Ascorbic Acid Ameliorates Cardiac and Hepatic Toxicity Induced by Azithromycin-Etoricoxib Drug Interaction
Abstract
:1. Introduction
2. Material and Method
2.1. Drugs
2.2. Animals and Experimental Design
2.3. Blood Collection
2.4. Liver Enzymes Function Biomarkers
2.5. Preparation of Hepatic Tissue Homogenates for the Determination of the Redox State
2.6. Hepatic Antioxidant Enzymes and Oxidative Stress Marker
2.7. Determination of Heart Biomarkers
2.8. Histopathological Study
2.9. Statistical Analysis
3. Results
3.1. Ascorbic Acid Alleviated Liver Injury in Male Rats Exposed to Combination of Etoricoxib and Azithromycin
3.2. Ascorbic Acid Alleviated Oxidative Stress in Male Rats Exposed to Combination of Etoricoxib and Azithromycin
3.3. Ascorbic Acid Alleviated Cardiac Injury in Male Rats Exposed to Combination of Etoricoxib and Azithromycin
3.4. Histopathological Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Coleman, J.J.; Pontefract, S.K. Adverse drug reactions. Clin. Med. 2016, 16, 481–485. [Google Scholar] [CrossRef]
- Spina, E.; Barbieri, M.A.; Cicala, G.; Leon, J. Clinically Relevant Interactions between Atypical Antipsychotics and An-ti-Infective Agents. Pharmaceuticals 2020, 13, 439. [Google Scholar] [CrossRef]
- Kim, M.; Welch, T. Update on azithromycin and cardiac side effects. Southwest Respir. Crit. Care Chron. 2014, 2, 48–51. [Google Scholar] [CrossRef]
- Baracho, N.C.D.V.; Guizelli, G.P.; Carmello, B.L.; Sanches, D.D.S.; Silva, F.M.C.; Reis, J.M.D.; Brito, J.D. Cardiovascular and hematologic effects produced by chronic treatment with etoricoxib in normotensive rats. Acta Cirúrgica Bras. 2009, 24, 206–210. [Google Scholar] [CrossRef]
- Abdulrazzaq, A.M.; Badr, M.; Gammoh, O.; Abu Khalil, A.A.; Ghanim, B.Y.; Alhussainy, T.M.; Qinna, N.A. Hepatoprotective actions of ascorbic acid, alpha lipoic acid and silymarin or their combination against acetaminophen-induced hepatotoxicity in rats. Medicina 2019, 55, 181. [Google Scholar] [CrossRef] [PubMed]
- Hamza, R.Z.; EL-Megharbel, S.M.; Altalhi, T.; Gobouri, A.A.; Alrogi, A.A. Hypolipidemic and hepatoprotective synergistic effects of selenium nanoparticles and vitamin. E against acrylamide-induced hepatic alterations in male albino mice. Appl. Organomet. Chem. 2020, 34, e5458. [Google Scholar] [CrossRef]
- Abuelzahab, H.; Hamza, R.; Montaser, M.; El-Mahdi, M.M.; Al-Harthi, W.A. Antioxidant, antiapoptotic, antigenotoxic, and hepatic ameliorative effects of L-carnitine and selenium on cadmium-induced hepatotoxicity and alterations in liver cell structure in male mice. Ecotoxicol. Environ. Saf. 2019, 173, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Grześk, G.; Nowaczyk, A. Current Modulation of Guanylate Cyclase Pathway Activity—Mechanism and Clinical Implications. Molecules 2021, 26, 3418. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, M.G.A.; Kandiel, M.M.M.; Ebied, D.D.I.A. Changes in reproductive organs, semen characteristics, and in-tra-testicular oxidative stress in adult male rats caused by azithromycin. Int. J. Pharmacol. Toxicol. 2017, 5, 72–79. [Google Scholar] [CrossRef]
