New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis
Abstract
:1. Introduction
2. Hypothesis
3. Methods
- Step 1:
- Identifying of targets (AD, AR, and AA) from DisGeNET and OMIM.
- Step 2:
- Identifying of overlapping targets (AD, AR, and AA) via a Venn diagram.
- Step 3:
- The overlapping targets were screened on the top 30% by degree centrality (DC), and the PPI network was constructed on RPackage software.
- Step 4:
- After constructing the PPI network of the top 30% DC, the core targets were identified, and the PPI network of the top 30% by betweenness centrality (BC) in the top 30% DC were constructed on RPackage software.
- Step 5:
- Suggesting that targets with the highest DC in the top 30% BC targets were considered as the promising targets against AM.
- Step 6:
- The retrieval of ligands from Selleckchem.com (https://www.selleckchem.com/) (accessed on 24 April 2022).
- Step 7:
- The first screening of ligands based on TPSA <140Å2 or Lipinski’s rule.
- Step 8:
- The second screening of Step 7 ligands according to the docking score (<−6.0 kcal/mol) or the lowest binding energy (the highest negative value) of each target.
- Step 9:
- The identified ligands were converted to .sdf format from PubChem into .pdb format utilizing Pymol, and the ligands were converted into .pdbqt format via AutoDock. Then, the PDB ID of targets were obtained via RCSB PDB (https://www.rcsb.org/) (accessed on 7 December 2021). The AutoDockTools-1.5.6 software was utilized to evaluate the affinity of the promising targets and ligands. The ligands were docked with targets using autodock4 by arranging 4 energy ranges and 8 exhaustiveness as default to identify 10 different poses of ligands [15].
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | Atopic Dermatitis |
AM | Atopic March |
AR | Allergic Rhinitis |
AS | Asthma |
BC | Betweenness Centrality |
DC | Degree Centrality |
MDT | Molecular Docking Test |
IgE | Immunoglobulin E |
PPI | Protein-Protein Interaction |
References
- Ha, J.; Lee, S.W.; Yon, D.K. Ten-year trends and prevalence of asthma, allergic rhinitis, and atopic dermatitis among the Korean population, 2008–2017. Clin. Exp. Pediatrics 2020, 63, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Spergel, J.M.; Paller, A.S. Atopic dermatitis and the atopic march. J. Allergy Clin. Immunol. 2003, 112, S118–S127. [Google Scholar] [CrossRef] [PubMed]
- Ivert, L.U.; Wahlgren, C.F.; Lindelöf, B.; Dal, H.; Bradley, M.; Johansson, E.K. Association between atopic dermatitis and autoimmune diseases: A population-based case-control study. Br. J. Dermatol. 2021, 185, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.M. Role of IgE in atopic dermatitis. Curr. Opin. Immunol. 1993, 5, 956–962. [Google Scholar] [CrossRef]
- Weidinger, S.; Novak, N. Atopic dermatitis. Lancet 2016, 387, 1109–1122. [Google Scholar] [CrossRef]
