Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents
2.2. Parasites
2.3. Multiple Sequence Alignment
2.4. Cloning and Protein Expression of the Catalytic Domain from Subtilisin
2.5. Anti-Subtilisin Sera
2.6. Western Blot
2.7. Flow Cytometry and Immunofluorescence Analysis (IFA)
2.8. Transmission Electron Microscopy (TEM)
2.9. Structure Prediction of Subtilisin
2.10. Molecular Docking
2.11. Cytotoxicity Assay
2.12. Promastigote Viability
2.13. Anti-Amastigote Activity
2.14. Statistical Analysis
3. Results
3.1. Sequence Aligment of the Catalytic Domain of Subtilisin
3.2. Detection of Subtilisin in L. amazonensis
3.3. Sub-Cellular Localization of Subtilisin in the L. amazonensis
3.4. Molecular Modeling
3.5. Effect of the Inhibitor PF-429242 in Mammalian Cells and L. amazonensis
3.6. Expression of Subtilisin in Life Cycle Forms
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A review. F1000Research 2017, 6, 750. [Google Scholar] [CrossRef]
- WHO. Leishmaniasis; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Herrera, G.; Barragan, N.; Luna, N.; Martinez, D.; De Martino, F.; Medina, J.; Nino, S.; Paez, L.; Ramirez, A.; Vega, L.; et al. An interactive database of Leishmania species distribution in the Americas. Sci. Data 2020, 7, 110. [Google Scholar] [CrossRef] [Green Version]
- Valdivia, H.O.; Almeida, L.V.; Roatt, B.M.; Reis-Cunha, J.L.; Pereira, A.A.; Gontijo, C.; Fujiwara, R.T.; Reis, A.B.; Sanders, M.J.; Cotton, J.A.; et al. Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci. Rep. 2017, 7, 40804. [Google Scholar] [CrossRef] [Green Version]
- Barral, A.; Pedral-Sampaio, D.; Grimaldi Junior, G.; Momen, H.; McMahon-Pratt, D.; Ribeiro de Jesus, A.; Almeida, R.; Badaro, R.; Barral-Netto, M.; Carvalho, E.M.; et al. Leishmaniasis in Bahia, Brazil: Evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am. J. Trop. Med. Hyg. 1991, 44, 536–546. [Google Scholar] [CrossRef]
- de Oliveira, J.P.; Fernandes, F.; Cruz, A.K.; Trombela, V.; Monteiro, E.; Camargo, A.A.; Barral, A.; de Oliveira, C.I. Genetic diversity of Leishmania amazonensis strains isolated in northeastern Brazil as revealed by DNA sequencing, PCR-based analyses and molecular karyotyping. Kinetoplastid. Biol. Dis. 2007, 6, 5. [Google Scholar] [CrossRef]
- Oliveira, L.F.; Schubach, A.O.; Martins, M.M.; Passos, S.L.; Oliveira, R.V.; Marzochi, M.C.; Andrade, C.A. Systematic review of the adverse effects of cutaneous leishmaniasis treatment in the New World. Acta Trop. 2011, 118, 87–96. [Google Scholar] [CrossRef]
- Brito, N.C.; Machado de Assis, T.S.; Rabello, A.; Cota, G. Intralesional infiltration versus parenteral use of meglumine antimoniate for treatment of cutaneous leishmaniasis: A cost-effectiveness analysis. PLoS Negl. Trop. Dis. 2019, 13, e0007856. [Google Scholar] [CrossRef] [Green Version]
- Bassanini, I.; Parapini, S.; Ferrandi, E.E.; Gabriele, E.; Basilico, N.; Taramelli, D.; Sparatore, A. Design, Synthesis and In Vitro Investigation of Novel Basic Celastrol Carboxamides as Bio-Inspired Leishmanicidal Agents Endowed with Inhibitory Activity against Leishmania Hsp90. Biomolecules 2021, 11, 56. [Google Scholar] [CrossRef]
- Sakanari, J.A.; Staunton, C.E.; Eakin, A.E.; Craik, C.S.; McKerrow, J.H. Serine proteases from nematode and protozoan parasites: Isolation of sequence homologs using generic molecular probes. Proc. Natl. Acad. Sci. USA 1989, 86, 4863–4867. [Google Scholar] [CrossRef] [Green Version]