- Moraes, B.M.; Amaral, B.C.D.; Morimoto, M.S.S.; Vieira, L.G.C.; Perazzo, F.F.; Carvalho, J.C.T. Anti-inflammatory and analgesic actions of etoricoxib (an NSAID) combined with misoprostol. Inflammopharmacology 2007, 15, 175–178. [Google Scholar] [CrossRef]
- Ebuehi, O.A.T.; Ogedegbe, R.A.; Ebuehi, O.M. Oral Administration of Vitamin C and Vitamin E amelioratesLead-induced Hepatotoxicity and Oxidative Stress in the Rat Brain. Niger. Q. J. Hosp. Med. 2012, 22, 85–90. [Google Scholar]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.K.J.A.B. Colorimetric assay of catalase. Anal. Biochem. 1972, 47, 389–394. [Google Scholar] [CrossRef]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Elsevier: Oxford, UK, 2013. [Google Scholar]
- Armitage, P.; Berry, G.; Matthews, J.N.S. Statistical Methods in Medical Research, 4th ed.Wiley Online Library: Hoboken, NJ, USA, 2008; pp. 760–783. [Google Scholar]
- Atli, O.; Ilgin, S.; Altuntas, H.; Burukoglu, D. Evaluation of azithromycin induced cardiotoxicity in rats. Int. J. Clin. Exp. Med. 2015, 8, 3681–3690. [Google Scholar]
- El-Shitany, N.A.; El-Desoky, K. Protective Effects of Carvedilol and Vitamin C against Azithromycin-Induced Cardiotoxicity in Rats via Decreasing ROS, IL1-β, and TNF-αProduction and Inhibiting NF-κB and Caspase-3 Expression. Oxidative Med. Cell. Longev. 2016, 2016, 1–13. [Google Scholar] [CrossRef]
- Hunt, R.H.; Harper, S.; Watson, D.J.; Yu, C.; Quan, H.; Lee, M.; Evans, J.K.; Oxenius, B. The gastrointestinal safety of the COX-2 selective inhibitor etoricoxib assessed by both endoscopy and analysis of upper gastrointestinal events. Am. J. Gastroenterol. 2003, 98, 1725–1733. [Google Scholar] [CrossRef]
- Cannon, C.P.; Curtis, S.P.; FitzGerald, G.A.; Krum, H.; Kaur, A.; Bolognese, J.A.; Reicin, A.S.; Bombardier, C.; Weinblatt, M.E.; Van Der Heijde, D.; et al. Cardiovascular outcomes with etoricoxib and diclofenac in patients with osteoarthritis and rheumatoid arthritis in the Multinational Etoricoxib and Diclofenac Arthritis Long-term (MEDAL) programme: A randomised comparison. Lancet 2006, 368, 1771–1781. [Google Scholar] [CrossRef]
- Kothapalli, D.; Fuki, I.; Ali, K.; Stewart, S.A.; Zhao, L.; Yahil, R.; Kwiatkowski, D.; Hawthorne, E.A.; FitzGerald, G.A.; Phillips, M.C.; et al. Antimitogenic effects of HDL and APOE mediated by Cox-2-dependent IP activation. J. Clin. Investig. 2004, 113, 609–618. [Google Scholar] [CrossRef]
