The Potential of Stilbene Compounds to Inhibit Mpro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Preparation
2.2. Ligand Preparation
2.3. Molecular Docking Studies
2.4. Prime Molecular Mechanics-Generalized Born and Surface Area Solvation (MM-GBSA)
2.5. Molecular Dynamics Simulations
3. Results
3.1. Molecular Docking
3.2. Prime MM–GBSA Simulations
3.3. MD-Simulations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, Y.; Ma, Z.; Peppelenbosch, M.P.; Pan, Q. Potential association between COVID-19 mortality and health-care resource availability. Lancet Glob. Health 2020, 8, e480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karia, R.; Gupta, I.; Khandait, H.; Yadav, A.; Yadav, A. COVID-19 and its Modes of Transmission. SN Compr. Clin. Med. 2020, 2, 1798–1801. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Ahmad Farouk, I.; Lal, S.K. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses 2021, 13, 202. [Google Scholar] [CrossRef]
- Serafini, G.; Parmigiani, B.; Amerio, A.; Aguglia, A.; Sher, L.; Amore, M. The psychological impact of COVID-19 on the mental health in the general population. QJM 2020, 113, 531–537. [Google Scholar] [CrossRef]
- Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Li, D.C.; Iacobucci, M.; Ho, R.; Majeed, A.; et al. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord. 2020, 277, 55–64. [Google Scholar] [CrossRef]
- Ali, U.A.; Iftikhar, N.; Amat-Ur-Rasool, H.; Ahmed, M.; Hafeez, J.; Carter, W.G. The Psychological Impact of Coronavirus Disease 2019 on Patients Attending a Tertiary Healthcare Facility in Pakistan: A Cross-Sectional Study. Healthcare 2022, 10, 1049. [Google Scholar] [CrossRef]
- WHO. COVID-19 Vaccines. 2022. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/covid-19-vaccines. (accessed on 28 September 2022).
- Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther. 2020, 14, 58–60. [Google Scholar] [CrossRef] [Green Version]
- Chung, J.Y.; Thone, M.N.; Kwon, Y.J. COVID-19 vaccines: The status and perspectives in delivery points of view. Adv Drug Deliv Rev. 2021, 170, 1–25. [Google Scholar] [CrossRef]
- Rohaim, M.A.; El Naggar, R.F.; Clayton, E.; Munir, M. Structural and functional insights into non-structural proteins of coronaviruses. Microb. Pathogenesis 2021, 150, 104641. [Google Scholar] [CrossRef]
- Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J. 2002, 21, 3213–3224. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Xie, H.; Lei, Y.; Liu, B.; Zhang, L.; Xu, Y.; Zuo, Z. Discovery of novel inhibitors against main protease (Mpro) of SARS-CoV-2 via virtual screening and biochemical evaluation. Bioorg. Chem. 2021, 110, 104767. [Google Scholar] [CrossRef] [PubMed]
- Mengist, H.M.; Dilnessa, T.; Jin, T. Structural Basis of Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Front Chem. 2021, 9, 622898. [Google Scholar] [CrossRef] [PubMed]
- Elend, L.; Jacobsen, L.; Cofala, T.; Prellberg, J.; Teusch, T.; Kramer, O.; Solov’yov, I.A. Design of SARS-CoV-2 Main Protease Inhibitors Using Artificial Intelligence and Molecular Dynamic Simulations. Molecules 2022, 27, 4020. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.L.; Thai, N.Q.; Truong, D.T.; Li, M.S. Remdesivir Strongly Binds to Both RNA-Dependent RNA Polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations. J. Phys. Chem. B 2020, 124, 11337–11348. [Google Scholar] [CrossRef] [PubMed]