- Gupta, D. Atopic Dermatitis: A Common Pediatric Condition and Its Evolution in Adulthood. Med. Clin. N. Am. 2015, 99, 1269–1285. [Google Scholar] [CrossRef]
- Gupta, A.K.; Chow, M. Pimecrolimus: A review. J. Eur. Acad. Dermatol. Venereol. JEADV 2003, 17, 493–503. [Google Scholar] [CrossRef]
- Pawankar, R.; Mori, S.; Ozu, C.; Kimura, S. Overview on the pathomechanisms of allergic rhinitis. Asia Pac. Allergy 2011, 1, 157. [Google Scholar] [CrossRef] [Green Version]
- Fein, M.N.; Fischer, D.A.; O’Keefe, A.W.; Sussman, G.L. CSACI position statement: Newer generation H1-antihistamines are safer than first-generation H1-antihistamines and should be the first-line antihistamines for the treatment of allergic rhinitis and urticaria. Allergy Asthma Clin. Immunol. 2019, 15, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Dhanya, N.; Thasleem, Z.; Rai, R.; Srinivas, C. Comparative efficacy of levocetirizine, desloratidine and fexofenadine by histamine wheal suppression test. Indian J. Dermatol. Venereol. Leprol. 2008, 74, 361–363. [Google Scholar] [CrossRef]
- Spergel, J.M. From atopic dermatitis to asthma: The atopic march. Ann. Allergy Asthma Immunol. 2010, 105, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Horvath, G.; Wanner, A. Inhaled corticosteroids: Effects on the airway vasculature in bronchial asthma. Eur. Respir. J. 2006, 27, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Somolinos, F.J.; León, C.; Guerrero-Aspizua, S. Drug Repurposing Using Biological Networks. Processes 2021, 9, 1057. [Google Scholar] [CrossRef]
- Jin, J.; Chen, B.; Zhan, X.; Zhou, Z.; Liu, H.; Dong, Y. Network pharmacology and molecular docking study on the mechanism of colorectal cancer treatment using Xiao-Chai-Hu-Tang. PLoS ONE 2021, 16, e0252508. [Google Scholar] [CrossRef]
- Khanal, P.; Patil, B.M.; Chand, J.; Naaz, Y. Anthraquinone Derivatives as an Immune Booster and their Therapeutic Option Against COVID-19. Nat. Prod. Bioprospecting 2020, 10, 325. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Modeling 2011, 51, 2778–2786. [Google Scholar] [CrossRef]
- Chou, W.L.; Lee, T.H.; Huang, T.H.; Wang, P.W.; Chen, Y.P.; Chen, C.C.; Chang, Z.Y.; Fang, J.Y.; Yang, S.C. Coenzyme Q0 from antrodia cinnamomea exhibits drug- resistant bacteria eradication and keratinocyte inflammation mitigation to ameliorate infected atopic dermatitis in mouse. Front. Pharmacol. 2019, 10, 1445. [Google Scholar] [CrossRef] [Green Version]
- You, R.I.; Lee, Y.P.; Su, T.Y.; Lin, C.C.; Chen, C.S.; Chu, C.L. A Benzenoid 4,7-Dimethoxy-5-Methyl-L, 3-Benzodioxole from Antrodia cinnamomea Attenuates Dendritic Cell-Mediated Th2 Allergic Responses. Am. J. Chin. Med. 2019, 47, 1271–1287. [Google Scholar] [CrossRef]
