Transcriptomic Analysis of the Effect of Metformin against Cisplatin-Induced Ototoxicity: A Potential Mechanism of Metformin-Mediated Inhibition of Thioredoxin-Interacting Protein (Txnip) Gene Expression
Abstract
:1. Introduction
2. Material and Methods
2.1. HEI-OC1 Cell Culture
2.2. Cell Viability after Exposure to Cisplatin and Metformin
2.3. Measurement of Caspase-8, Caspase-9 and Caspase-3 Activity at Different Time Points
2.4. RNA Sample Preparation
2.5. mRNA MicroArray Analysis
2.6. Data Analysis
2.7. Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Metformin Reduced Apoptosis and Increased Cell Survival
3.2. Cisplatin- and Metformin-Related Gene Expression Profile in HEI-OC1
3.3. Network Analysis and qRT-PCR Expression Levels of the Potential Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mckeage, M.J. Comparative adverse effect profiles of platinum drugs. Drug Saf. 1995, 13, 228–244. [Google Scholar] [CrossRef]
- Marshak, T.; Steiner, M.; Kaminer, M.; Levy, L.; Shupak, A. Prevention of Cisplatin-Induced Hearing Loss by Intratympanic Dexamethasone: A Randomized Controlled Study. Otolaryngol. Head Neck Surg. 2014, 150, 983–990. [Google Scholar] [CrossRef]
- Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Mechanisms of Cisplatin-Induced Ototoxicity and Otoprotection. Front. Cell. Neurosci. 2017, 11, 338. [Google Scholar] [CrossRef] [PubMed]
- Hazlitt, R.A.; Min, J.; Zuo, J. Progress in the development of preventative drugs for cisplatin-induced hearing loss. J. Med. Chem. 2018, 61, 5512–5524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- So, H.S.; Kim, H.J.; Lee, J.H.; Park, S.Y.; Park, C.; Kim, Y.H.; Kim, J.K.; Lee, K.M.; Kim, K.S.; Chung, S.Y.; et al. Flunarizine induces Nrf2-mediated transcriptional activation of heme oxygenase-1 in protection of auditory cells from cisplatin. Cell Death Differ. 2006, 13, 1763–1775. [Google Scholar] [CrossRef] [Green Version]
- So, H.S.; Kim, H.J.; Kim, Y.; Kim, E.; Pae, H.O.; Chung, H.T.; Kim, H.J.; Kwon, K.B.; Lee, K.M.; Lee, H.Y.; et al. Evidence that cisplatin-induced auditory damage is attenuated by downregulation of pro-inflammatory cytokines via Nrf2/HO-1. J. Assoc. Res. Otolaryngol. 2008, 9, 290–306. [Google Scholar] [CrossRef] [Green Version]
- Kaur, T.; Borse, V.; Sheth, S.; Sheehan, K.; Ghosh, S.; Tupal, S.; Jajoo, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Adenosine A1 receptor protects against cisplatin ototoxicity by suppressing the NOX3/STAT1 inflammatory pathway in the cochlea. J. Neurosci. 2016, 36, 3962–3977. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Sheth, S.; Sheehan, K.; Mukherjea, D.; Dhukhwa, A.; Borse, V.; Rybak, L.P.; Ramkumar, V. The Endocannabinoid/Cannabinoid Receptor 2 System Protects Against Cisplatin-Induced Hearing Loss. Front. Cell. Neurosci. 