- Morris, A.; McCorkindale, W.; Consortium, T.C.M.; Drayman, N.; Chodera, J.D.; Tay, S.; London, N.; Lee, A.A. Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model. Chem. Commun. 2021, 57, 5909–5912. [Google Scholar] [CrossRef]
- Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; et al. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun. 2020, 11, 4417. [Google Scholar] [CrossRef]
- Arafet, K.; Serrano-Aparicio, N.; Lodola, A.; Mulholland, A.J.; González, F.V.; Świderek, K.; Moliner, V. Mechanism of inhibition of SARS-CoV-2 M pro by N3 peptidyl Michael acceptor explained by QM/MM simulations and design of new derivatives with tunable chemical reactivity. Chem. Sci. 2021, 12, 1433–1444. [Google Scholar] [CrossRef]
- Olubiyi, O.O.; Olagunju, M.; Keutmann, M.; Loschwitz, J.; Strodel, B. High Throughput Virtual Screening to Discover Inhibitors of the Main Protease of the Coronavirus SARS-CoV-2. Molecules 2020, 25, 3193. [Google Scholar] [CrossRef]
- Benarba, B.; Pandiella, A. Medicinal Plants as Sources of Active Molecules Against COVID-19. Front. Pharmacol. 2020, 11, 1189. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Efferth, T.; Das, B.; Kar, A.; Ghosh, S.; Singha, S.; Debnath, P.; Sharma, N.; Bhardwaj, P.K.; Haldar, P.K. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. Phytomedicine 2022, 98, 153930. [Google Scholar] [CrossRef]
- Shen, T.; Wang, X.N.; Lou, H.X. Natural stilbenes: An overview. Nat. Prod. Rep. 2009, 26, 916–935. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, A.; Hanley, B.; Lamuela-Raventos, R.M. Isoflavones, lignans and stilbenes—Origins, metabolism and potential importance to human health. J. Sci. Food Agric. 2000, 80, 1044–1062. [Google Scholar] [CrossRef]
- Saadabadi, A.; Ahmed, A.; Smeds, A.I.; Eklund, P.C. High recovery of stilbene glucosides by acetone extraction of fresh inner bark of Norway spruce. Holzforschung 2021, 75, 1012–1018. [Google Scholar] [CrossRef]
- Reinisalo, M.; Kårlund, A.; Koskela, A.; Kaarniranta, K.; Karjalainen, R.O. Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases. Oxidative Med. Cell Longev. 2015, 2015, 340520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akinwumi, B.C.; Bordun, K.M.; Anderson, H.D. Biological Activities of Stilbenoids. Int. J. Mol. Sci. 2018, 19, 792. [Google Scholar] [CrossRef] [Green Version]
- Elsbaey, M.; Ibrahim, M.A.A.; Bar, F.A.; Elgazar, A.A. Chemical constituents from coconut waste and their in silico evaluation as potential antiviral agents against SARS-CoV-2. S. Afr. J. Bot. 2021, 141, 278–289. [Google Scholar] [CrossRef]
- Desmond Molecular Dynamics System. D.E. Shaw Research. In Maestro-Desmond Interoperability Tools; Schrödinger: New York, NY, USA, 2021; Available online: https://www.schrodinger.com/products/desmond (accessed on 28 September 2022).
