Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Drugs
2.3. Experimental Protocol and Sampling
2.4. Enzyme-Linked Immunosorbent Assay
2.5. Isolation of Lamina Propria Lymphocytes
2.6. Flow-Cytometry Assays
2.7. Epithelial-Cell Isolation
2.8. RT-qPCR Assays
2.9. Statistical Analysis
3. Results
3.1. Total IgA and SIgA Antibody Responses
3.2. Percentages of IgA+ B Lymphocytes and IgA+ Plasma Cells
3.3. mRNA Expression of α chain and pIgR
3.4. Relative Expression of Interleukins and TGF-β in Lamina Propria Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habib, A.M.; Richards, P.; Cairns, L.S.; Rogers, G.J.; Bannon, C.A.M.; Parker, H.E.; Morley, T.C.E.; Yeo, G.S.H.; Reimann, F.; Gribble, F.M. Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 2012, 153, 3054–3065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Wielen, N.; Van Avesaat, M.; De Wit, N.J.W.; Vogels, J.T.W.E.; Troost, F.; Masclee, A.; Koopmans, S.J.; Van Der Meulen, J.; Boekschoten, M.V.; Muller, M.; et al. Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine. PLoS ONE 2014, 9, e107531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wank, S.A. Cholecystokinin receptors. Am. J. Physiol. 1995, 269, G628–G646. [Google Scholar] [CrossRef] [PubMed]
- Duca, F.A.; Waise, T.M.Z.; Peppler, W.T.; Lam, T.K.T. The metabolic impact of small intestinal nutrient sensing. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Latorre, R.; Sternini, C.; De Giorgio, R.; Greenwood-Van Meerveld, B. Enteroendocrine cells: A review of their role in brain-gut communication. Neurogastroenterol. Motil. 2016, 28, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, M.; Seva, C.; Fourmy, D. Cholecystokinin and gastrin receptors. Physiol. Rev. 2006, 86, 805–847. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Ou, L.; Wang, W.; Guo, D.Y. Gastrin, Cholecystokinin, Signaling, and Biological Activities in Cellular Processes. Front. Endocrinol. 2020, 11, 1–16. [Google Scholar] [CrossRef]
- Konno, K.; Takahashi-Iwanaga, H.; Uchigashima, M.; Miyasaka, K.; Funakoshi, A.; Watanabe, M.; Iwanaga, T. Cellular and subcellular localization of cholecystokinin (CCK)-1 receptors in the pancreas, gallbladder, and stomach of mice. Histochem. Cell Biol. 2015, 143, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Herranz, R. Cholecystokinin antagonists: Pharmacological and therapeutic potential. Med. Res. Rev. 2003, 23, 559–605. [Google Scholar] [CrossRef]
- Worthington, J.J. The intestinal immunoendocrine axis: Novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem. Soc. Trans. 2015, 43, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Brandtzaeg, P.; Kiyono, H.; Pabst, R.; Russell, M.W. Terminology: Nomenclature of mucosa-associated lymphoid tissue. Mucosal Immunol. 2008, 1, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 2008, 8, 421–434. [Google Scholar] [CrossRef]
- Johansen, F.E.; Kaetzel, C.S. Regulation of the polymeric immunoglobulin receptor and IgA transport: New advances in environmental factors that stimulate pIgR expression and its role in mucosal immunity. Mucosal Immunol. 2011, 4, 598–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, H.; Wang, J.Y. Role of polymeric immunoglobulin receptor in iga and igm transcytosis. Int. J. Mol. Sci. 2021, 22, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Rubin, D.C.; Zhang, H.; Qian, P.; Lorenz, R.G.; Hutton, K.; Peters, M.G. Altered enteroendocrine cell expression in T cell receptor alpha chain knock-out mice. Microsc. Res. Technol. 2000, 51, 112–120. [Google Scholar] [CrossRef]
- Hanna, M.K.; Zarzaur, B.L., Jr.; Fukatsu, K.; Chance DeWitt, R.; Renegar, K.B.; Sherrell, C.; Wu, Y.; Kudsk, K. Individual neuropeptides regulate gut-associated lymphoid tissue integrity, intestinal immunoglobulin A levels, and respiratory antibacterial immunity. J. Parenter. Enter. Nutr. 2000, 24, 261–269. [Google Scholar] [CrossRef] [PubMed]