- GP, S.A. Heterocyclic Compounds Useful for the Treatment of Inflammatory and Allergic Disorders: Process for Their Preparation and Pharmaceutical Compositions Containing Them 2011. Available online: https://patents.google.com/patent/US8129401B2/en (accessed on 14 December 2021).
- Ruhee, R.T.; Roberts, L.A.; Ma, S.; Suzuki, K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human Health. Front. Nutr. 2020, 7, 64. [Google Scholar] [CrossRef]
- Alyoussef, A. Attenuation of experimentally induced atopic dermatitis in mice by sulforaphane: Effect on inflammation and apoptosis. Toxicol. Mech. Methods 2021, 32, 1–9. [Google Scholar] [CrossRef]
- Hewlings, S.; Kalman, D.S. Evaluating the Impacts of Methylsulfonylmethane on Allergic Rhinitis After a Standard Allergen Challenge: Randomized Double-Blind Exploratory Study. JMIR Res. Protoc. 2018, 7, e11139. [Google Scholar] [CrossRef] [PubMed]
- Stohs, S.J.; Miller, M.J.S. A case study involving allergic reactions to sulfur-containing compounds including, sulfite, taurine, acesulfame potassium and sulfonamides. Food Chem. Toxicol. 2014, 63, 240–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wada, Y.; Cardinale, I.; Khatcherian, A.; Chu, J.; Kantor, A.B.; Gottlieb, A.B.; Tatsuta, N.; Jacobson, E.; Barsoum, J.; Krueger, J.G. Apilimod Inhibits the Production of IL-12 and IL-23 and Reduces Dendritic Cell Infiltration in Psoriasis. PLoS ONE 2012, 7, e35069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mucke, H.A.M. Drug Repurposing Patent Applications April–June 2018. ASSAY Drug Dev. Technol. 2018, 16, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Ito, K.; Miyata, H.; Akira, S.; Kawai, T. Deletion of PIK fyve alters alveolar macrophage populations and exacerbates allergic inflammation in mice. EMBO J. 2017, 36, 1707–1718. [Google Scholar] [CrossRef] [PubMed]
- Korkina, L.; Kostyuk, V.; De Luca, C.; Pastore, S. Plant phenylpropanoids as emerging anti-inflammatory agents. Mini Rev. Med. Chem. 2011, 11, 823–835. [Google Scholar] [CrossRef]
- Jiang, H.; Cui, H.; Wang, T.; Shimada, S.G.; Sun, R.; Tan, Z.; Ma, C.; LaMotte, R.H. CCL2/CCR2 signaling elicits itch- and pain-like behavior in a murine model of allergic contact dermatitis. Brain Behav. Immun. 2019, 80, 464–473. [Google Scholar] [CrossRef]
- Gschwandtner, M.; Derler, R.; Midwood, K.S. More Than Just Attractive: How CCL2 Influences Myeloid Cell Behavior Beyond Chemotaxis. Front. Immunol. 2019, 10, 2759. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, N. MicroRNAs in atopic dermatitis: A review. J. Transl. Genet. Genom. 2017, 1, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Clausen, M.L.; Kezic, S.; Olesen, C.M.; Agner, T. Cytokine concentration across the stratum corneum in atopic dermatitis and healthy controls. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Kang, B.; Park, J.-H.; Lee, H.-M. Histamine Induced Production of Chemokine CXCL8 Through H1R/PLC and NF-κB Signaling Pathways in Nasal Fibroblasts. J. Rhinol. 2020, 27, 95–101. [Google Scholar] [CrossRef]