- Maisch, N.M.; Kochupurackal, J.G.; Sin, J. Azithromycin and the Risk of Cardiovascular Complications. J. Pharm. Pr. 2013, 27, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Lenz, K.D.; Klosterman, K.E.; Mukundan, H.; Kubicek-Sutherland, J.Z. Macrolides: From toxins to therapeutics. Toxins 2021, 13, 347. [Google Scholar] [CrossRef] [PubMed]
- Mansour, B.S.; Salem, N.A.; Kader, G.A.; Abdel-Alrahman, G.; Mahmoud, O.M. Protective effect of Rosuvastatin on Azithromycin induced cardiotoxicity in a rat model. Life Sci. 2021, 269, 119099. [Google Scholar] [CrossRef]
- Yogeeta, S.K.; Gnanapragasam, A.; Kumar, S.S.; Subhashini, R.; Sathivel, A.; Devaki, T. Synergistic interactions of Ferulic acid with Ascorbic acid: Its cardioprotective role during isoproterenol induced myocardial infarction in rats. Mol. Cell. Biochem. 2006, 283, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Swamy, A.V.; Wangikar, U.; Koti, B.C.; Thippeswamy, A.H.M.; Ronad, P.M.; Manjula, D.V. Cardioprotective effect of ascorbic acid on doxorubicin-induced myocardial toxicity in rats. Indian J. Pharmacol. 2011, 43, 507. [Google Scholar] [CrossRef] [PubMed]
- Omara, F.; Aziz, S.A.; El-Sheikh, S.M.; Said, M.A.A. Ascorbic acid attenuated the hepatic parenchymal necrosis induced by azithromycin-etoricoxib interaction in rats. J. Anim. Health Prod. 2021, 9, 42–48. [Google Scholar] [CrossRef]
- Hamza, R.Z.; Sheshah, Z.A.; Suleman, R.H.; Al-Juaid, N.F.; Hamed, N.A.; Al-Juaid, M.A. Efficacy of some antibiotics and some metal complexes (Nano-formula) that could increase their effectiveness during COVID-19. Int. J. Biol. Pharm. Sci. Arch. 2022, 3, 008–014. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Al-Thubaiti, E.H.; Qahl, S.H.; Al-Eisa, R.A.; Hamza, R.Z. Synthesis and Spectroscopic Characterization of Dapagliflozin/Zn (II), Cr (III) and Se (IV) Novel Complexes That Ameliorate Hepatic Damage, Hyperglycemia and Oxidative Injury Induced by Streptozotocin-Induced Diabetic Male Rats and Their Antibacterial Activity. Crystals 2022, 12, 304. [Google Scholar] [CrossRef]
- Hamza, R.Z.; Al-Eisa, R.A.; El-Shenawy, N.S. Possible Ameliorative Effects of the Royal Jelly on Hepatotoxicity and Oxidative Stress Induced by Molybdenum Nanoparticles and/or Cadmium Chloride in Male Rats. Biology 2022, 11, 450. [Google Scholar] [CrossRef]
- El-Megharbel, S.M.; Al-Baqami, N.M.; Al-Thubaiti, E.H.; Qahl, S.H.; Albogami, B.; Hamza, R.Z. Antidiabetic Drug Sitagliptin with Divalent Transition Metals Manganese and Cobalt: Synthesis, Structure, Characterization Antibacterial and Antioxidative Effects in Liver Tissues. Curr. Issues Mol. Biol. 2022, 44, 1810–1827. [Google Scholar] [CrossRef]
- Sabiu, S.; Sunmonu, T.O.; Ajani, E.O.; Ajiboye, T.O. Combined administration of silymarin and vitamin C stalls acetaminophenmediated hepatic oxidative insults in Wistar rats. Rev. Bras. Farm. 2015, 25, 29–34. [Google Scholar] [CrossRef]