- Alverdy, J.; Stern, E.; Poticha, S.; Baunoch, D.; Adrian, T. Cholecystokinin modulates mucosal immunoglobulin A function. Surgery 1997, 122, 386–392. [Google Scholar] [CrossRef]
- Freier, S.; Eran, M.; Alon, Y.; Elath, U. Verapamil and furosemide prevent cholecystokinin-induced translocation of immunoglobulins in rat intestine. Dig. Dis. Sci. 1991, 36, 1619–1624. [Google Scholar] [CrossRef]
- Jarrah, S.; Eran, M.; Freier, S.; Yefenol, E. Cholecystokinin-octapeptide (CCK-OP) and substance P (SP) influence immune response to cholera toxin in live animals. Adv. Exp. Med. Biol. 1995, 371, 563–566. [Google Scholar] [CrossRef]
- Freier, S.; Eran, M.; Faber, J. Effect of cholecystokinin and of its antagonist, of atropine, and of food on the release of immunoglobulin A and immunoglobulin G specific antibodies in the rat intestine. Gastroenterology 1987, 93, 1242–1246. [Google Scholar] [CrossRef]
- Imaeda, H.; Miura, S.; Serizawa, H.; Toda, K.; Ohkubo, N.; Kimura, H.; Yoshioka, M.; Tsuchiya, M.; Tso, P. Influence of fatty acid absorption on bidirectional release of immunoglobulin A into intestinal lumen and intestinal lymph in rats. Immunol. Lett. 1993, 38, 253–258. [Google Scholar] [CrossRef]
- Cabaner, C.; Boudard, F.; Bastide, M. Modulation of the proliferative response of murine Peyer’s patch lymphocytes by different peptides: CCK-8, CGRP, CCK-PZ and VIP. Preliminary results. Int. J. Immunopathol. Pharmacol. 1995, 8, 123–133. [Google Scholar] [CrossRef]
- Saia, R.S.; Ribeiro, A.B.; Giusti, H. Cholecystokinin Modulates the Mucosal Inflammatory Response and Prevents the Lipopolysaccharide-Induced Intestinal Epithelial Barrier Dysfunction. Shock 2020, 53, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Zhou, F.; Zhang, Z.; Wang, J.; Xu, J.; Zhuang, Q.; Meng, Q.; Xi, Q.; Jiang, Y.; Wu, G. Beta-1 blocker reduces inflammation and preserves intestinal barrier function after open abdominal surgery. Surgery 2021, 169, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.C.; Freier, S.; Park, B.H.; Lee, P.C.; Lebenthal, E. Pancreozymin and Secretin Enhance Duodenal Fluid Antibody Levels to Cow’s Milk Proteins. Gastroenterology 1982, 83, 916–921. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, W.; Li, Y.; Cong, Y. Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2020, 26, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Osteoarthr. Cartil. 2012, 20, 256–260. [Google Scholar] [CrossRef] [Green Version]
- Reséndiz-Albor, A.A.; Esquivel, R.; López-Revilla, R.; Verdín, L.; Moreno-Fierros, L. Striking phenotypic and functional differences in lamina propria lymphocytes from the large and small intestine of mice. Life Sci. 2005, 76, 2783–2803. [Google Scholar] [CrossRef]
- Arciniega-Martínez, I.M.; Campos-Rodríguez, R.; Drago-Serrano, M.E.; Sánchez-Torres, L.E.; Cruz-Hernández, T.R.; Reséndiz-Albor, A.A. Modulatory Effects of Oral Bovine Lactoferrin on the IgA Response at Inductor and Effector Sites of Distal Small Intestine from BALB/c Mice. Arch. Immunol. Ther. Exp. 2016, 64, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Pérez-López, J.A.; Rojas-Hernández, S.; Campos-Rodríguez, R.; Arciniega-Martínez, I.M.I.; Cruz-Hernández, T.R.; Reséndiz-Albor, A.A.; Drago-Serrano, M.E. Posterior Subdiaphragmatic Vagotomy Downmodulates the IgA Levels in the Small Intestine of BALB/c Mice. Neuroimmunomodulation 2019, 26, 292–300. [Google Scholar] [CrossRef]