- Pelaia, C.; Paoletti, G.; Puggioni, F.; Racca, F.; Pelaia, G.; Canonica, G.W.; Heffler, E. Interleukin-5 in the Pathophysiology of Severe Asthma. Front. Physiol. 2019, 10, 1514. [Google Scholar] [CrossRef] [PubMed]
- Gallegos-Alcalá, P.; Jiménez, M.; Cervantes-García, D.; Salinas, E. The keratinocyte as a crucial cell in the predisposition, onset, progression, therapy and study of the atopic dermatitis. Int. J. Mol. Sci. 2021, 22, 10661. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, G.; Drago, A.; Esposito Pellitteri, M.; Candore, G.; Colombo, A.; Gervasi, F.; Pacor, M.L.; Purello D’Ambrosio, F.; Caruso, C. Measurement of inflammatory mediators of mast cells and eosinophils in native nasal lavage fluid in nasal polyposis. Int. Arch. Allergy Immunol. 2001, 125, 164–175. [Google Scholar] [CrossRef]
- Cengizlier, R.; Demirpolat, E.; Tülek, N.; Çakmak, F. Circulating ICAM-1 levels in bronchial asthma and the effect of inhaled corticosteroids. Ann. Allergy Asthma Immunol. Off. Publ. Am. Coll. Allergy Asthma Immunol. 2000, 84, 539–541. [Google Scholar] [CrossRef]
- Neis, M.M.; Peters, B.; Dreuw, A.; Wenzel, J.; Bieber, T.; Mauch, C.; Krieg, T.; Stanzel, S.; Heinrich, P.C.; Merk, H.F.; et al. Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J. Allergy Clin. Immunol. 2006, 118, 930–937. [Google Scholar] [CrossRef]
- Degirmenci, P.B.; Aksun, S.; Altin, Z.; Bilgir, F.; Arslan, I.B.; Colak, H.; Olak, B.; Ural, D.; Solakoglu Kahraman, G.; Diniz, B.; et al. Allergic Rhinitis and Its Relationship with IL-10, IL-17, TGF-β, IFN-γ, IL 22, and IL-35. Dis. Markers 2018, 6, 2018. [Google Scholar] [CrossRef] [Green Version]
- Coomes, S.M.; Kannan, Y.; Pelly, V.S.; Entwistle, L.J.; Guidi, R.; Perez-Lloret, J.; Nikolov, N.; Müller, W.; Wilson, M.S. CD4+ Th2 cells are directly regulated by IL-10 during allergic airway inflammation. Mucosal Immunol. 2017, 10, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, M.A.; Fluhr, J.W.; Ruwwe-Glösenkamp, C.; Stevanovic, K.; Bergmann, K.C.; Zuberbier, T. Role of IL-17 in atopy—A systematic review. Clin. Transl. Allergy 2021, 11, e12047. [Google Scholar] [CrossRef]
- Albano, G.D.; Di Sano, C.; Bonanno, A.; Riccobono, L.; Gagliardo, R.; Chanez, P.; Gjomarkaj, M.; Montalbanoet, A.M.; Anzalone, G.; La Grutta, S. Th17 Immunity in Children with Allergic Asthma and Rhinitis: A Pharmacological Approach. PLoS ONE 2013, 8, e58892. [Google Scholar] [CrossRef] [Green Version]
- Bernard, M.; Carrasco, C.; Laoubi, L.; Guiraud, B.; Rozières, A.; Goujon, C.; Duplan, H.; Bessou-Touya, S.; Nicolas, G.F.; Vocanson, M. IL-1β induces thymic stromal lymphopoietin and an atopic dermatitis-like phenotype in reconstructed healthy human epidermis. J. Pathol. 2017, 242, 234–245. [Google Scholar] [CrossRef] [PubMed]