2018, 12, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freyer, D.R.; Chen, L.; Krailo, M.D.; Knight, K.; Villaluna, D.; Bliss, B.; Pollock, B.H.; Ramdas, J.; Lange, B.; Van Hoff, D.; et al. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): A multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017, 18, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Bouffet, E. Reducing cisplatin ototoxicity in children: Some hope and many questions. Lancet Oncol. 2017, 18, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Sarafraz, Z.; Ahmadi, A.; Daneshi, A. Transtympanic injections of N-acetylcysteine and dexamethasone for prevention of cisplatin-induced ototoxicity: Double blind randomized clinical trial. Int. Tinnitus J. 2018, 22, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Riga, M.G.; Chelis, L.; Kakolyris, S.; Papadopoulos, S.; Stathakidou, S.; Chamalidou, E.; Xenidis, N.; Amarantidis, K.; Dimopoulos, P.; Danielides, V. Transtympanic injections of N-acetylcysteine for the prevention of cisplatin-induced ototoxicity: A feasible method with promising efficacy. Am. J. Clin. Oncol. 2013, 6, 1–6. [Google Scholar] [CrossRef]
- Yoo, J.; Hamilton, S.J.; Angel, D.; Fung, K.; Franklin, J.; Parnes, L.S.; Lewis, D.; Venkatesan, V.; Winquist, E. Cisplatin otoprotection using transtympanic L-N-acetylcysteine: A pilot randomized study in head and neck cancer patients. Laryngoscope 2014, 124, E87–E94. [Google Scholar] [CrossRef]
- Foster-Nora, J.A.; Siden, R. Amifostine for protection from antineoplastic drug toxicity. Am. J. Health Syst. Pharm. 1997, 54, 787–800. [Google Scholar] [CrossRef]
- Fouladi, M.; Chintagumpala, M.; Ashley, D.; Kellie, S.; Gururangan, S.; Hassall, T.; Gronewold, L.; Stewart, C.F.; Wallace, D.; Broniscer, A.; et al. Amifostine protects against cisplatin-induced ototoxicity in children with average-risk medulloblastoma. J. Clin. Oncol. 2008, 26, 3749–3755. [Google Scholar] [CrossRef] [Green Version]
- Gurney, J.G.; Bass, J.; Onar-Thomas, A.; Huang, J.; Chintagumpala, M.; Bouffet, E.; Hassall, T.; Gururangan, S.; Heath, J.A.; Kellie, S.; et al. Evaluation of amifostine for protection against cisplatin-induced serious hearing loss in children treated for average-risk or high-risk medulloblastoma. Neuro-Oncology 2014, 16, 848–855. [Google Scholar] [CrossRef] [Green Version]
- Villani, V.; Zucchella, C.; Cristalli, G.; Galiè, E.; Bianco, F.; Giannarelli, D.; Carpano, S.; Spriano, G.; Pace, A. Vitamin E neuroprotection against cisplatin ototoxicity: Preliminary results from a randomized, placebo-controlled trial. Head Neck 2016, 38, E2118–E2121. [Google Scholar] [CrossRef] [PubMed]