- Amat-ur-Rasool, H.; Ahmed, M.; Hasnain, S.; Ahmed, A.; Carter, W.G. In Silico Design of Dual-Binding Site Anti-Cholinesterase Phytochemical Heterodimers as Treatment Options for Alzheimers Disease. Curr. Issues Mol. Biol. 2022, 44, 152–175. [Google Scholar] [CrossRef]
- Chong, J.; Poutaraud, A.; Hugueney, P. Metabolism and roles of stilbenes in plants. Plant Sci. 2009, 177, 143–155. [Google Scholar] [CrossRef]
- Neergheen-Bhujun, V.S. Underestimating the Toxicological Challenges Associated with the Use of Herbal Medicinal Products in Developing Countries. BioMed Res. Int. 2013, 2013, 804086. [Google Scholar] [CrossRef] [Green Version]
- Karimi, A.; Majlesi, M.; Rafieian-Kopaei, M. Herbal versus synthetic drugs; beliefs and facts. J. Nephropharmacol. 2015, 4, 27–30. [Google Scholar]
- Hung, H.C.; Ke, Y.Y.; Huang, S.Y.; Huang, P.N.; Kung, Y.A.; Chang, T.Y.; Yen, K.J.; Peng, T.T.; Chang, S.E.; Huang, C.T.; et al. Discovery of M Protease Inhibitors Encoded by SARS-CoV-2. Antimicrob. Agents Chemother. 2020, 64, e00872-20. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kershaw, J.; Kim, K.H. The Therapeutic Potential of Piceatannol, a Natural Stilbene, in Metabolic Diseases: A Review. J. Med. Food 2017, 20, 427–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laavola, M.; Nieminen, R.; Leppänen, T.; Eckerman, C.; Holmbom, B.; Moilanen, E. Pinosylvin and Monomethylpinosylvin, Constituents of an Extract from the Knot of Pinus sylvestris, Reduce Inflammatory Gene Expression and Inflammatory Responses in Vivo. J. Agric. Food Chem. 2015, 63, 3445–3453. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.C.M.; Fenwick, P.S.; Barnes, P.J.; Lin, H.S.; Donnelly, L.E. Isorhapontigenin, a bioavailable dietary polyphenol, suppresses airway epithelial cell inflammation through a corticosteroid-independent mechanism. Br. J. Pharmacol. 2017, 174, 2043–2059. [Google Scholar] [CrossRef] [Green Version]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11, 1446. [Google Scholar] [CrossRef]
- Chen, L.Y.C.; Quach, T.T.T. COVID-19 cytokine storm syndrome: A threshold concept. Lancet Microbe. 2021, 2, e49–e50. [Google Scholar] [CrossRef]
- Viñas, P.; Martínez-Castillo, N.; Campillo, N.; Hernández-Córdoba, M. Directly suspended droplet microextraction with in injection-port derivatization coupled to gas chromatography-mass spectrometry for the analysis of polyphenols in herbal infusions, fruits and functional foods. J. Chromatogr. A 2011, 1218, 639–646. [Google Scholar] [CrossRef]
- Rimando, A.M.; Kalt, W.; Magee, J.B.; Dewey, J.; Ballington, J.R. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J. Agric. Food Chem. 2004, 52, 4713–4719. [Google Scholar] [CrossRef]
Ligand | Name | Molecular Formula | Molecular Weight |
---|---|---|---|
Reference 1 | GC376 | C21H30N3NaO8S | 507.50 g/mol |
Reference 2 | N3 | C35H48N6O | 680.80 g/mol |
1 | Astringin | C20H22O9 | 406.40 g/mol |
2 | Isorhapontin | C21H24O9 | 420.40 g/mol |
3 | Piceatannol | C14H12O4 | 244.24 g/mol |
4 | Isorhapontigenin | C15H14O4 | 258.27 g/mol |
5 | Resveratrol | C14H12O3 | 228.25 g/mol |
6 | Pinosylvin monomethyl ether (PMME) | C15H14O2 | 226.27 g/mol |
7 | Pinosylvin | C14H12O2 | 212.24 g/mol |
