LC3B, mTOR, AMPK Are Molecular Targets for Neoadjuvant Chemotherapy in Gastric Cancers
Abstract
:1. Introduction
2. Materials and Methods
2.1. RNA Extraction
2.2. Determination of LC3B Content
2.3. Statistical Analysis
3. Results
3.1. FLOT Regimen in GC Patients, Its Effectiveness
3.2. Molecular Targets in GCs
3.2.1. The Expression of LC3B, mTOR, AMPK, and the Content of LC3B Protein in Gastric Cancer Tissue Depends on the Disease Clinical and Morphological Parameters
3.2.2. Changes in the LC3B, mTOR, AMPK Expression in Tumor Tissue after the NACT
3.2.3. Relationship of LC3B, mTOR, AMPK Expression, and LC3B Protein Content in GC Tissue with the Effectiveness of NACT
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Matsuoka, T.; Yashiro, M. Biomarkers of gastric cancer: Current topics and future perspective. World J. Gastroenterol. 2018, 24, 2818–2832. [Google Scholar] [CrossRef] [PubMed]
- Johnston, F.M.; Beckman, M. Updates on Management of Gastric Cancer. Curr. Oncol. Rep. 2019, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- De Re, V. Molecular Features Distinguish Gastric Cancer Subtypes. Int. J. Mol. Sci. 2018, 19, 3121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eslami, M.; Yousefi, B.; Kokhaei, P.; Arabkari, V.; Ghasemian, A. Current information on the association of Helicobacter pylori with autophagy and gastric cancer. J. Cell. Physiol. 2019, 234, 14800–14811. [Google Scholar] [CrossRef]
- Ishaq, S.; Nunn, L. Helicobacter pylori and gastric cancer: A state of the art review. Gastroenterol. Hepatol. Bed Bench 2015, 8 (Suppl. S1), S6–S14. [Google Scholar]
- Gao, Y.; Qi, W.; Liu, S.; Zhao, S.; Lv, J.; Qiu, W. Acid-induced autophagy protects human gastric cancer cells from apoptosis by activating Erk1/2 pathway. Transl. Cancer Res. 2019, 8, 1560–1570. [Google Scholar] [CrossRef]
- Rihawi, K.; Ricci, A.D.; Rizzo, A.; Brocchi, S.; Marasco, G.; Pastore, L.V.; Llimpe, F.L.R.; Golfieri, R.; Renzulli, M. Tumor-Associated Macrophages and Inflammatory Microenvironment in Gastric Cancer: Novel Translational Implications. Int. J. Mol. Sci. 2021, 22, 3805. [Google Scholar] [CrossRef]
- Cao, Y.; Luo, Y.; Zou, J.; Ouyang, J.; Cai, Z.; Zeng, X.; Ling, H.; Zeng, T. Autophagy and its role in gastric cancer. Clin. Chim. Acta 2019, 489, 10–20. [Google Scholar] [CrossRef]
- Yoshii, S.R.; Mizushima, N. Monitoring and Measuring Autophagy. Int. J. Mol. Sci. 2017, 18, 1865. [Google Scholar] [CrossRef]
- Qiu, J.; Sun, M.; Wang, Y.; Chen, B. Identification and validation of an individualized autophagy-clinical prognostic index in gastric cancer patients. Cancer Cell Int. 2020, 20, 178. [Google Scholar] [CrossRef]
- Spirina, L.V.; Avgustinovich, A.V.; Afanas’ev, S.G.; Cheremisina, O.V.; Volkov, M.Y.; Choynzonov, E.L.; Gorbunov, A.K.; Usynin, E.A. Molecular Mechanism of Resistance to Chemotherapy in Gastric Cancers, the Role of Autophagy. Curr. Drug. Targets 2020, 21, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Giatromanolaki, A.; Koukourakis, M.I.; Georgiou, I.; Kouroupi, M.; Sivridis, E. LC3A, LC3B and Beclin-1 Expression in Gastric Cancer. Anticancer Res. 2018, 38, 6827–6833. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Bae, G.E.; Kim, K.H.; Lee, S.I.; Chung, C.; Lee, D.; Lee, T.H.; Kwon, I.S.; Yeo, M.K. Prognostic Significance of LC3B and p62/SQSTM1 Expression in Gastric Adenocarcinoma. Anticancer Res. 2019, 39, 6711–6722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alers, S.; Löffler, A.S.; Wesselborg, S.; Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Mol. Cell Biol. 2012, 32, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Luan, M.; Shi, S.S.; Shi, D.B.; Liu, H.T.; Ma, R.R.; Xu, X.Q.; Sun, Y.J.; Gao, P. TIPRL, a Novel Tumor Suppressor, Suppresses Cell Migration, and Invasion through Regulating AMPK/mTOR Signaling Pathway in Gastric Cancer. Front Oncol. 2020, 10, 1062. [Google Scholar] [CrossRef]