- El-Mir, M.Y.; Detaille, D.; R-Villanueva, G.; Delgado-Esteban, M.; Guigas, B.; Attia, S.; Fontaine, E.; Almeida, A.; Leverve, X. Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons. J. Mol. Neurosci. 2008, 34, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ben Sahra, I.; Le Marchand-Brustel, Y.; Tanti, J.F.; Bost, F. Metformin in cancer therapy: A new perspective for an old antidiabetic drug? Mol. Cancer Ther. 2010, 9, 1092–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammed, I.; Hollenberg, M.D.; Ding, H.; Triggle, C.R. A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan. Front. Endocrinol. 2021, 12, 718942. [Google Scholar] [CrossRef]
- Sorrenti, V.; Benedetti, F.; Buriani, A.; Fortinguerra, S.; Caudullo, G.; Davinelli, S.; Zella, D.; Scapagnini, G. Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals 2022, 15, 912. [Google Scholar] [CrossRef]
- Chang, J.; Jung, H.H.; Yang, J.Y.; Lee, S.; Choi, J.; Im, G.J.; Chae, S.W. Protective effect of metformin against cisplatin-induced ototoxicity in an auditory cell line. J. Assoc. Res. Otolaryngol. 2014, 15, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Kalinec, G.M.; Webster, P.; Lim, D.J.; Kalinec, F. A cochlear cell line as an in vitro system for drug ototoxicity screening. Audiol. Neurootol. 2003, 8, 177–189. [Google Scholar] [CrossRef]
- Gaun, G.; He, X.; Chen, J.; Bin, L.; Tang, X. Identifying the mechanisms underlying the protective effect of tetramethylpyrazine against cisplatin-induced in vitro ototoxicity in HEI-OC1 auditory cells using gene expression profiling. Mol. Med. Rep. 2020, 22, 5033–5068. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zheng, Z.; Li, W.; Tang, D.; Zhao, L.; He, Y.; Li, H. Inhibition of KDM5A attenuates cisplatin-induced hearing loss via regulation of the MAPK/AKT pathway. Cell. Mol. Life Sci. 2022, 79, 596. [Google Scholar] [CrossRef]
- Denicourt, C.; Dowdy, S.F. Medicine. Targeting apoptotic pathways in cancer cells. Science 2004, 305, 1411–1413. [Google Scholar] [CrossRef]
- Anu Shah, A.; Xia, L.; Goldberg, H.; Lee, K.W.; Quaggin, S.E.; Fantus, I.G. Thioredoxin-interacting protein mediates high glucose-induced reactive oxygen species generation by mitochondria and the NADPH oxidase, Nox4, in mesangial cells. J. Biol. Chem. 2013, 288, 6835–6848. [Google Scholar] [CrossRef] [Green Version]
- Berk, B.D. Novel approaches to treat oxidative stress and cardiovascular diseases. Trans. Am. Clin. Climatol. Assoc. 2007, 118, 209–214. [Google Scholar]
