Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Antihistamines Connected to Targets or COVID-19 Related Targets
2.2. Pharmacological Pathway Enrichment Analysis on a Bubble Chart
2.3. Pathways-Targets-Antihistamines (PTA) Network Construction
2.4. Topological Analysis of Protein-Protein Interaction (PPI) Network
2.5. Preparation for MDT of Antihistamines
2.6. Preparation for MDT of Targets
2.7. MDT of Antihistamines—A Key Target
3. Results
3.1. Physicochemical Properties of Antihistamines
3.2. Targets Related to Antihistamines or COVID-19
3.3. Identification of a Key Pharmacological Pathway of Antihistamines on COVID-19
3.4. Pathways-Targets-Antihistamines (PTA) Network Construction and Analysis
3.5. COVID-19 Target PPI Network Analysis
3.6. Molecular Docking Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
COVID-19 | Coronavirus disease 2019 |
BC | Betweenness Centrality |
DC | Degree Centrality |
GSEA | Gene Set Enrichment Analysis |
IL17A | Interleukin 17A |
IL17RA | Interleukin 17 Receptor A |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MDT | Molecular Docking Test |
PPI | Protein-Protein Interaction |
PTA | Pathways-Targets-Antihistamines |
SEA | Similarity Ensemble Approach |
STP | SwissTargetPrediction |
TPSA | Topological Polar Surface Area |
WHO | World Health Organization |
References
- Oh, K.K.; Adnan, M.; Cho, D.H. Network pharmacology approach to decipher signaling pathways associated with target proteins of NSAIDs against COVID-19. Sci. Rep. 2021, 11, 1–15. [Google Scholar] [CrossRef]
- Swelum, A.A.; Shafi, M.E.; Albaqami, N.M.; El-Saadony, M.T.; Elsify, A.; Abdo, M.; Taha, A.E.; Abdel-Moneim, A.M.E.; Al-Gabri, N.A.; Almaiman, A.A.; et al. COVID-19 in Human, Animal, and Environment: A Review. Front. Vet. Sci. 2020, 7, 578. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ren, L.; Yang, J.; Guo, L.; Feng, L.; Ma, C.; Wang, X.; Leng, Z.; Tong, X.; Zhou, W.; et al. Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: A longitudinal, population-level, cross-sectional study. Lancet 2021, 397, 1075–1084. [Google Scholar] [CrossRef]
- Zheng, J. SARS-CoV-2: An Emerging Coronavirus that Causes a Global Threat. Int. J. Biol. Sci. 2020, 16, 1678. [Google Scholar] [CrossRef] [Green Version]
- So, A.D.; Woo, J. Reserving coronavirus disease 2019 vaccines for global access: Cross sectional analysis. BMJ 2020, 371, m4750. [Google Scholar] [CrossRef]
- Esposito, M.; Salerno, M.; Scoto, E.; Di Nunno, N.; Sessa, F. The Impact of the COVID-19 Pandemic on the Practice of Forensic Medicine: An Overview. Healthcare 2022, 10, 319. [Google Scholar] [CrossRef]
- Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672–683. [Google Scholar] [CrossRef]
- Yang, L.; Pei, R.; Li, H.; Ma, X.; Zhou, Y.; Zhu, F.H.; He, P.L.; Tang, W.; Zhang, Y.C.; Xiong, J.; et al. Identification of SARS-CoV-2 entry inhibitors among already approved drugs. Acta Pharmacol. Sin. 2020, 42, 1347–1353. [Google Scholar] [CrossRef]
- Morán Blanco, J.I.; Alvarenga Bonilla, J.A.; Homma, S.; Suzuki, K.; Fremont-Smith, P.; Villar Gómez de las Heras, K. Antihistamines and azithromycin as a treatment for COVID-19 on primary health care—A retrospective observational study in elderly patients. Pulm. Pharmacol. Ther. 2021, 67, 101989. [Google Scholar] [CrossRef]