Ligand | Name | Binding Affinity (XP-Score) | Glide Score | Glide Energy | Lipophilic Score | XP-Hbond | Glide-Ligand Efficacy |
---|---|---|---|---|---|---|---|
Reference 1 | GC376 | −6.976 | −6.976 | −56.004 | −8.946 | −1.353 | −0.211 |
Reference 2 | N3 | −6.345 | −6.345 | −71.968 | −19.024 | −1.300 | −0.129 |
1 | Astringin | −9.319 | −9.319 | −48.561 | −4.030 | −1.440 | −0.321 |
2 | Isorhapontin | −8.166 | −8.166 | −45.315 | −5.525 | −3.501 | −0.272 |
3 | Piceatannol | −6.291 | −6.291 | −35.995 | −1.804 | −2.124 | −0.350 |
4 | Isorhapontigenin | −5.877 | −5.877 | −35.997 | −2.729 | −0.960 | −0.309 |
5 | Resveratrol | −5.753 | −5.753 | −33.736 | −1.805 | −0.587 | −0.338 |
6 | PMME | −5.460 | −5.460 | −31.291 | −2.535 | −0.303 | −0.321 |
7 | Pinosylvin | −5.216 | −5.216 | −31.202 | −1.804 | −0.597 | −0.326 |
Name | Interaction Type | Residues | |
---|---|---|---|
Reference 1 | GC376 | Polar | His-41, Gln-89, Glu-166. |
Non-polar | Thr-25, Thr-26, Leu-27, Val-42, Cys-44, Met-49, Pro-52, Tyr-54, Phe-140, Leu-141, Asn-142, Gly-143, Ser-144, Cys-145, His-163, His-164, Met-165, Phe-181, Val-186, Asp-187, Arg-188, Gln-189, Thr-190, Gln-192 | ||
Reference 2 | N3 | Polar | Gly-143, Glu-166. |
Non-polar | Thr-25, Thr-26, Leu-27, His-41, Val-42, Cys-44, Ser-46, Met-49, Leu-50, Pro-52, Phe-140, Leu-141, Asn-142, Ser-144, Cys-145, His-163, His-164, Met- 165, Leu-167, Asp-187, Arg-188, Gln-189, Thr-190, Ala-191, Gln-192. | ||
1 | Astringin | Polar | Thr-26, His-41, Gln-189, Thr-190, Gln-192, Glu-166. |
Non-polar | Thr-25, Leu-27, Val-42, Cys-44, Met-49, Phe-140, Leu-141, Asn-142, Gly-143, Ser-144, Cys-145, His-163 His-164, Met-165, Leu-167, Pro-168, Val-186, Arg-188, Ala-191. | ||
2 | Isorhapontin | Polar | Tyr-54, Gly-143, Glu-166. |
Non-polar | Thr-24, Thr-25, Thr-26, Leu-27, His-41, Val-42, Cys-44, Met-49, Pro-52, Leu-141, Asn-142, Ser-144, Cys-145, His-164, Met-165, Leu-167, Pro-168, Val-186, Asp-187, Arg-188, Thr-190, Ala-191, Gln-192. | ||
3 | Piceatannol | Polar | Thr-26, Gly-143. |
Non-polar | Thr-25, Leu-27, His-41, Val-42, Cys-44, Met-49, Pro-52, Tyr-54, Asn-142, Ser-144, Cys-145, His-164, Met-165, Glu-166, Val-186, Asp-187, Arg-188, Gln-189, Thr-190. | ||
4 | Isorhapontigenin | Polar | Thr-26, Gly-143. |
Non-polar | Thr-25, Leu-27, His-41, Val-42, Cys-44, Met-49, Pro-52, Tyr-54, Asn-142, Ser-144, Cys-145, His-164, Met-165, Glu-166, Val-186, Asp-187, Arg-188, Gln-189, Thr-189, Gln-192. | ||
5 | Resveratrol | Polar | Thr-26. |
Non-polar | Thr-25, Leu-27, His-41, Val-42, Cys-44, Met-49, Pro-52, Asn-142, Gly-143, Cys-145, His-164, Met-165, Glu-166, Val-186, Asp-187, Arg-188, Gln-189, Thr-190, Gln-192. | ||
6 | PMME | Polar | His-164. |
Non-polar | His-41, Cys-44, Asp-48, Met-49, Leu-50, Pro-52, Tyr-54, Cys-145, Met-165, Glu-166, Leu-167, Pro-168, Val-186, Asp-187, Arg-188, Gln-189, Thr-190, Ala-191, Gln-192. | ||
7 | Pinosylvin | Polar | Thr-190, Gln-192. |
Non-polar | His-41, Cys-44, Met-49, Pro-52, Tyr-54, His-164, Met-165, Glu-166, Leu-167, Pro-168, Val-186, Asp-187, Arg-188, Gln-189, Ala-191. |
Ligand Structure | Name | Hydrogen Bonding | |||
---|---|---|---|---|---|
Bonding Type | Protein | Ligand Element | Distance (A) | ||
Interacting Amino Acids | Interacting Atom or Ring | ||||