- Junn, E.; Han, S.H.; Im, J.Y.; Yang, Y.; Cho, E.W.; Um, H.D.; Kim, D.K.; Lee, K.W.; Han, P.L.; Rhee, S.G.; et al. Vitamin D3 up-regulated protein 1 mediates oxidative stress via suppressing the thioredoxin function. J. Immunol. 2000, 164, 6287–6295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Rong, Y.; Zhang, M.; Wang, X.L.; LeMaire, S.A.; Coselli, J.S.; Zhang, Y.; Shen, Y.H. Up-regulation of thioredoxin interacting protein (Txnip) by p38 MAPK and FOXO1 contributes to the impaired thioredoxin activity and increased ROS in glucose-treated endothelial cells. Biochem. Biophys. Res. Commun. 2009, 381, 660–665. [Google Scholar] [CrossRef] [Green Version]
- Barton, G.M.; Medzhitov, R. Toll-like receptor signaling pathways. Science 2003, 300, 1524–1525. [Google Scholar] [CrossRef]
- Kolliputi, N.; Waxman, A.B. IL-6 cytoprotection in hyperoxic acute lung injury occurs via suppressor of cytokine signaling-1-induced apoptosis signal-regulating kinase-1 degradation. Am. J. Respir. Cell Mol. Biol. 2009, 40, 314–324. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, A.; Pathak, S.; Basak, C.; Law, S.; Kundu, M.; Basu, J. Execution of macrophage apoptosis by Mycobacterium avium through apoptosis signal-regulating kinase 1/p38 mitogen-activated protein kinase signaling and caspase 8 activation. J. Biol. Chem. 2003, 278, 26517–26525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarbassov, D.D.; Ali, S.M.; Kim, D.; Guertin, D.A.; Latek, R.R.; Erdjument-Gromage, H.; Tempst, P.; Sabatini, D.M. Rictor, a novel binding partner of mTOR, defines a rapamycin insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr. Biol. 2004, 14, 1296–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laplante, M.; Sabatini, D.M. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinzalla, V.; Stracka, D.; Oppliger, W.; Hall, M.N. Activation of mTORC2 by association with the ribosome. Cell 2011, 144, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Li, P.; Zhang, L.; Song, Y.; An, Y.; Zhang, A.; Liu, W.; Ye, C.; Zhang, Y.; Yue, R.; et al. Activation of Rictor/mTORC2 signaling acts as a pivotal strategy to protect against sensorineural hearing loss. Proc. Natl. Acad. Sci. USA 2022, 119, e2107357119. [Google Scholar] [CrossRef]
- Chau, G.C.; Im, D.U.; Kang, T.M.; Bae, J.M.; Kim, W.; Pyo, S.; Moon, E.Y.; Um, S.H. mTOR controls ChREBP transcriptional activity and pancreatic β cell survival under diabetic stress. J. Cell Biol. 2017, 216, 2091–2105. [Google Scholar] [CrossRef] [Green Version]
- Malone, C.F.; Emerson, C.; Ingraham, R.; Barbosa, W.; Guerra, S.; Yoon, H.; Liu, L.L.; Michor, F.; Haigis, M.; Macleod, K.F.; et al. mTOR and HDAC inhibitors converge on the TXNIP/thioredoxin pathway to cause catastrophic oxidative stress and regression of RAS-driven tumors. Cancer Discov. 2017, 7, 1450–1463. [Google Scholar] [CrossRef] [Green Version]