- Agbowuro, A.A.; Huston, W.M.; Gamble, A.B.; Tyndall, J.D.A. Proteases and protease inhibitors in infectious diseases. Med. Res. Rev. 2018, 38, 1295–1331. [Google Scholar] [CrossRef]
- Das, S.; Hertrich, N.; Perrin, A.J.; Withers-Martinez, C.; Collins, C.R.; Jones, M.L.; Watermeyer, J.M.; Fobes, E.T.; Martin, S.R.; Saibil, H.R.; et al. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs. Cell Host Microbe 2015, 18, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Lentini, G.; El Hajj, H.; Papoin, J.; Fall, G.; Pfaff, A.W.; Tawil, N.; Braun-Breton, C.; Lebrun, M. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice. PLoS ONE 2017, 12, e0189556. [Google Scholar] [CrossRef] [Green Version]
- Zou, C.; Huang, C.; Zhang, J.; Wu, Q.; Ni, X.; Sun, J.; Dai, J. Virulence difference of five type I dengue viruses and the intrinsic molecular mechanism. PLoS Negl. Trop. Dis. 2019, 13, e0007202. [Google Scholar] [CrossRef]
- Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol. 2011, 85, 873–882. [Google Scholar] [CrossRef] [Green Version]
- Alves, C.R.; Souza, R.S.; Charret, K.D.S.; Cortes, L.M.C.; Sa-Silva, M.P.; Barral-Veloso, L.; Oliveira, L.F.G.; da Silva, F.S. Understanding serine proteases implications on Leishmania spp lifecycle. Exp. Parasitol. 2018, 184, 67–81. [Google Scholar] [CrossRef]
- Silva-Almeida, M.; Souza-Silva, F.; Pereira, B.A.; Ribeiro-Guimaraes, M.L.; Alves, C.R. Overview of the organization of protease genes in the genome of Leishmania spp. Parasites Vectors 2014, 7, 387. [Google Scholar] [CrossRef] [Green Version]
- Krem, M.M.; Di Cera, E. Molecular markers of serine protease evolution. EMBO J. 2001, 20, 3036–3045. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Culp, J.S.; DiLella, A.G.; Hellmig, B.; Hoog, S.S.; Janson, C.A.; Smith, W.W.; Abdel-Meguid, S.S. Unique fold and active site in cytomegalovirus protease. Nature 1996, 383, 275–279. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, C.; Huang, M. A general strategy to inhibit serine protease by targeting its autolysis loop. FASEB J. 2021, 35, e21259. [Google Scholar] [CrossRef]
- Ivens, A.C.; Peacock, C.S.; Worthey, E.A.; Murphy, L.; Aggarwal, G.; Berriman, M.; Sisk, E.; Rajandream, M.A.; Adlem, E.; Aert, R.; et al. The genome of the kinetoplastid parasite, Leishmania major. Science 2005, 309, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Swenerton, R.K.; Knudsen, G.M.; Sajid, M.; Kelly, B.L.; McKerrow, J.H. Leishmania subtilisin is a maturase for the trypanothione reductase system and contributes to disease pathology. J. Biol. Chem. 2010, 285, 31120–31129. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Xu, C.; Luo, R.; Peng, K.; Ramkumar, N.; Xie, S.; Lu, X.; Zhao, L.; Zuo, C.J.; Kohan, D.E.; et al. Site-1 protease-derived soluble (pro)renin receptor targets vasopressin receptor 2 to enhance urine concentrating capability. JCI Insight 2019, 4, e124174. [Google Scholar] [CrossRef]
- Blanchet, M.; Sureau, C.; Guevin, C.; Seidah, N.G.; Labonte, P. SKI-1/S1P inhibitor PF-429242 impairs the onset of HCV infection. Antiviral Res. 2015, 115, 94–104. [Google Scholar] [CrossRef]
- Urata, S.; Yun, N.; Pasquato, A.; Paessler, S.; Kunz, S.; de la Torre, J.C. Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J. Virol. 2011, 85, 795–803. [Google Scholar] [CrossRef] [Green Version]