- Han, M.W.; Kim, S.H.; Oh, I.; Kim, Y.H.; Lee, J. Serum IL-1β can be a biomarker in children with severe persistent allergic rhinitis. Allergy Asthma Clin. Immunol. Off. J. Can. Soc. Allergy Clin. Immunol. 2019, 15, 58. [Google Scholar] [CrossRef] [PubMed]
- Padrón-Morales, J.; García-Solaesa, V.; Isidoro-García, M.; Hernández-Hernández, L.; García-Sánchez, A.; Hincapié-López, G.; Lorente-Toledano, F.; Dávila, I.; Sanz, C. Implications of cytokine genes in allergic asthma. Allergol. Et Immunopathol. 2014, 42, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Landriscina, A.B.; Rosen, J.B.; Albanese, J.; Amin, B.; Friedman, A.J. Identifying new biologic targets in atopic dermatitis (AD): A retrospective histologic analysis 2015. J. Am. Acad. Dermatol. 2015, 73, 521–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
No. | Target | Degree of Value |
---|---|---|
1 | CCL2 | 19 |
2 | CCL5 | 19 |
3 | CSF2 | 19 |
4 | CTLA4 | 19 |
5 | CXCL8 | 19 |
6 | FOXP3 | 19 |
7 | ICAM1 | 19 |
8 | IFNA1 | 19 |
9 | IFNG | 19 |
10 | IL10 | 19 |
11 | IL13 | 19 |
12 | IL17A | 19 |
13 | IL1B | 19 |
14 | IL2 | 19 |
15 | CCL20 | 18 |
16 | CXCL10 | 18 |
17 | CXCR4 | 18 |
18 | IL18 | 18 |
19 | CCR2 | 17 |
20 | EGFR | 15 |
No. | Compounds | Lipinski Rules | Lipinski’s Violations | Bioavailability Score | TPSA | Compound Classification | |||
---|---|---|---|---|---|---|---|---|---|
MW | HBA | HBD | MLogP | ||||||
<500 | <10 | ≤5 | ≤4.15 | ≤1 | >0.1 | <140 Å2 | |||
1 | Bindarit | 324.37 | 4 | 1 | 2.34 | 0 | 0.85 | 64.35 | Organoheterocyclic compounds |
2 | Pirfenidone | 185.22 | 1 | 0 | 2.49 | 0 | 0.55 | 22.00 | Organoheterocyclic compounds |
3 | CTLA-4 inhibitor | 427.35 | 7 | 1 | 4.61 | 1 | 0.55 | 68.50 | Organoheterocyclic compounds |
4 | AZD5069 | 476.52 | 10 | 3 | 1.93 | 0 | 0.55 | 158.56 | Organosulfur compounds |
5 | Danirixin | 441.90 | 6 | 4 | 2.81 | 0 | 0.55 | 115.91 | Benzenoids |
6 | A-205804 | 300.40 | 2 | 1 | 2.64 | 0 | 0.55 | 109.52 | Organosulfur compounds |
7 | NECA | 308.29 | 7 | 4 | −2.6 | 0 | 0.55 | 148.41 | Nucleosides, nucleotides, and analogues |
8 | Anemoside B4 | 1221.38 | 26 | 15 | −4.58 | 3 | 0.17 | 412.82 | Lipids and lipid-like molecules |
9 | AX-024 HCl | 375.86 | 4 | 0 | 3.86 | 0 | 0.55 | 21.70 | Phenylpropanoids and polyketides |
10 | Y-320 | 505.01 | 5 | 1 | 2.4 | 1 | 0.55 | 2.40 | Benzenoids |
11 | A-740003 | 474.55 | 6 | 3 | 1.29 | 0 | 0.55 | 120.66 | Benzenoids |
12 | Diacerein | 368.29 | 8 | 1 | 1.14 | 0 | 0.55 | 124.04 | Benzenoids |
13 | AUDA | 392.58 | 3 | 3 | 3.95 | 0 | 0.55 | 78.43 | Lipids and lipid-like molecules |
14 | o-Phenanthroline | 180.21 | 2 | 0 | 1.86 | 0 | 0.55 | 25.78 | Organoheterocyclic compounds |