- Chai, T.F.; Hong, S.Y.; He, H.; Zheng, L.; Hagen, T.; Luo, Y.; Yu, F.-X. A potential mechanism of metformin-mediated regulation of glucose homeostasis: Inhibition of Thioredoxin-interacting protein (Txnip) gene expression. Cell. Signal. 2012, 24, 1700–1705. [Google Scholar] [CrossRef]
MapName | SigGenes | Bonferroni | FDR |
---|---|---|---|
Transcriptional misregulation in cancer | Supt3, Runx1, Cd14, Cdkn1a, Eya1, Igf1, Igf1r, Mdm2, Pbx1, Cdk14, Tgfbr2, Gria3, Gm12657, Mllt3,Hist2h3b//Hist1h3e//Hist1h3b//Hist1h3d//Hist1h3c//Hist1h3f//Hist2h3c2//Hist2h3c1, Hist1h3d, Hist2h3b//Hist1h3e//Hist1h3b//Hist1h3d//Hist1h3c//Hist1h3f//Hist2h3c2//Hist2h3c1, Hist1h3a//Hist1h3i//Hist1h3h//Hist1h3g Hist2h3b//Hist1h3e//Hist1h3b//Hist1h3d//Hist1h3c//Hist1h3f//Hist2h3c2//Hist2h3c1Hist1h3a//Hist1h3i//Hist1h3h//Hist1h3g, Hist2h3b//Hist1h3e//Hist1h3b//Hist1h3d//Hist1h3c//Hist1h3f//Hist2h3c2//Hist2h3c1 | 3.134 × 10−19 | 6.268 × 10−20 |
MicroRNAs in cancer | Bcl2, Ccne1, Cdk6, Cdkn1a, Socs1, Mdm2, Mmp16, Pdgfb, Pdgfrb, Prkca, Prkce, Thbs1, Tnr, Zfpm2, Mir10b, Mir23a, Mir29a, Mir30c-1, Mir99a, Mirlet7b, Mir28a, Mir31, Mir335, Mir194-2 | 5.4124 × 10−13 | 9.0207 × 10−14 |
PI3K-Akt signaling pathway | Itga1, Angpt1, Bcl2, Ccne1, Cdk6, Cdkn1a, Col11a1, Efna5, Fgf7, Ghr, Igf1, Igf1r, Mdm2, Pdgfb, Pdgfrb, Prkca, Thbs1, Thbs2, Tnr, Col5a3, Pdgfd | 2.5104 × 10−8 | 3.5863 × 10−9 |
Axon guidance | Bcl2, Ccne1, Cdk6, Cdkn1a, Socs1, Mdm2, Mmp16, Pdgfb, Pdgfrb, Prkca, Prkce, Thbs1, Tnr, Zfpm2, Mir10b, Mir23a, Mir29a, Mir30c-1, Mir99a, Mirlet7b, Mir28a, Mir31, Mir335, Mir194-2 | 7.823 × 10−8 | 9.7787 × 10−9 |
Rap1 signaling pathway | Angpt1, Efna5, Fgf7, Magi1, Igf1, Igf1r, Pdgfb, Pdgfrb, Prkca, Plcb4, Thbs1, Map2k6, Pdgfd, Pard6g, Pard3 | 3.0193 × 10−6 | 3.3548 × 10−7 |
Focal adhesion | Itga1, Bcl2, Col11a1, Igf1, Igf1r, Pdgfb, Pdgfrb, Prkca, Thbs1, Thbs2, Tnr, Dock1, Col5a3, Pdgfd | 1.6449 × 10−5 | 1.6449 × 10−6 |
Cytokine–cytokine receptor interaction | Eda, Ghr, Il10ra, Il11, Lepr, Pdgfb, Pdgfrb, Ccl5, Cxcl5, Cxcl12, Tgfbr2, Tnfsf9, Tnfsf18, Ppbp, Pdgfd | 3.8745 × 10−5 | 3.5223 × 10−6 |
Inflammatory mediator regulation of TRP channels | Cyp2j11, Cyp2c38, Igf1, Itpr1, Itpr2, Prkca, Prkce Plcb4, Map2k6, Cyp4a12a, Cyp2c55 | 7.3159 × 10−5 | 6.0966 × 10−6 |
Serotonergic synapse | Cyp2j11, Cacna1c, Cyp2c38, Cyp2d10, Htr5b, Itpr1, Itpr2, Prkca, Plcb4, Dusp1, Cyp2c55 | 0.00011611 | 8.2939 × 10−6 |
Metabolic pathways | Cyp2j11, Me3, Pcca, Adk, Bst1, Cbr1, Cyp26a1, Cyp2c38, Nat3, Plcb4, Pld1, Dhrs3, St3gal3, Suclg2, Itpk1, Gmds, Ak5, Galnt18, B3galt1, Galnt13, Cyp4a12a, Tpk1, Dgkh, Ndst4, Lpin2, Ppap2b, Bdh1, Cyp2c55, Nmnat3, Gbe1, Chsy3 | 0.00027672 | 1.6277 × 10−5 |