- Wen, A.M.; Le, N.; Zhou, X.; Steinmetz, N.F.; Popkin, D.L. Tropism of CPMV to Professional Antigen Presenting Cells Enables a Platform to Eliminate Chronic Infections. ACS Biomater. Sci. Eng. 2015, 1, 1050–1054. [Google Scholar] [CrossRef] [Green Version]
- Urata, S.; Weyer, J.; Storm, N.; Miyazaki, Y.; van Vuren, P.J.; Paweska, J.T.; Yasuda, J. Analysis of Assembly and Budding of Lujo Virus. J. Virol. 2015, 90, 3257–3261. [Google Scholar] [CrossRef] [Green Version]
- Hyrina, A.; Meng, F.; McArthur, S.J.; Eivemark, S.; Nabi, I.R.; Jean, F. Human Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) regulates cytoplasmic lipid droplet abundance: A potential target for indirect-acting anti-dengue virus agents. PLoS ONE 2017, 12, e0174483. [Google Scholar] [CrossRef]
- Machado, P.A.; Gomes, P.S.; Midlej, V.; Coimbra, E.S.; de Matos Guedes, H.L. PF-429242, a Subtilisin Inhibitor, Is Effective in vitro Against Leishmania infantum. Front Microbiol. 2021, 12, 583834. [Google Scholar] [CrossRef]
- Carlsen, E.D.; Hay, C.; Henard, C.A.; Popov, V.; Garg, N.J.; Soong, L. Leishmania amazonensis amastigotes trigger neutrophil activation but resist neutrophil microbicidal mechanisms. Infect. Immun. 2013, 81, 3966–3974. [Google Scholar] [CrossRef] [Green Version]
- Ennes-Vidal, V.; Vitorio, B.D.S.; Menna-Barreto, R.F.S.; Pitaluga, A.N.; Goncalves-da-Silva, S.A.; Branquinha, M.H.; Santos, A.L.S.; d’Avila-Levy, C.M. Calpains of Leishmania braziliensis: Genome analysis, differential expression, and functional analysis. Mem. Inst. Oswaldo Cruz 2019, 114, e190147. [Google Scholar] [CrossRef]
- Graham, L.; Orenstein, J.M. Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nat. Protoc. 2007, 2, 2439–2450. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2017, 45, D158–D169. [Google Scholar] [CrossRef] [Green Version]
- Tschoeke, D.A.; Nunes, G.L.; Jardim, R.; Lima, J.; Dumaresq, A.S.; Gomes, M.R.; de Mattos Pereira, L.; Loureiro, D.R.; Stoco, P.H.; de Matos Guedes, H.L.; et al. The Comparative Genomics and Phylogenomics of Leishmania amazonensis Parasite. Evol. Bioinform. Online 2014, 10, 131–153. [Google Scholar] [CrossRef]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef]
- Raman, S.; Vernon, R.; Thompson, J.; Tyka, M.; Sadreyev, R.; Pei, J.; Kim, D.; Kellogg, E.; DiMaio, F.; Lange, O.; et al. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 2009, 77, 89–99. [Google Scholar] [CrossRef] [Green Version]
- Volkamer, A.; Kuhn, D.; Rippmann, F.; Rarey, M. DoGSiteScorer: A web server for automatic binding site prediction, analysis and druggability assessment. Bioinformatics 2012, 28, 2074–2075. [Google Scholar] [CrossRef] [Green Version]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Layoun, A.; Samba, M.; Santos, M.M. Isolation of murine peritoneal macrophages to carry out gene expression analysis upon Toll-like receptors stimulation. J. Vis. Exp. 2015, 2015, 52749. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, J.L.; Robbins, M.D.; Warren, L.C.; Xia, D.; Petras, S.F.; Valentine, J.J.; Varghese, A.H.; Wang, I.K.; Subashi, T.A.; Shelly, L.D.; et al. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J. Pharmacol. Exp. Ther. 2008, 326, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Caffrey, C.R.; Goupil, L.; Rebello, K.M.; Dalton, J.P.; Smith, D. Cysteine proteases as digestive enzymes in parasitic helminths. PLoS Negl. Trop. Dis. 2018, 12, e0005840. [Google Scholar] [CrossRef] [Green Version]