- Yin, X.; Chen, K.; Cheng, H.; Chen, X.; Feng, S.; Song, Y.; Liang, L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants 2022, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Qinna, N.A.; Ghanim, B.Y. Chemical induction of hepatic apoptosis in rodents. J. Appl. Toxicol. 2018, 39, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Zoheir, K.; Amara, A.A.; Ahmad, S.F.; Mohammad, M.A.; Ashour, A.; Harisa, G.I.; Abd-Allah, A.R. Study of the therapeutic effects of Lactobacillus and α-lipoic acid against dimethylnitrosamine-induced liver fibrosis in rats. J. Genet. Eng. Biotechnol. 2014, 12, 135–142. [Google Scholar] [CrossRef]
Experimental Animals | Dose |
---|---|
I. Control group | Were given 1 mL distilled water. |
II. Treated with azithromycin | Azithromycin (45 mg/kg) [9] for 30 consecutive days. |
III. Treated with etoricoxib | Etoricoxib (1 mg/kg) [10] for 30 consecutive days. |
IV. Treated with ascorbic acid | Ascorbic acid (40 mg/kg) (i.p) injected for 30 consecutive days [11]. |
V. Treated with etoricoxib and azithromycin | Etoricoxib and azithromycin were orally administered every day for 30 consecutive days. |
VI. Treated with etoricoxib, azithromycin, and ascorbic acid | Etoricoxib, azithromycin combined with ascorbic acid (i.p) were given for 30 consecutive days. |
ALT (U/L) | AST (U/L) | |||||
---|---|---|---|---|---|---|
1st Day | 14th Day | 30th Day | 1st Day | 14th Day | 30th Day | |
Control Azithromycin (AZO) | 13.02 ± 0.87 d | 14.02 ± 1.02 d | 13.02 ± 1.02 e | 14.36 ± 1.69 d | 13.69 ± 2.02 f | 14.01 ± 1.69 ef |
3.02 ± 1.87 d | 63.02 ± 2.87 c** | 141.02 ± 5.87 b*** | 23.02 ± 0.87 b** | 53.02 ± 0.87 b** | 83.02 ± 0.87 c** | |
Etoricoxib (ETO) | 34.25 ± 2.36 a** | 88.65 ± 2.65 b** | 120.36 ± 2.65 c*** | 20.36 ± 1.69 c | 44.36 ± 1.69 c** | 87.65 ± 2.05 bc** |
Ascorbic acid (AS) | 13.25 ± 1.25 d | 12.69 ± 1.39 d | 12.58 ± 1.63 e | 15.99 ± 1.85 d | 14.25 ± 1.36 ef | 12.69 ± 1.69 f |
AZO + ETO | 28.36 ± 3.21 b* | 98.69 ± 2.01 ab** | 189.25 ± 1.69 a*** | 29.67 ± 2.69 a* | 78.25 ± 2.01 a*** | 110.98 ± 2.69 a*** |
AZO + ETO + AS | 21.36 ± 1.25 c* | 67.36 ± 2.01 c** | 47.02 ± 2.36 d** | 21.36 ± 2.03 c* | 35.35 ± 1.47 d** | 69.15 ± 1.69 d** |
Groups | LDH (U/L) | ||
---|---|---|---|
1st Day | 14th Day | 30th Day | |
Control | 225.95 ± 2.69 d | 234.02 ± 4.25 c | 230.58 ± 2.98 de |
Azithromycin (AZO) | 478.69 ± 3.69 b** | 499.55 ± 4.02 b | 680.69 ± 7.58 c*** |
Etoricoxib (ETO) | 455.36 ± 5.25 b*** | 469.82 ± 3.25 b | 785.22 ± 2.99 b*** |
Ascorbic acid (AS) | 157.69 ± 2.02 e* | 148.52 ± 3.69 d** | 145.25 ± 3.25 f** |
AZO + ETO | 620.36 ± 3.65 a*** | 785.29 ± 5.69 a*** | 920.39 ± 5.41 a*** |
AZO + ETO + AS | 245.69 ± 4.25 cd* | 241.39 ± 2.69 c* | 220.39 ± 4.25 e* |
Parameters | Control | AZO | ETO | AS | AZO + ETO | AZO + ETO + AS |