p53 signaling pathway | Ccne1, Ccng2, Cdk6, Cdkn1a, Gadd45a, Igf1, Mdm2, Thbs1 | 0.00077208 | 3.7439 × 10−5 |
Pathways in cancer | Bcl2, Bmp4, Runx1, Ccne1, Cdk6, Cdkn1a, Fgf7, Igf1, Igf1r, Mdm2, Pdgfb, Pdgfrb, Prkca, Plcb4, Cxcl12, Tgfbr2 | 0.00078621 | 3.7439 × 10−5 |
Tight junction | Cask, Cldn1, Magi1, Myh4, Prkca, Prkce, Exoc4, Mpp5, Pard6g, Pard3 | 0.00135494 | 6.1588 × 10−5 |
MAPK signaling pathway | Cacna1c, Cacna2d1, Cacnb3, Cd14, Gadd45a, Fgf7, Pdgfb, Pdgfrb, Prkca, Dusp1, Tgfbr2, Map2k6 | 0.00463177 | 0.00019299 |
Vascular smooth muscle contraction | Adra1d, Cacna1c, Itpr1, Itpr2, Prkca, Prkce, Plcb4, Cyp4a12a, Calcrl | 0.00566393 | 0.00021784 |
Choline metabolism in cancer | Pdgfb, Pdgfrb, Prkca, Pld1, Slc22a5, Dgkh, Ppap2b, Pdgfd | 0.00931772 | 0.0003451 |
Ras signaling pathway | Angpt1, Efna5, Fgf7, Igf1, Igf1r, Pdgfb, Pdgfrb, Prkca, Pld1, Rasal1, Pdgfd | 0.01057243 | 0.00037759 |
Neuroactive ligand-receptor interaction | Adra1d, C3ar1, Galr1, Ghr, Gpr50, Htr5b, Lepr, Gria3, Calcrl, 2210010C04Rik, 1810009J06Rik, Pard3 | 0.01189479 | 0.00041017 |
Oxytocin signaling pathway | Cacna1c, Cacna2d1, Cacnb3, Cdkn1a, Itpr1, Itpr2, Prkca, Plcb4, Camk1d | 0.02295549 | 0.00076518 |
Gap junction | Itpr1, Itpr2, Pdgfb, Pdgfrb, Prkca, Plcb4, Pdgfd | 0.03375284 | 0.0010888 |
GnRH signaling pathway | Cacna1c, Itpr1, Itpr2, Prkca, Plcb4, Pld1, Map2k6 | 0.03793504 | 0.00118547 |
Endocytosis | Asap1, H2-Q10, Igf1r, Mdm2, Pld1, Asap2, Gmds, Agap1, Nedd4l, Pard6g, Pard3 | 0.04708001 | 0.00138471 |
FoxO signaling pathway | Ccng2, Cdkn1a, Gadd45a Igf1, Igf1r, Mdm2, Gmds, Gabarapl | 0.04959527 | 0.00141701 |
Calcium signaling pathway | Phkb, Adra1d, Cacna1c, Htr5b, Itpr1, Itpr2, Pdgfrb, Prkca, Plcb4 | 0.053559531 | 0.00148776 |
HIF-1 signaling pathway | Angpt1, Bcl2, Cdkn1a, Edn1, Igf1, Igf1r, Prkca | 0.106382279 | 0.0028752 |
Glutamatergic synapse | Cacna1c, Itpr1, Itpr2, Prkca, Plcb4, Pld1, Gria3 | 0.145348043 | 0.00382495 |
Phosphatidylinositol signaling system | Itpr1, Itpr2, Prkca, Plcb4, Itpk1, Dgkh | 0.202974495 | 0.00520447 |
Cell cycle | Ccne1, Cdk6, Cdkn1a, Gadd45a, Mad1l1, Mdm2, Prkdc | 0.210708128 | 0.0052677 |
ECM-receptor interaction | Itga1, Col11a1, Thbs1, Thbs2, Tnr, Col5a3 | 0.273774372 | 0.00636685 |
Fc gamma R-mediated phagocytosis | Asap1, Prkca, Prkce, Pld1, Asap2, Ppap2b | 0.273774372 | 0.00636685 |
TNF signaling pathway | Edn1, Ccl5, Map2k6, Cxcl3, Gm5431, Ripk3 | 0.719880182 | 0.01469143 |
Regulation of actin cytoskeleton | Itga1, Cd14, Fgf7, Pdgfb, Pdgfrb, Dock1, Diap2, Pdgfd | 0.751289578 | 0.01502579 |
Cholinergic synapse | Bcl2, Cacna1c, Itpr1, Itpr2, Prkca, Plcb4 | 0.802839476 | 0.01574195 |