- Mandujano-Gonzalez, V.; Villa-Tanaca, L.; Anducho-Reyes, M.A.; Mercado-Flores, Y. Secreted fungal aspartic proteases: A review. Rev. Iberoam. Micol. 2016, 33, 76–82. [Google Scholar] [CrossRef]
- Kryza, T.; Silva, M.L.; Loessner, D.; Heuze-Vourc’h, N.; Clements, J.A. The kallikrein-related peptidase family: Dysregulation and functions during cancer progression. Biochimie 2016, 122, 283–299. [Google Scholar] [CrossRef]
- de Magalhaes, M.T.Q.; Mambelli, F.S.; Santos, B.P.O.; Morais, S.B.; Oliveira, S.C. Serine protease inhibitors containing a Kunitz domain: Their role in modulation of host inflammatory responses and parasite survival. Microbes Infect. 2018, 20, 606–609. [Google Scholar] [CrossRef]
- Withers-Martinez, C.; Suarez, C.; Fulle, S.; Kher, S.; Penzo, M.; Ebejer, J.P.; Koussis, K.; Hackett, F.; Jirgensons, A.; Finn, P.; et al. Plasmodium subtilisin-like protease 1 (SUB1): Insights into the active-site structure, specificity and function of a pan-malaria drug target. Int. J. Parasitol. 2012, 42, 597–612. [Google Scholar] [CrossRef] [Green Version]
- Tarr, S.J.; Withers-Martinez, C.; Flynn, H.R.; Snijders, A.P.; Masino, L.; Koussis, K.; Conway, D.J.; Blackman, M.J. A malaria parasite subtilisin propeptide-like protein is a potent inhibitor of the egress protease SUB1. Biochem. J. 2020, 477, 525–540. [Google Scholar] [CrossRef] [Green Version]
- Yeoh, S.; O’Donnell, R.A.; Koussis, K.; Dluzewski, A.R.; Ansell, K.H.; Osborne, S.A.; Hackett, F.; Withers-Martinez, C.; Mitchell, G.H.; Bannister, L.H.; et al. Subcellular discharge of a serine protease mediates release of invasive malaria parasites from host erythrocytes. Cell 2007, 131, 1072–1083. [Google Scholar] [CrossRef] [Green Version]
- Saouros, S.; Dou, Z.; Henry, M.; Marchant, J.; Carruthers, V.B.; Matthews, S. Microneme protein 5 regulates the activity of Toxoplasma subtilisin 1 by mimicking a subtilisin prodomain. J. Biol. Chem. 2012, 287, 36029–36040. [Google Scholar] [CrossRef] [Green Version]
- Silva-Lopez, R.E.; Morgado-Diaz, J.A.; Chavez, M.A.; Giovanni-De-Simone, S. Effects of serine protease inhibitors on viability and morphology of Leishmania (Leishmania) amazonensis promastigotes. Parasitol. Res. 2007, 101, 1627–1635. [Google Scholar] [CrossRef]
- Alves, C.R.; Corte-Real, S.; Bourguignon, S.C.; Chaves, C.S.; Saraiva, E.M. Leishmania amazonensis: Early proteinase activities during promastigote-amastigote differentiation in vitro. Exp. Parasitol. 2005, 109, 38–48. [Google Scholar] [CrossRef]
- Tran, K.D.; Rodriguez-Contreras, D.; Vieira, D.P.; Yates, P.A.; David, L.; Beatty, W.; Elferich, J.; Landfear, S.M. KHARON1 mediates flagellar targeting of a glucose transporter in Leishmania mexicana and is critical for viability of infectious intracellular amastigotes. J. Biol. Chem. 2013, 288, 22721–22733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgado-Diaz, J.A.; Silva-Lopez, R.E.; Alves, C.R.; Soares, M.J.; Corte-Real, S.; De Simone, S.G. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania) amazonensis promastigotes. Mem. Inst. Oswaldo Cruz. 2005, 100, 377–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Lopez, R.E.; Morgado-Diaz, J.A.; Alves, C.R.; Corte-Real, S.; Giovanni-De-Simone, S. Subcellular localization of an extracellular serine protease in Leishmania (Leishmania) amazonensis. Parasitol. Res. 2004, 93, 328–331. [Google Scholar] [CrossRef]
