Z.; Lin, Z. Role of Paip1 on Angiogenesis and Invasion in Pancreatic Cancer. Exp. Cell Res. 2019, 376, 198–209. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Piao, J.; Wang, X.; Kim, K.-Y.; Bae, J.Y.; Ren, X.; Lin, Z. Paip1 Indicated Poor Prognosis in Cervical Cancer and Promoted Cervical Carcinogenesis. Cancer Res. Treat. 2019, 51, 1653–1665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, H.W.; Cowley, G.S.; Weir, B.A.; Boehm, J.S.; Rusin, S.; Scott, J.A.; East, A.; Ali, L.D.; Lizotte, P.H.; Wong, T.C.; et al. Systematic Investigation of Genetic Vulnerabilities across Cancer Cell Lines Reveals Lineage-Specific Dependencies in Ovarian Cancer. Proc. Natl. Acad. Sci. USA 2011, 108, 12372–12377. [Google Scholar] [CrossRef] [Green Version]
- Di Palma, T.; Lucci, V.; de Cristofaro, T.; Filippone, M.G.; Zannini, M. A Role for PAX8 in the Tumorigenic Phenotype of Ovarian Cancer Cells. BMC Cancer 2014, 14, 292. [Google Scholar] [CrossRef] [Green Version]
- Pfau, R.; Tzatsos, A.; Kampranis, S.C.; Serebrennikova, O.B.; Bear, S.E.; Tsichlis, P.N. Members of a Family of JmjC Domain-Containing Oncoproteins Immortalize Embryonic Fibroblasts via a JmjC Domain-Dependent Process. Proc. Natl. Acad. Sci. USA 2008, 105, 1907–1912. [Google Scholar] [CrossRef] [Green Version]
- Kawakami, E.; Tokunaga, A.; Ozawa, M.; Sakamoto, R.; Yoshida, N. The Histone Demethylase Fbxl11/Kdm2a Plays an Essential Role in Embryonic Development by Repressing Cell-Cycle Regulators. Mech. Dev. 2015, 135, 31–42. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Li, C.-F.; Chu, P.-Y.; Lai, Y.-S.; Chen, C.-H.; Jiang, S.S.; Hou, M.-F.; Hung, W.-C. Lysine Demethylase 2A Promotes Stemness and Angiogenesis of Breast Cancer by Upregulating Jagged1. Oncotarget 2016, 7, 27689–27710. [Google Scholar] [CrossRef] [Green Version]
- Sauta, E.; Reggiani, F.; Torricelli, F.; Zanetti, E.; Tagliavini, E.; Santandrea, G.; Gobbi, G.; Strocchi, S.; Paci, M.; Damia, G.; et al. CSNK1A1, KDM2A, and LTB4R2 Are New Druggable Vulnerabilities in Lung Cancer. Cancers 2021, 13, 3477. [Google Scholar] [CrossRef]
- Bi, J.; Ma, H.; Liu, Y.; Huang, A.; Xiao, Y.; Shu, W.-J.; Du, H.; Zhang, T. Upregulation of PAIP1 Promotes the Gallbladder Tumorigenesis through Regulating PLK1 Level. Ann. Transl. Med. 2021, 9, 991. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawabata, A.; Hayashi, T.; Akasu-Nagayoshi, Y.; Yamada, A.; Shimizu, N.; Yokota, N.; Nakato, R.; Shirahige, K.; Okamoto, A.; Akiyama, T. CRISPR/Cas9 Screening for Identification of Genes Required for the Growth of Ovarian Clear Cell Carcinoma Cells. Curr. Issues Mol. Biol. 2022, 44, 1587-1596. https://doi.org/10.3390/cimb44040108
Kawabata A, Hayashi T, Akasu-Nagayoshi Y, Yamada A, Shimizu N, Yokota N, Nakato R, Shirahige K, Okamoto A, Akiyama T. CRISPR/Cas9 Screening for Identification of Genes Required for the Growth of Ovarian Clear Cell Carcinoma Cells. Current Issues in Molecular Biology. 2022; 44(4):1587-1596. https://doi.org/10.3390/cimb44040108
Chicago/Turabian StyleKawabata, Ayako, Tomoatsu Hayashi, Yoko Akasu-Nagayoshi, Ai Yamada, Naomi Shimizu, Naoko Yokota, Ryuichiro Nakato, Katsuhiko Shirahige, Aikou Okamoto, and Tetsu Akiyama. 2022. "CRISPR/Cas9 Screening for Identification of Genes Required for the Growth of Ovarian Clear Cell Carcinoma Cells" Current Issues in Molecular Biology 44, no. 4: 1587-1596. https://doi.org/10.3390/cimb44040108
APA StyleKawabata, A., Hayashi, T., Akasu-Nagayoshi, Y., Yamada, A., Shimizu, N., Yokota, N., Nakato, R., Shirahige, K., Okamoto, A., & Akiyama, T. (2022). CRISPR/Cas9 Screening for Identification of Genes Required for the Growth of Ovarian Clear Cell Carcinoma Cells. Current Issues in Molecular Biology, 44(4), 1587-1596. https://doi.org/10.3390/cimb44040108