15 | BC-1215 | 394.51 | 4 | 2 | 2.57 | 0 | 0.55 | 49.84 | Organoheterocyclic compounds |
16 | 3-Deazaadenosine hydrochloride | 302.71 | 6 | 4 | −1.78 | 0 | 0.55 | 126.65 | Nucleosides, nucleotides, and analogues |
17 | GIBH-130 | 360.41 | 5 | 0 | 1.55 | 0 | 0.55 | 75.11 | Organoheterocyclic compounds |
18 | Falcarindiol | 260.37 | 2 | 2 | 3.33 | 0 | 0.55 | 40.16 | Lipids and lipid-like molecules |
19 | Muscone | 238.41 | 1 | 0 | 3.92 | 0 | 0.55 | 17.07 | Organic oxygen compounds |
20 | T-5224 | 517.53 | 8 | 3 | 2.52 | 1 | 0.55 | 139.06 | Benzenoids |
21 | Madecassic acid | 504.70 | 6 | 5 | 3.33 | 1 | 0.55 | 118.22 | Lipids and lipid-like molecules |
22 | RN-1734 | 353.31 | 4 | 1 | 2.89 | 0 | 0.55 | 57.79 | Benzenoids |
23 | Stylopine | 323.34 | 5 | 0 | 2.56 | 0 | 0.55 | 40.16 | Alkaloids and derivatives |
24 | Andrographolide | 350.45 | 5 | 3 | 1.98 | 0 | 0.55 | 86.99 | Organoheterocyclic compounds |
25 | Dilmapimod | 456.42 | 8 | 3 | 3.69 | 0 | 0.55 | 100.27 | Organoheterocyclic compounds |
26 | Donepezil | 379.49 | 4 | 0 | 3.06 | 0 | 0.55 | 38.77 | Organoheterocyclic compounds |
27 | Etiprednol dicloacetate | 485.40 | 6 | 1 | 3.08 | 0 | 0.55 | 89.90 | Lipids and lipid-like molecules |
28 | Minocycline | 457.48 | 8 | 5 | −1.6 | 0 | 0.11 | 164.63 | Phenylpropanoids and polyketides |
29 | Talmapimod | 513.00 | 5 | 0 | 2.58 | 1 | 0.55 | 65.86 | Organoheterocyclic compounds |
30 | VX-702 | 404.32 | 7 | 2 | 3.17 | 0 | 0.55 | 102.31 | Organoheterocyclic compounds |
31 | VX-765 | 509.00 | 6 | 3 | 1.19 | 1 | 0.55 | 140.06 | Organic acids and derivatives |
32 | Apilimod | 418.49 | 6 | 1 | 1.69 | 0 | 0.55 | 84.76 | Organic nitrogen compounds |
33 | RO2959 hydrochloride | 463.93 | 6 | 1 | 2.96 | 0 | 0.55 | 99.25 | Benzenoids |
34 | SU 5201 | 290.14 | 1 | 1 | 3.82 | 0 | 0.55 | 29.10 | Organoheterocyclic compounds |
Grid Box | Hydrogen Bond Interactions | Hydrophobic Interactions | |||||
---|---|---|---|---|---|---|---|
Protein | Ligand | PubChem ID | Binding Energy(kcal/mol) | Center | Dimension | Amino Acid Residue | Amino Acid Residue |
CCL2 (PDB ID: 1DON) | Bindarit (★) | 71354 | −6.2 | x = 61.620 | x = 40 | Asn6, Ala4 | Pro2, Ile5, Ile51 |
y = 0.356 | y = 40 | Ile20, Arg24, Lys49 | |||||
z = 0.582 | z = 40 | Asp3 | |||||
Pirfenidone | 40362 | −5.5 | x = 61.620 | x = 40 | Thr16 | Asn6, Arg18, Ile20 | |
y = 0.356 | y = 40 | Arg24, Lys49, Ile51 | |||||
z = 0.582 | z = 40 | Ala4 | |||||
CTLA4 (PDB ID: 5XJ3) | CTLA-4 inhibitor (★) | 101136468 | −7.8 | x = 22.471 | x = 40 | Ser32 | His39, Tyr33, Phe53 |
y = 17.954 | y = 40 | Ile43, Gly144 | |||||
z = −35.403 | z = 40 | ||||||
CXCL8 (PDB ID: 2IL8) | Danirixin (★) | 24780598 | −7.0 | x = −0.977 | x = 40 | Asp52 | Glu70, Ser72, Lys54 |
y = −7.328 | y = 40 | Asn36, Cys34, Cys7 | |||||
z = 2.055 | z = 40 | Glu38, Cys9, Leu51 | |||||
Thr37, Thr12, Pro53 | |||||||