- Qu, C.; Fuhler, G.M.; Pan, Y. Could Histamine H1 Receptor Antagonists Be Used for Treating COVID-19? Int. J. Mol. Sci. 2021, 22, 5672. [Google Scholar] [CrossRef]
- Glynne, P.; Tahmasebi Bsc, N.; Gant, V.; Frcpath, F.; Gupta, R. Long-COVID following mild SARS CoV-2 infection: Characteristic T cell alterations and response to antihistamines. medRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Peter, A.E.; Sandeep, B.V.; Rao, B.G.; Kalpana, V.L. Calming the Storm: Natural Immunosuppressants as Adjuvants to Target the Cytokine Storm in COVID-19. Front. Pharmacol. 2021, 11, 2305. [Google Scholar] [CrossRef] [PubMed]
- Khelemsky, Y.; Gritsenko, K.; Maerz, D. Antihistamines. In Pain Medicine; Springer: Cham, Switzerland, 2021; pp. 191–192. [Google Scholar] [CrossRef]
- Obara, I.; Telezhkin, V.; Alrashdi, I.; Chazot, P.L. Histamine, histamine receptors, and neuropathic pain relief. Br. J. Pharmacol. 2020, 177, 580–599. [Google Scholar] [CrossRef] [PubMed]
- Conti, P.; Caraffa, A.; Tetè, G.; Gallenga, C.E.; Ross, R.; Kritas, S.K.; Frydas, I.; Younes, A.; Di Emidio, P.; Ronconi, G. Mast cells activated by SARS-CoV-2 release histamine which increases IL-1 levels causing cytokine storm and inflammatory reaction in COVID-19. J. Biol. Regul. Homeost. Agents 2020, 34, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Watanabe, T.; Klunker, S.; Akdis, M.; Thomet, O.A.R.; Malolepszy, J.; Zak-Nejmark, T.; Koga, R.; Kobayashi, T.; Blaser, K.; et al. Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001, 413, 420–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, G.; Wang, W.; Wang, X.; Xu, M.; Zhang, L.; Ding, L.; Guo, R.; Shi, Y. Network pharmacology-based strategy to investigate pharmacological mechanisms of Zuojinwan for treatment of gastritis. BMC Complementary Altern. Med. 2018, 18, 292. [Google Scholar] [CrossRef]
- Oh, K.K.; Adnan, M.; Cho, D.H. Network pharmacology study on morus alba l. Leaves: Pivotal functions of bioactives on ras signaling pathway and its associated target proteins against gout. Int. J. Mol. Sci. 2021, 22, 9372. [Google Scholar] [CrossRef]
- Ye, H.; Wei, J.; Tang, K.; Feuers, R.; Hong, H. Drug Repositioning Through Network Pharmacology. Curr. Top. Med. Chem. 2016, 16, 3646–3656. [Google Scholar] [CrossRef]
- Liu, D.Y.; Liu, J.C.; Liang, S.; Meng, X.H.; Greenbaum, J.; Xiao, H.M.; Tan, L.J.; Deng, H.W. Drug Repurposing for COVID-19 Treatment by Integrating Network Pharmacology and Transcriptomics. Pharmaceutics 2021, 13, 545. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Gfeller, D.; Michielin, O.; Zoete, V. Shaping the interaction landscape of bioactive molecules. Bioinformatics 2013, 29, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
- Matsson, P.; Kihlberg, J. How Big Is Too Big for Cell Permeability? J. Med. Chem. 2017, 60, 1662–1664. [Google Scholar] [CrossRef] [Green Version]
- Khanal, P.; Patil, B.M.; Chand, J.; Naaz, Y. Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Nat. Prod. Bioprospect. 2020, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Modeling 2011, 51, 2778–2786. [Google Scholar] [CrossRef] [PubMed]