- Park, J.B.; Lee, J.S.; Lee, M.S.; Cha, E.Y.; Kim, S.; Sul, J.Y. Corosolic acid reduces 5-FU chemoresistance in human gastric cancer cells by activating AMPK. Mol. Med. Rep. 2018, 18, 2880–2888. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Ouyang, B.; Zou, J.; Yang, Y.; Yi, L.; Yan, H. Trim14 promotes autophagy and chemotherapy resistance of gastric cancer cells by regulating AMPK/mTOR pathway. Drug Dev. Res. 2020, 81, 544–550. [Google Scholar] [CrossRef]
- Tapia, O.; Riquelme, I.; Leal, P.; Sandoval, S.; Aedo, S.; Weber, H.; Letelier, P.; Bellolio, E.; Villaseca, M.; Roa, J.C. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014, 465, 25–33. [Google Scholar] [CrossRef]
- Ricci, A.D.; Rizzo, A.; Rojas Llimpe, F.L.; Di Fabio, F.; De Biase, D.; Rihawi, K. Novel HER2-Directed Treatments in Advanced Gastric Carcinoma: AnotHER Paradigm Shift? Cancers 2021, 13, 1664. [Google Scholar] [CrossRef]
- Zadra, G.; Batista, J.L.; Loda, M. Dissecting the Dual Role of AMPK in Cancer: From Experimental to Human Studies. Mol. Cancer Res. 2015, 13, 1059–1072. [Google Scholar] [CrossRef] [Green Version]
- Machlowska, J.; Maciejewski, R.; Sitarz, R. The Pattern of Signatures in Gastric Cancer Prognosis. Int. J. Mol. Sci. 2018, 19, 1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, D.; Tsujitani, S.; Osaki, T.; Saito, H.; Katano, K.; Tatebe, S.; Ikeguchi, M. Expression of phosphorylated Akt (pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer 2007, 10, 45–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sasaki, T.; Kuniyasu, H. Significance of AKT in gastric cancer (Review). Int. J. Oncol. 2014, 45, 2187–2192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spirina, L.V.; Kondakova, I.V.; Tarasenko, N.V.; Slonimskaya, E.M.; Usynin, E.A.; Gorbunov, A.K.; Yurmazov, Z.A.; Chigevskaya, S.Y. Targeting of the AKT/m-TOR Pathway: Biomarkers of Resistance to Cancer Therapy-AKT/m-TOR Pathway and Resistance to Cancer Therapy. Chin. J. Lung Cancer 2018, 21, 63–66. [Google Scholar]
- Qi, W.; Zhang, Q. Gene’s co-expression network and experimental validation of molecular markers associated with the drug resistance of gastric cancer. Biomark. Med. 2020, 14, 761–773. [Google Scholar] [CrossRef]
- Peng, R.; Chen, Y.; Wei, L.; Li, G.; Feng, D.; Liu, S.; Jiang, R.; Zheng, S.; Chen, Y. Resistance to FGFR1-targeted therapy leads to autophagy via TAK1/AMPK activation in gastric cancer. Gastric Cancer 2020, 23, 988–1002. [Google Scholar] [CrossRef]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. FLOT4-AIO Investigators. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomised, phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef]
Indicator | n (%) |
---|---|
ECOG | |
0 | 31 (92%) |
1 | 3 (8%) |
Gender | |
male | 26 (76%) |
female | 8 (24%) |
Histology | |
High differentiated | 1 (3%) |
Moderate differentiated | 10 (28%) |
Low-differentiated | 20 (60%) |
Non-differentiated | 1 (3%) |
Signet ring cell | 2 (5%) |
Cancer location | |
body | 16 (48%) |
antral d | 10 (28%) |
Subtotal lesions | 8 (24%) |
cTN | |
T2N0 | 7 (20%) |
T3N0 | 9 (25%) |
T4N0 | 1 (4%) |
T3N1 | 8 (23%) |
T4N1 | 4 (12%) |
T4N2 | 1 (4%) |
T4N3 | 4 (12%) |
Side Effects | n (%) |
---|---|
Nausea | 23 (92%) |
Peripheral neuropathy of I–II degree | 15 (60%) |
Grade I–II neutropenia | 12 (48%) |
Vomiting | 10 (40%) |
Diarrhea | 5 (20%) |
Bronchospasm | 1 (4%) |
Pathomorphosis | n (%) |
---|---|
TRG1 | --- |
TRG2 | 11 (44%) |
TRG3 | 10 (40%) |
TRG4 | 3 (12%) |
TRG5 | 1 (4%) |
T2N0M0 (n = 7) | T3N0–1M0 (n = 9) | T4N0–2M0 (n = 18) | T2N0M0 (n = 17) | T2-3N1M0 (n = 11) | T3–4N2M0 (n = 6) | |