Asn71 | |||||||
ICAM1 (PDB ID: 5MZA) | A-205804 (★) | 9839311 | −8.0 | x = −5.082 | x = 40 | Gln998, Lys961 | Asp911, Pro997, Pro1098 |
y = −12.607 | y = 40 | Ala752, Gln755, Asp962 | |||||
z = 35.679 | z = 40 | Asp994, Tyr995, Ile996 | |||||
IL10 (PDB ID: 1LK3) | AX-024 HCl (★) | 129909862 | −7.5 | x = 17.574 | x = 40 | His41 | Ser91,Thr116,Tyr181 |
y = 49.569 | y = 40 | Leu114, Glu154, Gln39 | |||||
z = 27.605 | z = 40 | Asn93, Ala92 | |||||
IL17A (PDB ID: 2VXS) | Y-320 (★) | 22227931 | −7.7 | x = 77.528 | x = 40 | N/A | Gln93, Ser40, Glu95 |
y = −4.484 | y = 40 | Pro63, Tyr62, Pro59 | |||||
z = −51.759 | z = 40 | Ser64, Val65, Pro37 | |||||
Trp67, Thr35, Gln94 | |||||||
AX-024 HCl | 129909862 | −7.1 | x = 77.528 | x = 40 | N/A | Gln93, Ser40, Asn36 | |
y = −4.484 | y = 40 | Pro63, Val65, Trp67 | |||||
z = −51.759 | z = 40 | Ile66, Ile96, Gln94 | |||||
Glu95, Pro37 | |||||||
IL1B (PDB ID: 1HIB) | T-5224 (★) | 23626877 | −8.0 | x = 19.495 | x = 40 | Leu80, Val132, Gly136 | Thr79, Tyr24, Glu25 |
y = 2.991 | y = 40 | Thr137, Leu134 | Phe133, Trp120, Gly135 | ||||
z = 73.516 | z = 40 | Lys77 | |||||
Dilmapimod | 10297982 | −7.7 | x = 19.495 | x = 40 | Leu80,Leu26, Val132 | Glu25, Phe133, Leu134 | |
y = 2.991 | y = 40 | Thr79, Tyr24, Gln81 | |||||
z = 73.516 | z = 40 | ||||||
Stylopine | 6770 | −7.6 | x = 19.495 | x = 40 | N/A | Ser125, Pro131, Val132 | |
y = 2.991 | y = 40 | Leu80, Glu25, Phe133 | |||||
z = 73.516 | z = 40 | ||||||
Talmapimod | 9871074 | −7.4 | x = 19.495 | x = 40 | Ser125, Thr79 | Leu134, Glu25, Lys74 | |
y = 2.991 | y = 40 | Phe133, Pro131, Lys77 | |||||
z = 73.516 | z = 40 | ||||||
A-740003 | 11351968 | −7.3 | x = 19.495 | x = 40 | Gly136 | Thr137, Gly135, Asp142 | |
y = 2.991 | y = 40 | Phe133, Pro131, Lys77 | |||||
z = 73.516 | z = 40 | Thr79, Leu134, Trp120 | |||||
GIBH-130 | 50938773 | −7.3 | x = 19.495 | x = 40 | Ser43 | Asn66, Leu62, Tyr68 | |
y = 2.991 | y = 40 | Leu6, Asn7, Ser5 | |||||
z = 73.516 | z = 40 | Pro91 | |||||
VX-702 | 10341154 | −7.3 | x = 19.495 | x = 40 | Ser43, Ser5, Glu64 | Asn7, Pro91, Pro87 | |
y = 2.991 | y = 40 | Asn66 | Tyr68, Tyr90, Lys63 | ||||
z = 73.516 | z = 40 | ||||||
Madecassic acid | 73412 | −7.1 | x = 19.495 | x = 40 | Leu80, Leu134, Lys77 | Thr79, Phe133, Gly135 | |
y = 2.991 | y = 40 | Asp142, Thr137, Gly136 | |||||
z = 73.516 | z = 40 | ||||||
Diacerein | 26248 | −7.0 | x = 19.495 | x = 40 | Pro78, Thr79, Ser125 | Pro131, Phe133, Gly135 | |
y = 2.991 | y = 40 | Lys77 | |||||
z = 73.516 | z = 40 | ||||||
Donepezil | 3152 | −7.0 | x = 19.495 | x = 40 | Ser125 | Pro131, Met130, Phe133 | |
y = 2.991 | y = 40 | Thr79, Lys74, Lys77 | |||||
z = 73.516 | z = 40 | Leu134, Pro78 | |||||
Andrographolide | 5318517 | −6.8 | x = 19.495 | x = 40 | Gly136, Thr137 | Met130, Phe133, Pro131 | |
y = 2.991 | y = 40 | Trp120, Gly135, Asp142 | |||||