Reference 1 | GC376 | Conventional H-bond | His-41 | O | 2.1 |
Glu-166 | O | 1.9 | |||
Gln-189 | O | 2.9 | |||
Reference 2 | N3 | Conventional H-bond | Gly-143 | O | 2.0 |
Glu-166 | O | 2.1 | |||
1 | Astringin | Conventional H-bond | Thr-26 | OH− | 1.7 |
His-41 | O− | 1.9 | |||
Gln-189 | O− | 2.8 | |||
Gln-192 | O− | 2.5 | |||
Thr-190 | OH− | 1.9 | |||
OH− | 2.0 | ||||
2 | Isorhapontin | Conventional H-Bond | Tyr-54 | OH− | 2.9 |
Gly-143 | O | 2.7 | |||
Glu-166 | O | 2.1 | |||
OH− | 2.0 | ||||
OH− | 2.0 | ||||
3 | Piceatannol | Conventional H-Bond | Gly-143 | O | 2.5 |
Aromatic H-bond | Thr-26 | H− | 1.8 | ||
4 | Isorhapontigenin | Conventional H-Bond | Gly-143 | O | 2.7 |
Aromatic H-bond | Thr-26 | OH− | 1.8 | ||
5 | Resveratrol | Conventional H-Bond | Thr-26 | OH− | 1.8 |
6 | PMME | Conventional H-bond | His-164 | OH− | 2.1 |
7 | Pinosylvin | Conventional H-bonding | Thr-190 | OH− | 1.8 |
Gln-192 | O | 2.6 |
Ligand | Name | Prime Energy | Ligand Efficiency | Ligand Efficiency ln | ΔG Bind | ΔG Bind Coulomb | ΔG Bind Solv.GB | ΔG Bind (NS) | ΔG Bind (NS) Coulomb | ΔG Bind (NS) Solv. GB |
---|---|---|---|---|---|---|---|---|---|---|
Reference 1 | GC376 | −13112.50 | −2.343 | −17.199 | −77.33 | −5.26 | 23.29 | −88.03 | −7.73 | 24.93 |
Reference 2 | N3 | −13184.14 | −2.267 | −22.703 | −111.06 | −15.77 | 28.43 | −128.12 | −21.06 | 30.29 |
1 | Astringin | −13013.2 | −2.510 | −16.665 | −72.78 | −32.12 | 23.10 | −76.13 | −31.33 | 22.71 |
2 | Isorhapontin | −12998.9 | −1.881 | −12.821 | −56.43 | −7.86 | 28.21 | −71.60 | −21.77 | 32.63 |
3 | Piceatannol | −13026.6 | −2.782 | −12.872 | −50.08 | −15.51 | 20.12 | −52.60 | −14.61 | 19.75 |
4 | Isorhapontigenin | −13016.9 | −2.641 | −12.722 | −50.18 | −14.78 | 19.22 | −53.93 | −14.11 | 19.06 |
5 | Resveratrol | −13017.0 | −2.762 | −12.249 | −46.95 | −10.10 | 16.37 | −49.09 | −9.53 | 16.41 |
6 | PMME | −13013.8 | −3.315 | −14.700 | −56.35 | −7.11 | 15.17 | −61.41 | −5.78 | 14.61 |
7 | Pinosylvin | −13007.9 | −2.984 | −12.654 | −47.74 | −7.29 | 14.44 | −52.62 | −6.62 | 14.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naseem, A.; Rasool, F.; Ahmed, A.; Carter, W.G. The Potential of Stilbene Compounds to Inhibit Mpro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Curr. Issues Mol. Biol. 2023, 45, 12-32. https://doi.org/10.3390/cimb45010002
Naseem A, Rasool F, Ahmed A, Carter WG. The Potential of Stilbene Compounds to Inhibit Mpro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Current Issues in Molecular Biology. 2023; 45(1):12-32. https://doi.org/10.3390/cimb45010002
Chicago/Turabian StyleNaseem, Ayesha, Fatima Rasool, Abrar Ahmed, and Wayne G. Carter. 2023. "The Potential of Stilbene Compounds to Inhibit Mpro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019" Current Issues in Molecular Biology 45, no. 1: 12-32. https://doi.org/10.3390/cimb45010002
APA StyleNaseem, A., Rasool, F., Ahmed, A., & Carter, W. G. (2023). The Potential of Stilbene Compounds to Inhibit Mpro Protease as a Natural Treatment Strategy for Coronavirus Disease-2019. Current Issues in Molecular Biology, 45(1), 12-32. https://doi.org/10.3390/cimb45010002