Renin secretion | Cacna1c, Clca1, Itpr1, Itpr2, Plcb4 | 0.905722389 | 0.01741774 |
cGMP-PKG signaling pathway | Cacna1c, Clca1, Itpr1, Itpr2, Plcb4 | 0.978637319 | 0.01774273 |
Regulation of autophagy | Ulk1, Gabarapl1, Atg10, Atg7 | 1 | 0.02257359 |
TGF-beta signaling pathway | Bmp4, Lefty1, Fst, Tgfbr2, Thbs1 | 1 | 0.02417471 |
Dopaminergic synapse | Cacna1c, Itpr1, Itpr2, Prkca, Plcb4, Gria3 | 1 | 0.02675152 |
Arachidonic acid metabolism | Cyp2j11, Cbr1, Cyp2c38, Cyp4a12a, Cyp2c55 | 1 | 0.02920426 |
Retinol metabolism | Cyp26a1, Cyp2c38, Dhrs3, Cyp4a12a, Cyp2c55 | 1 | 0.02920426 |
Chemokine signaling pathway | Cbr1, Cyp2c38, Gstm6, Nat3, Cyp2c55 | 1 | 0.03048876 |
Jak-STAT signaling pathway | Socs1, Ghr, Il10ra, Il11, Lepr, Spry1 | 1 | 0.04055011 |
Toll-like receptor signaling pathway | Cd14, Tlr8, Ly96, Ccl5, Map2k6 | 1 | 0.04089946 |
MapName | Genes | Bonferroni | FDR |
---|---|---|---|
MicroRNAs in cancer | Mir101c, Ccng1, Pdgfra, Mir215, Mir30c-1, Mirlet7b, Mir107, Mir34a, Mir181b, Mir335, Mir129-2, Mirlet7c-2 | 0.00074855 | 0.00014971 |
Cytokine–cytokine receptor interaction | Csf2, Csf2rb, Eda, Cxcl1, Ifna11, Il9, Lepr, Pdgfra, Il23r, Cd27, Tnfsf18 | 0.00336159 | 0.00048023 |
Phagosome | Actg1, Coro1a, H2-DMb2, H2-Q1, Thbs3, Tfrc, Tuba3b//Tuba3a, Tuba3b//Tuba3a, Atp6v1g3 | 0.00605809 | 0.00067547 |
Osteoclast differentiation | LOC100038947, Fos, Fosb, Fosl1, Gab2, Jun, Junb, Stat2 | 0.00607925 | 0.00067547 |
TNF signaling pathway | Csf2, Fos, Cxcl1, Jun, Junb, Sele, Magi2 | 0.02605061 | 0.00260506 |
cAMP signaling pathway | Camk2a, Fos, Grin2a, Jun, Pld1, Atp1a3, Ffar2, Ghrl | 0.091690159 | 0.00764085 |
Rap1 signaling pathway | Actg1, Angpt2, Grin2a, Klk1b4, Pdgfra, Dock4, Sipa1l2, Magi2 | 0.138968297 | 0.01029513 |
Jak-STAT signaling pathway | Csf2, Csf2rb, Ifna11, Il9, Lepr, Stat2, Il23r | 0.144131818 | 0.01029513 |
B cell receptor signaling pathway | Cd22, Cr2, Fos, Jun, Ifitm1 | 0.338145688 | 0.02113411 |
Steroid hormone biosynthesis | Akr1c18, Cyp3a13, Hsd17b6, Cyp3a44, Cyp2d11 | 0.621540012 | 0.02971865 |
Metabolic pathways | Cth, Gpt2, Hyal3, Pygl, Cyp3a13, Pld1, Pycr1, Ampd1, Ggt5, Gulo, Lpcat2, Acsm5, Hsd17b6, Cyp3a44, Atp6v1g3, Aldh18a1, Tdo2, Dcxr, Pck2 | 0.817243672 | 0.03714744 |
Toll-like receptor signaling pathway | Cd80, Fos, Ifna11, Jun, Spp1 | 1 | 0.04339047 |
Cell adhesion molecules (CAMs) | Cd22, Cd80, H2-DMb2, H2-Q1, Sele, Cldn20 | 1 | 0.04339047 |
Gene Name | Gene Description | Fold Change | Gene Name | Gene Description | Fold Change |
---|---|---|---|---|---|
Cyp2c38 | cytochrome P450, family 2, subfamily c, polypeptide 38 | 2.419 | Tagap1 | T cell activation GTPase activating protein 1 | −2.400 |
Gzmf | granzyme F | 2.417 | Lpin2 | lipin 2 | −2.090 |