z = 73.516 | z = 40 | Ser125 | |||||
BC-1215 | 72201045 | −6.7 | x = 19.495 | x = 40 | Thr79 | Pro131, Phe133, Ser125 | |
y = 2.991 | y = 40 | Asp142, Gly135, Leu134 | |||||
z = 73.516 | z = 40 | Lys77 | |||||
3-Deazaadenosine hydrochloride | 134828261 | −6.4 | x = 19.495 | x = 40 | Asn66, Leu62, Glu64 | Val85, Pro87, Gly61 | |
y = 2.991 | y = 40 | Ser43, Lys63, Tyr68 | |||||
z = 73.516 | z = 40 | Ser5, Pro91, Tyr90 | |||||
Etiprednol dicloacetate | 9935073 | −6.0 | x = 19.495 | x = 40 | Thr79 | Leu80, Tyr24, Leu134 | |
y = 2.991 | y = 40 | Lys77, Phe133, Glu25 | |||||
z = 73.516 | z = 40 | ||||||
Muscone | 10947 | −5.9 | x = 19.495 | x = 40 | N/A | Pro131, Phe133, Leu134 | |
y = 2.991 | y = 40 | Pro78, Thr79, Leu80 | |||||
z = 73.516 | z = 40 | ||||||
AUDA | 10069117 | −5.7 | x = 19.495 | x = 40 | Tyr90, Ser43, Pro87 | Asn66, Leu62, Glu64 | |
y = 2.991 | y = 40 | Lys65, Lys63, Ser5 | |||||
z = 73.516 | z = 40 | Val3, Pro91, Tyr68 | |||||
o-Phenanthroline | 1318 | −5.5 | x = 19.495 | x = 40 | Ser43 | Gly61, Tyr68, Pro91 | |
y = 2.991 | y = 40 | Asn66, Leu62 | |||||
z = 73.516 | z = 40 | ||||||
Falcarindiol | 5281148 | −5.0 | x = 19.495 | x = 40 | Thr79, Glu25 | Lys77, Pro78, Phe133 | |
y = 2.991 | y = 40 | Pro131, Leu80, Leu26 | |||||
z = 73.516 | z = 40 | Leu82, Val132 | |||||
RN-1734 | 3601086 | −4.8 | x = 19.495 | x = 40 | Glu64, Ser43 | Tyr68, Leu62, Val85 | |
y = 2.991 | y = 40 | Pro87, Tyr90, Asn66 | |||||
z = 73.516 | z = 40 | Lys63 | |||||
IL2 (PDB ID: 1M47) | Apilimod (★) | 10173277 | −6.2 | x = 6.750 | x = 40 | Glu62, Lys43 | Phe42, Pro65, Tyr107 |
y = 25.891 | y = 40 | Tyr45 | |||||
z = 14.189 | z = 40 | ||||||
RO2959 hydrochloride | 45274292 | −6.1 | x = 6.750 | x = 40 | Asp20, His16 | Asp84, Leu80, Leu12 | |
y = 25.891 | y = 40 | Gln13, Lys9, Asn88 | |||||
z = 14.189 | z = 40 | ||||||
SU 5201 | 429070 | −5.9 | x = 6.750 | x = 40 | N/A | Glu62, Tyr107, Tyr45 | |
y = 25.891 | y = 40 | ||||||
z = 14.189 | z = 40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, K.-K.; Adnan, M.; Cho, D.-H. New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis. Curr. Issues Mol. Biol. 2022, 44, 2257-2274. https://doi.org/10.3390/cimb44050153
Oh K-K, Adnan M, Cho D-H. New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis. Current Issues in Molecular Biology. 2022; 44(5):2257-2274. https://doi.org/10.3390/cimb44050153
Chicago/Turabian StyleOh, Ki-Kwang, Md. Adnan, and Dong-Ha Cho. 2022. "New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis" Current Issues in Molecular Biology 44, no. 5: 2257-2274. https://doi.org/10.3390/cimb44050153
APA StyleOh, K. -K., Adnan, M., & Cho, D. -H. (2022). New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis. Current Issues in Molecular Biology, 44(5), 2257-2274. https://doi.org/10.3390/cimb44050153