- Real, F.; Mortara, R.A. The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging. PLoS Negl. Trop. Dis. 2012, 6, e1518. [Google Scholar] [CrossRef] [Green Version]
- Yang, N.J.; Hinner, M.J. Getting across the cell membrane: An overview for small molecules, peptides, and proteins. Methods Mol. Biol. 2015, 1266, 29–53. [Google Scholar] [CrossRef] [Green Version]
- Henard, C.A.; Carlsen, E.D.; Hay, C.; Kima, P.E.; Soong, L. Leishmania amazonensis amastigotes highly express a tryparedoxin peroxidase isoform that increases parasite resistance to macrophage antimicrobial defenses and fosters parasite virulence. PLoS Negl. Trop. Dis. 2014, 8, e3000. [Google Scholar] [CrossRef]
Specie | Catalytic Site | Number of Residues | Volume (Å3) | Surface (Å2) | Drugscore |
---|---|---|---|---|---|
Human | Asp5, His36, Ser201 | 31 | 513.34 | 562.95 | 0.78 |
L.amazonensis | Asp10, His43, Ser308 | 24 | 486.93 | 644.39 | 0.82 |
L.major | Asp10, His43, Ser308 | 10 | 134.27 | 188.72 | 0.18 |
Cytotoxicity against Peritoneal Macrophages—CC50 (µM) | Antileishmanial Activity against | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L. amazonensis | ||||||||||||||||||
Promastigotes | Intracellular Amastigotes | Amastigote-like | ||||||||||||||||
IC50 (µM) | SI | IC50 (µM) | SI | IC50 (µM) | ||||||||||||||
LTB0016 | PH8 | JOSEFA | LV78 | LTB0016 | PH8 | JOSEFA | LV78 | LTB0016 | PH8 | JOSEFA | LV78 | LTB0016 | PH8 | JOSEFA | LV78 | LV78 | ||
PF-429242 | 170.30 ± 6.41 | 3.07 ± 0.20 | 0.83 ± 0.12 | 2.02 ± 0.27 | 5.83 ± 1.2 | 55.47 | 205.18 | 84.31 | 29.15 | >100 | >100 | >100 | - | - | - | - | - | 94.12 ± 2.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes, P.S.; Carneiro, M.P.D.; Machado, P.d.A.; de Andrade-Neto, V.V.; da Fonseca-Martins, A.M.; Goundry, A.; Pereira da Silva, J.V.M.; Gomes, D.C.O.; Lima, A.P.C.d.A.; Ennes-Vidal, V.; et al. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Curr. Issues Mol. Biol. 2022, 44, 2089-2106. https://doi.org/10.3390/cimb44050141
Gomes PS, Carneiro MPD, Machado PdA, de Andrade-Neto VV, da Fonseca-Martins AM, Goundry A, Pereira da Silva JVM, Gomes DCO, Lima APCdA, Ennes-Vidal V, et al. Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Current Issues in Molecular Biology. 2022; 44(5):2089-2106. https://doi.org/10.3390/cimb44050141
Chicago/Turabian StyleGomes, Pollyanna Stephanie, Monique Pacheco Duarte Carneiro, Patrícia de Almeida Machado, Valter Viana de Andrade-Neto, Alessandra Marcia da Fonseca-Martins, Amy Goundry, João Vitor Marques Pereira da Silva, Daniel Claudio Oliveira Gomes, Ana Paula Cabral de Araujo Lima, Vítor Ennes-Vidal, and et al. 2022. "Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor" Current Issues in Molecular Biology 44, no. 5: 2089-2106. https://doi.org/10.3390/cimb44050141
APA StyleGomes, P. S., Carneiro, M. P. D., Machado, P. d. A., de Andrade-Neto, V. V., da Fonseca-Martins, A. M., Goundry, A., Pereira da Silva, J. V. M., Gomes, D. C. O., Lima, A. P. C. d. A., Ennes-Vidal, V., Sodero, A. C. R., De-Simone, S. G., & de Matos Guedes, H. L. (2022). Subtilisin of Leishmania amazonensis as Potential Druggable Target: Subcellular Localization, In Vitro Leishmanicidal Activity and Molecular Docking of PF-429242, a Subtilisin Inhibitor. Current Issues in Molecular Biology, 44(5), 2089-2106. https://doi.org/10.3390/cimb44050141