- Shityakov, S.; Förster, C. In silico predictive model to determine vector-mediated transport properties for the blood-brain barrier choline transporter. Adv. Appl. Bioinform. Chem. AABC 2014, 7, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Kawauchi, H.; Yanai, K.; Wang, D.Y.; Itahashi, K.; Okubo, K. Antihistamines for Allergic Rhinitis Treatment from the Viewpoint of Nonsedative Properties. Int. J. Mol. Sci. 2019, 20, 213. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.M. The role of antihistamines in asthma management. Treat. Respir. Med. 2006, 5, 149–158. [Google Scholar] [CrossRef]
- Fineman, S.M. Optimal treatment of anaphylaxis: Antihistamines versus epinephrine. Postgrad. Med. 2014, 126, 73–81. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, D.; Zhang, H.; Wolters, P.J.; Killeen, N.P.; Sullivan, B.M.; Locksley, R.M.; Lowell, C.A.; Caughey, G.H. Neutrophil histamine contributes to inflammation in mycoplasma pneumonia. J. Exp. Med. 2006, 203, 2907–2917. [Google Scholar] [CrossRef] [Green Version]
- Mura, C.; Preissner, S.; Nahles, S.; Heiland, M.; Bourne, P.E.; Preissner, R. Real-world evidence for improved outcomes with histamine antagonists and aspirin in 22,560 COVID-19 patients. Signal Transduct. Target. Ther. 2021, 6, 267. [Google Scholar] [CrossRef]
- Dupré, N.; Derambure, C.; Le Dieu-Lugon, B.; Hauchecorne, M.; Detroussel, Y.; Gonzalez, B.J.; Marret, S.; Leroux, P. Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain. Front. Mol. Neurosci. 2020, 13, 212. [Google Scholar] [CrossRef] [PubMed]
- Somolinos, F.J.; León, C.; Guerrero-Aspizua, S. Drug Repurposing Using Biological Networks. Processes 2021, 9, 1057. [Google Scholar] [CrossRef]
- Govender, N.; Khaliq, O.P.; Moodley, J.; Naicker, T. Insulin resistance in COVID-19 and diabetes. Prim. Care Diabetes 2021, 15, 629. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A. Long-term potentiation at CA3-CA1 hippocampal synapses with special emphasis on aging, disease, and stress. Front. Aging Neurosci. 2011, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Bouças, A.P.; Rheinheimer, J.; Lagopoulos, J. Why Severe COVID-19 Patients Are at Greater Risk of Developing Depression: A Molecular Perspective. Neuroscientist 2020. [Google Scholar] [CrossRef]
- Xu, J.; Zhong, S.; Liu, J.; Li, L.; Li, Y.; Wu, X.; Li, Z.; Deng, P.; Zhang, J.; Zhong, N.; et al. Detection of severe acute respiratory syndrome coronavirus in the brain: Potential role of the chemokine mig in pathogenesis. Clin. Infect. Dis. 2005, 41, 1089–1096. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, Y.; Nakamura, K. Central regulation of brown adipose tissue thermogenesis and energy homeostasis dependent on food availability. Pflug. Arch. 2018, 470, 823. [Google Scholar] [CrossRef]
- Barthelemy, J.; Wolowczuk, I. Influenza A Virus Infection Induces White Adipose Tissue Browning: A Metabolic Adaptation to Infection? J. Cell. Immunol. 2020, 2, 276–283. [Google Scholar] [CrossRef]
- Vitner, E.B.; Avraham, R.; Politi, B.; Melamed, S.; Israely, T. Elevation in sphingolipid upon SARS-CoV-2 infection: Possible implications for COVID-19 pathology. Life Sci. Alliance 2022, 5, e202101168. [Google Scholar] [CrossRef]
- Caterino, M.; Costanzo, M.; Fedele, R.; Cevenini, A.; Gelzo, M.; Di Minno, A.; Andolfo, I.; Capasso, M.; Russo, R.; Annunziata, A.; et al. The Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible Liver Alterations Involving Carbon and Nitrogen Metabolism. Int. J. Mol. Sci. 2021, 22, 9548. [Google Scholar] [CrossRef]