---|---|---|---|---|---|---|
CAT (U/g) | 11.02 ± 0.26 a | 2.42 ± 0.16 c*** | 1.57 ± 0.76 c*** | 11.98 ± 2.25 | 1.98 ± 0.87 *** | 8.52 ± 1.69 ** |
SOD (U/g) | 16.20 ± 0.26 a | 10.07 ± 0.45 c*** | 8.17 ± 1.45 c*** | 17.02 ± 2.25 | 7.05 ± 1.58 *** | 13.82 ± 0.34 a** |
GSH (U/g) | 15.78 ± 2.38 b | 8.10 ± 0.88 c** | 6.80 ± 1.88 c** | 16.25 ± 1.58 | 5.25 ± 0.58 ** | 12.12 ± 0.33 ab** |
MDA (µg/mg) | 3.01 ± 0.15 cd | 14.01 ± 1.30 a*** | 15.41 ± 1.80 a | 2.01 ± 0.58 | 30.25 ± 2.02 *** | 7.05 ± 0.68 d** |
Groups | CK-MB (U/L) | ||
---|---|---|---|
1st Day | 14th Day | 30th Day | |
Control | 71.02 ± 6.25 e | 123.66 ± 7.18 e | 151.02 ± 5.65 e |
Azithromycin | 73.83 ± 6.49 de | 171.5 ± 6.29 d** | 471 ± 6.14 b*** |
Etoricoxib | 160.66 ± 5.4 a*** | 277.66 ± 9.55 bc*** | 412 ± 5.85 c*** |
Ascorbic acid | 70.02 ± 4.58 e | 123.66 ± 7.18 e | 157.33 ± 5.64 e |
Azithromycin + Etoricoxib | 106.66 ± 3.004 b*** | 311.66 ± 6.78 a*** | 575 ± 9.15 a*** |
Azithromycin + Etoricoxib + Ascorbic acid | 88.66 ± 5.36 cd | 230.66 ± 1.74 c | 223 ± 11.02 d |
Groups | Troponin (U/L) | ||
---|---|---|---|
1st Day | 14th Day | 30th Day | |
Control | 0.05 ± 0.03 e | 0.15 ± 0.03 e | 0.25 ± 0.03 e |
Azithromycin | 5.01 ± 0.58 b | 7.01 ± 0.58 b* | 9.01 ± 0.58 b |
Etoricoxib | 4.98 ± 0.57 c** | 8.98 ± 0.57 c** | 10.98 ± 0.57 c** |
Ascorbic acid | 0.04 ± 0.003 e | 0.14 ± 0.003 e | 0.30 ± 0.003 e |
Azithromycin + Etoricoxib | 7.04 ± 1.3 ab** | 9.04 ± 1.3 ab** | 14.04 ± 1.3 ab** |
Azithromycin + Etoricoxib + Ascorbic acid | 2.16 ± 0.82 d | 3.16 ± 0.82 d | 4.16 ± 0.82 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, R.Z.; Alaryani, F.S.; Omara, F.; Said, M.A.A.; El-Aziz, S.A.A.; El-Sheikh, S.M. Ascorbic Acid Ameliorates Cardiac and Hepatic Toxicity Induced by Azithromycin-Etoricoxib Drug Interaction. Curr. Issues Mol. Biol. 2022, 44, 2529-2541. https://doi.org/10.3390/cimb44060172
Hamza RZ, Alaryani FS, Omara F, Said MAA, El-Aziz SAA, El-Sheikh SM. Ascorbic Acid Ameliorates Cardiac and Hepatic Toxicity Induced by Azithromycin-Etoricoxib Drug Interaction. Current Issues in Molecular Biology. 2022; 44(6):2529-2541. https://doi.org/10.3390/cimb44060172
Chicago/Turabian StyleHamza, Reham Z., Fatima S. Alaryani, Fatma Omara, Mahmoud A. A. Said, Sayed A. Abd El-Aziz, and Sawsan M. El-Sheikh. 2022. "Ascorbic Acid Ameliorates Cardiac and Hepatic Toxicity Induced by Azithromycin-Etoricoxib Drug Interaction" Current Issues in Molecular Biology 44, no. 6: 2529-2541. https://doi.org/10.3390/cimb44060172
APA StyleHamza, R. Z., Alaryani, F. S., Omara, F., Said, M. A. A., El-Aziz, S. A. A., & El-Sheikh, S. M. (2022). Ascorbic Acid Ameliorates Cardiac and Hepatic Toxicity Induced by Azithromycin-Etoricoxib Drug Interaction. Current Issues in Molecular Biology, 44(6), 2529-2541. https://doi.org/10.3390/cimb44060172