- Reséndiz-Albor, A.A.; Reina-Garfias, H.; Rojas-Hernández, S.; Jarillo-Luna, A.; Rivera-Aguilar, V.; Miliar-García, A.; Campos-Rodríguez, R. Regionalization of pIgR expression in the mucosa of mouse small intestine. Immunol. Lett. 2010, 128, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Arciniega-Martínez, I.M.; Romero-Aguilar, K.S.; Farfán-García, E.D.; García-Machorro, J.; Reséndiz-Albor, A.A.; Soriano-Ursúa, M.A. Diversity of effects induced by boron-containing compounds on immune response cells and on antibodies in basal state. J. Trace Elem. Med. Biol. 2022, 69, 126901. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.G.; Cong, B.; Li, Q.X.; Chen, H.Y.; Qin, J.; Fu, L.H. Cholecystokinin octapeptide regulates lipopolysaccharide-activated B cells co-stimulatory molecule expression and cytokines production in vitro. Immunopharmacol. Immunotoxicol. 2011, 33, 157–163. [Google Scholar] [CrossRef]
- Jain, R.N.; Samuelson, L.C. Transcriptional profiling of gastrin-regulated genes in mouse stomach. Physiol. Genom. 2007, 29, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Cardone, M.H.; Smith, B.L.; Mennitt, P.A.; Mochly-Rosen, D.; Silver, R.B.; Mostov, K.E. Signal transduction by the polymeric immunoglobulin receptor suggests a role in regulation of receptor transcytosis. J. Cell Biol. 1996, 133, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.; Flobak, Å.; Chawla, K.; Baudot, A.; Bruland, T.; Thommesen, L.; Kuiper, M.; Lægreid, A. The gastrin and cholecystokinin receptors mediated signaling network: A scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC Syst. Biol. 2015, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.G.; Liu, J.X.; Jia, X.X.; Geng, J.; Yu, F.; Cong, B. Cholecystokinin octapeptide regulates the differentiation and effector cytokine production of CD4+ T cells in vitro. Int. Immunopharmacol. 2014, 20, 307–315. [Google Scholar] [CrossRef]
Gene | ID | Forward Primer 5′-3′ | Reverse Primer 5′-3′ |
---|---|---|---|
α chain | 1030660614 | cgtccaagaattggatgtga | agtgacaggctgggatgg |
pIgR | 188247439 | agtaaccgaggcctgtcctt | gtcactcggcaactcagga |
IL-2 | 144305B06 | gctgttgatggacctacagga | ttcaattcttgtggcctgctt |
IL-4 | 1030660620 | catcggcattttgaacgag | acgtttggcacatccatctc |
IL-5 | 188247437 | acattgaccgccaaaaagag | atccaggaactgcctcgtc |
IL-6 | 1030660602 | actaccaaactggatataatcagga | ccaggtagctatggtactccagaa |
IL-10 | 1030660622 | cagagccacatgctcctaga | tgtccagctggtcctttgtt |
TGF-β | 188247430 | tggagcaacatgtggaactc | gtcagcagccggttacca |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Magaña, J.; Arciniega-Martínez, I.M.; Drago-Serrano, M.E.; Reséndiz-Albor, A.A.; Jarillo-Luna, R.A.; Cruz-Baquero, A.; Gómez-López, M.; Guzmán-Mejía, F.; Pacheco-Yépez, J. Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response. Curr. Issues Mol. Biol. 2022, 44, 2542-2553. https://doi.org/10.3390/cimb44060173
Morales-Magaña J, Arciniega-Martínez IM, Drago-Serrano ME, Reséndiz-Albor AA, Jarillo-Luna RA, Cruz-Baquero A, Gómez-López M, Guzmán-Mejía F, Pacheco-Yépez J. Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response. Current Issues in Molecular Biology. 2022; 44(6):2542-2553. https://doi.org/10.3390/cimb44060173
Chicago/Turabian StyleMorales-Magaña, Juan, Ivonne Maciel Arciniega-Martínez, Maria Elisa Drago-Serrano, Aldo Arturo Reséndiz-Albor, Rosa Adriana Jarillo-Luna, Andrea Cruz-Baquero, Modesto Gómez-López, Fabiola Guzmán-Mejía, and Judith Pacheco-Yépez. 2022. "Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response" Current Issues in Molecular Biology 44, no. 6: 2542-2553. https://doi.org/10.3390/cimb44060173
APA StyleMorales-Magaña, J., Arciniega-Martínez, I. M., Drago-Serrano, M. E., Reséndiz-Albor, A. A., Jarillo-Luna, R. A., Cruz-Baquero, A., Gómez-López, M., Guzmán-Mejía, F., & Pacheco-Yépez, J. (2022). Cholecystokinin Outcome on Markers of Intestinal IgA Antibody Response. Current Issues in Molecular Biology, 44(6), 2542-2553. https://doi.org/10.3390/cimb44060173