- Fiorentino, G.; Coppola, A.; Izzo, R.; Annunziata, A.; Bernardo, M.; Lombardi, A.; Trimarco, V.; Santulli, G.; Trimarco, B. Effects of adding L-arginine orally to standard therapy in patients with COVID-19: A randomized, double-blind, placebo-controlled, parallel-group trial. Results of the first interim analysis. EClinicalMedicine 2021, 40, 101125. [Google Scholar] [CrossRef] [PubMed]
- Reznikov, L.R.; Norris, M.H.; Vashisht, R.; Bluhm, A.P.; Li, D.; Liao, Y.S.J.; Brown, A.; Butte, A.J.; Ostrov, D.A. Identification of antiviral antihistamines for COVID-19 repurposing. Biochem. Biophys. Res. Commun. 2021, 538, 173–179. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | Lipinski Rules | Lipinski’s Violations | Bioavailability Score | TPSA (Ų) | |||
---|---|---|---|---|---|---|---|---|
MW | HBA | HBD | MLog P | |||||
<500 | <10 | ≤5 | ≤4.15 | ≤1 | >0.1 | <140 | ||
1 | Diphenhydramine | 255.35 | 2 | 0 | 3.16 | 0 | 0.55 | 12.47 |
2 | Clemastine | 343.89 | 2 | 0 | 4.18 | 1 | 0.55 | 12.47 |
3 | Triprolidine | 278.39 | 2 | 0 | 3.16 | 0 | 0.55 | 16.13 |
4 | Hydroxyzine | 374.9 | 4 | 1 | 2.45 | 0 | 0.55 | 35.94 |
5 | Cypropheptadine | 287.4 | 1 | 0 | 4.46 | 1 | 0.55 | 3.24 |
6 | Promethazine | 284.42 | 1 | 0 | 3.84 | 0 | 0.55 | 31.78 |
7 | Antazoline | 265.35 | 1 | 1 | 2.89 | 0 | 0.55 | 27.63 |
8 | Dimetindene | 292.42 | 2 | 0 | 3.39 | 0 | 0.55 | 16.13 |
9 | Ketotifen | 309.43 | 2 | 0 | 3.12 | 0 | 0.55 | 48.55 |
10 | Terfenadine | 471.67 | 3 | 2 | 4.80 | 1 | 0.55 | 43.70 |
11 | Loratadine | 382.88 | 3 | 0 | 3.72 | 0 | 0.55 | 42.43 |
12 | Ebastine | 469.66 | 3 | 0 | 4.73 | 1 | 0.55 | 29.54 |
13 | Cetirizine | 388.89 | 5 | 1 | 2.35 | 0 | 0.55 | 53.01 |
14 | Rupatadine | 415.96 | 3 | 0 | 4.03 | 0 | 0.55 | 29.02 |
15 | Mizolastine | 432.49 | 4 | 1 | 3.59 | 0 | 0.55 | 70.05 |
16 | Emedastine | 302.41 | 3 | 0 | 1.91 | 0 | 0.55 | 33.53 |
17 | Azelastine | 381.9 | 3 | 0 | 4.28 | 1 | 0.55 | 38.13 |
18 | Bilastine | 463.61 | 5 | 1 | 3.29 | 0 | 0.55 | 67.59 |
19 | Desloratadine | 310.82 | 2 | 1 | 3.66 | 0 | 0.55 | 24.92 |
20 | Fexofenadine | 501.66 | 5 | 3 | 3.86 | 1 | 0.55 | 81.00 |
21 | Levocetirizine | 388.89 | 5 | 1 | 2.35 | 0 | 0.55 | 53.01 |
22 | Buclizine | 433.03 | 2 | 0 | 5.38 | 1 | 0.55 | 6.48 |
23 | Trimeprazine | 298.45 | 1 | 0 | 4.08 | 0 | 0.55 | 31.78 |
24 | Carbinoxamine | 290.79 | 3 | 0 | 2.16 | 0 | 0.55 | 25.36 |
25 | Tripelenamine | 255.36 | 2 | 0 | 2.32 | 0 | 0.55 | 19.37 |
26 | Meclizine | 390.95 | 2 | 0 | 4.78 | 1 | 0.55 | 6.48 |
27 | Methdilazine | 296.43 | 1 | 0 | 4.08 | 0 | 0.55 | 31.78 |
28 | Dexchlorpheniramine | 274.79 | 2 | 0 | 3.04 | 0 | 0.55 | 16.13 |
29 | Dimenhydrinate | 469.96 | 5 | 1 | 2.30 | 0 | 0.55 | 85.15 |
30 | Brompheniramine | 319.24 | 2 | 0 | 3.16 | 0 | 0.55 | 16.13 |
31 | Chlorpheniramine | 274.79 | 2 | 0 | 3.04 | 0 | 0.55 | 16.13 |
32 | Cyclizine | 266.38 | 2 | 0 | 3.01 | 0 | 0.55 | 6.48 |
KEGG ID | Targets | RichFactor | False Discovery Rate |
---|---|---|---|
hsa00220:Arginine biosynthesis | NOS2, NOS3 | 0.0952 | 0.0125 |
hsa04720:Long-term potentiation | GRRIN2B, RPS6KA2, RPS6KA2 | 0.0469 | 0.0026 |
hsa00330:Arginine and proline metabolism | NOS2, NOS3 | 0.0417 | 0.0497 |
hsa04931:Insulin resistance | NOS3, RPS6KA2, RPS6KA2 | 0.0374 | 0.0006 |
hsa04071:Sphingolipid signaling pathway | NOS3, FYN, S1PR5, OPRD1 | 0.0345 | 0.0006 |
hsa04714:Thermogenesis | PPARG, RPS6KA2, RPS6KA2 | 0.0131 | 0.0497 |