---|---|---|---|---|---|---|
LC3B expression, Relative Units | 0.36 (0.19; 0.53) | 0.38 (0.30; 0.62) | 1.45 (0.08; 1.59) | 0.30 (0.26; 0.53) | 1.44 (0.38; 1.59) | 1.50 (0.80; 1.65) |
Kruskal–Wallis test: p < 0.05; Median Test: p < 0.05 | Kruskal–Wallis test: p < 0.05; Median Test: p < 0.05 | |||||
mTOR expression, Relative Units | 0.97 (0.97; 1.35) | 0.36 (0.19; 1.15) | 0.99 (0.44; 1.60) | 1.28 (0.66; 3.93) | 0.66 (0.33; 1.22) | 0.24 (0.09; 0.95) # |
Kruskal–Wallis test: p > 0.05; Median Test: p > 0.05 | Kruskal–Wallis test: p < 0.05; Median Test: p < 0.05 | |||||
AMPK expression, Relative Units | 0.07 (0.00; 1.16) | 0.36 (0.02; 0.63) | 2.64 (1.36; 7.95) *, ** | 0.63 (0.11; 1.45) | 1.21 (0.27; 3.66) | 1.39 (0.65; 14.94) |
Kruskal–Wallis test: p < 0.05; Median Test: p < 0.05 | Kruskal–Wallis test: p > 0.05; Median Test: p > 0.05 | |||||
LC3B protein level, % to the normal tissues | 126.75 (55.70; 240.77) | 50.00 (11.98; 60.55) * | 83.00 (13.00; 100.35) | 27.3 (13.00; 55.00) | 86.54 (60.55; 126.75) # | 7.72 (2.54; 7.80) #, ## |
Kruskal–Wallis test: p < 0.05; Median Test: p < 0.05 | Kruskal–Wallis test: p <0.05; Median Test: p < 0.05 |
High-Differentiated Adenocarcinoma (n = 5) | Moderately-Differentiated Adenocarcinoma (n = 17) | Low-Differentiated Adenocarcinoma (n = 5) | Signet Ring Cell Carcinoma (n = 7) | |
---|---|---|---|---|
LC3B expression, Relative Units. | 1.45 (1.20; 1.65) | 0.53 (0.32; 0.76) | 1.44 (1.19; 3.80) | 0.17 (0.08; 0.26) * |
Kruskal–Wallis test: p < 0.05; Median Test: p < 0.05 | ||||
mTOR expression, Relative Units. | 0.64 (0.35; 0.85) | 3.93 (2.89; 3.99) | 0.97 (0.19; 1.60) | 0.58 (0.20; 3.61) |
Kruskal–Wallis test: p > 0.05; Median Test: p > 0.05 | ||||
AMPK expression, Relative Units | 0.11 (0.89; 0.15) | 1.16 (1.00; 1.20) | 1.01 (0.02; 4.06) | 0.88 (0.45; 1.38) |
Kruskal–Wallis test: p > 0.05; Median Test: p > 0.05 | ||||
LC3B protein level, % to the normal tissues | 52.50 (32.50; 86.70) | 35.70 (15.70; 55.70) | 83.00 (13.50; 126.70) | 17.50 (7.72; 27.30)* |
Kruskal–Wallis test: p > 0.05; Median Test: p > 0.05 |
Indicator, Relative Units. | Complete Response (n = 4) | Partial Response (n = 20) | Stable Disease(n = 7) | Progressive Disease (n = 3) |
---|---|---|---|---|
mTOR | 8.11 (3.93; 12.30) | 0.64 (0.13; 0.99) * | 0.69 (0.19; 1.46) * | 0.75 (0.22; 1.28) * |
Kruskal-Wallis test: p < 0.05; Median Test: p < 0.05 | ||||
AMPK | 6.30 (1.16; 11.45) | 0.63 (0.11; 1.45) | 1.13 (0.01; 2.16) | 5.36 (2.77; 7.95) ** |
Kruskal-Wallis test: p < 0.05; Median Test: p < 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spirina, L.V.; Avgustinovich, A.V.; Bakina, O.V.; Afanas’ev, S.G.; Volkov, M.Y.; Kebekbayeva, A.Y. LC3B, mTOR, AMPK Are Molecular Targets for Neoadjuvant Chemotherapy in Gastric Cancers. Curr. Issues Mol. Biol. 2022, 44, 2772-2782. https://doi.org/10.3390/cimb44070190
Spirina LV, Avgustinovich AV, Bakina OV, Afanas’ev SG, Volkov MY, Kebekbayeva AY. LC3B, mTOR, AMPK Are Molecular Targets for Neoadjuvant Chemotherapy in Gastric Cancers. Current Issues in Molecular Biology. 2022; 44(7):2772-2782. https://doi.org/10.3390/cimb44070190
Chicago/Turabian StyleSpirina, Liudmila V., Alexandra V. Avgustinovich, Olga V. Bakina, Sergey G. Afanas’ev, Maxim Yu. Volkov, and Amina Y. Kebekbayeva. 2022. "LC3B, mTOR, AMPK Are Molecular Targets for Neoadjuvant Chemotherapy in Gastric Cancers" Current Issues in Molecular Biology 44, no. 7: 2772-2782. https://doi.org/10.3390/cimb44070190
APA StyleSpirina, L. V., Avgustinovich, A. V., Bakina, O. V., Afanas’ev, S. G., Volkov, M. Y., & Kebekbayeva, A. Y. (2022). LC3B, mTOR, AMPK Are Molecular Targets for Neoadjuvant Chemotherapy in Gastric Cancers. Current Issues in Molecular Biology, 44(7), 2772-2782. https://doi.org/10.3390/cimb44070190