hsa04080:Neuroactive ligand–receptor interaction | GRIN2B, OPRM1, OPRD1, S1PR5 | 0.0121 | 0.0111 |
No. | Target | DC | BC |
---|---|---|---|
1 | GRIN2B | 4 | 1 |
2 | NOS2 | 4 | 0 |
3 | APP | 3 | 0 |
4 | NOS3 | 2 | 0.43 |
5 | FYN | 2 | 0.04 |
6 | OPRM1 | 1 | 0.39 |
7 | PPARA | 1 | 0.13 |
8 | OPRD1 | 1 | 0 |
9 | RPS6KA2 | 1 | 0 |
10 | PPARG | 0 | 0 |
11 | RPS6KA3 | 0 | 0 |
12 | NR1I2 | 0 | 0 |
13 | SIGMAR1 | 0 | 0 |
No. | Target | DC | BC |
---|---|---|---|
1 | GRIN2B | 1 | 1 |
2 | APP | 2 | 0 |
3 | FYN | 1 | 0 |
4 | NOS2 | 1 | 0 |
5 | NOS3 | 0 | 0 |
Grid Box | Hydrogen Bond Interactions | Hydrophobic Interactions | |||||
---|---|---|---|---|---|---|---|
Protein | Ligand | PubChem ID | Binding Energy (kcal/mol) | Center | Dimension | Amino Acid Residue | Amino Acid Residue |
GRIN 2B (PDB ID: 7EU8) | Loratidine | 3957 | −7.3 | x = 128.688 | size_x = 40 | N/A | Trp391, Glu163, Tyr164 |
y = 128.088 | size_y = 40 | Asp165, Val390, Tyr389 | |||||
z = 133.365 | size_z = 40 | Asp477, Tyr476, His405 | |||||
Thr475, Trp166 | |||||||
Fexofenadine | 3348 | −6.8 | x = 128.688 | size_x = 40 | Trp166, Trp391, Asp165 | Ser469, Phe474, Thr475 | |
y = 128.088 | size_y = 40 | Tyr476, Val390, Pro435 | |||||
z = 133.365 | size_z = 40 | Tyr164 | |||||
Triprolidine | 5282443 | −6.7 | x = 128.688 | size_x = 40 | Arg755 | Ala734, Glu531, Leu797 | |
y = 128.088 | size_y = 40 | Met789, Phe460, Phe529 | |||||
z = 133.365 | size_z = 40 | Ile530, Glu793, Leu752 | |||||
Ebastine | 3191 | −6.6 | x = 128.688 | size_x = 40 | Ile190 | Ile691, Gln487, Glu522 | |
y = 128.088 | size_y = 40 | Trp498, Asn521, Tyr526 | |||||
z = 133.365 | size_z = 40 | Glu191, Gly196 | |||||
Dimetindene | 21855 | −6.5 | x = 128.688 | size_x = 40 | N/A | Leu792, Leu795, Asp463 | |
y = 128.088 | size_y = 40 | Asn432, Trp796, Lys458 | |||||
z = 133.365 | size_z = 40 | Thr701, Arg673, Leu699 | |||||
Glu698 | |||||||
Terfenadine | 5405 | −6.4 | x = 128.688 | size_x = 40 | N/A | Phe474, Trp166, Val390 | |
y = 128.088 | size_y = 40 | Trp391, Pro435, Tyr164 | |||||
z = 133.365 | size_z = 40 | Asp165, Thr433, Thr475 | |||||
Tyr476 | |||||||
Tripelenamine | 5587 | −5.6 | x = 128.688 | size_x = 40 | N/A | Leu752, Glu793, Phe529 | |
y = 128.088 | size_y = 40 | Ile530, Leu797, Asn737 | |||||
z = 133.365 | size_z = 40 | Ala734, Arg755, Ala794 | |||||
Glu790 | |||||||
Emedastine | 3219 | −5.5 | x = 128.688 | size_x = 40 | Trp166 | Ser469, Pro435, Phe474 | |
y = 128.088 | size_y = 40 | Tyr164, Val434, Thr433 | |||||
z = 133.365 | size_z = 40 | Tyr476 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.-K.; Adnan, M.; Cho, D.-H. Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19. Curr. Issues Mol. Biol. 2022, 44, 1597-1609. https://doi.org/10.3390/cimb44040109
Oh K-K, Adnan M, Cho D-H. Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19. Current Issues in Molecular Biology. 2022; 44(4):1597-1609. https://doi.org/10.3390/cimb44040109
Chicago/Turabian StyleOh, Ki-Kwang, Md. Adnan, and Dong-Ha Cho. 2022. "Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19" Current Issues in Molecular Biology 44, no. 4: 1597-1609. https://doi.org/10.3390/cimb44040109
APA StyleOh, K. -K., Adnan, M., & Cho, D. -H. (2022). Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19. Current Issues in Molecular Biology, 44(4), 1597-1609. https://doi.org/10.3390/cimb44040109