Nlrp9c | NLR family, pyrin domain containing 9C | 2.238 | Akr1c13 | aldo-keto reductase family 1, member C13 | −1.950 |
Krt6b | keratin 6B | 2.151 | Taar7d | trace amine-associated receptor 7D | −1.928 |
Scgb2b10 | secretoglobin, family 2B, member 10 | 2.125 | Gsdmc3 | gasdermin C3 | −1.918 |
Rex2 | reduced expression 2 | 2.019 | Hoxd13 | homeobox D13 | −1.901 |
Amy2b | amylase 2b | 1.985 | Cyp26a1 | cytochrome P450, family 26, subfamily a, polypeptide 1 | −1.864 |
Esp3 | exocrine gland secreted peptide 3 | 1.961 | Agbl2 | ATP/GTP binding protein-like 2 | −1.861 |
Ear1 | eosinophil-associated, ribonuclease A family, member 1 | 1.918 | Fbxw20 | F-box and WD-40 domain protein 20 | −1.852 |
Ipw | imprinted gene in the Prader-Willi syndrome region | 1.853 | Krtap6-2 | keratin associated protein 6-2 | −1.841 |
Trbj1-7 | T cell receptor beta joining 1-7 | 1.850 | Tnfrsf18 | tumor necrosis factor receptor superfamily, member 18 | −1.819 |
Gzme | granzyme E | 1.824 | Cmtm1 | CKLF-like MARVEL transmembrane domain containing 1 | −1.804 |
Cyp4a12a | cytochrome P450, family 4, subfamily a, polypeptide 12a | 1.811 | Trav14-1 | T cell receptor alpha variable 14-1 | −1.795 |
Traj24 | T cell receptor alpha joining 24 | 1.806 | Tlr8 | Toll-like receptor 8 | −1.791 |
Foxn4 | forkhead box N4 | 1.7920 | Sh2d1b2 | SH2 domain protein 1B2 | −1.783 |
Skint5 | selection and upkeep of intraepithelial T cells 5 | 1.776 | Svs3b | seminal vesicle secretory protein 3B | −1.767 |
Klra9 | killer cell lectin-like receptor subfamily A, member 9 | 1.768 | Uckl1os | uridine-cytidine kinase 1-like 1, opposite strand | −1.762 |
Adck1 | aarF domain containing kinase 1 | 1.759 | Abcd2 | ATP-binding cassette, sub-family D (ALD), member 2 | −1.750 |
Pcdhb8 | protocadherin beta 8 | 1.736 | Dsg1b | desmoglein 1 beta | −1.726 |
Aarsd1 | alanyl-tRNA synthetase domain containing 1 | 1.707 | Dpt | dermatopontin | −1.703 |
Gene Name | Gene Description | Fold Change | Gene Name | Gene Description | Fold Change |
---|---|---|---|---|---|
Tagap1 | T cell activation GTPase activating protein 1 | 3.31 | Cdh18 | cadherin 18 | −4.34 |
Akr1c13 | aldo-keto reductase family 1, member C13 | 2.49 | Slc24a3 | solute carrier family 24 (sodium/potassium/calcium exchanger), member 3 | −4.15 |
Cdkn1a | cyclin-dependent kinase inhibitor 1A (P21) | 2.43 | Gpc6 | glypican 6 | −3.18 |
Tdpoz1 | TD and POZ domain containing 1 | 2.06 | Magi1 | membrane associated guanylate kinase, WW and PDZ domain containing 1 | −3.07 |
Btg2 | B cell translocation gene 2, anti-proliferative | 2.02 | Camk1d | calcium/calmodulin-dependent protein kinase ID | −2.90 |
Trav6-3 | T cell receptor alpha variable 6-3 | 2.00 | Plxna2 | plexin A2 | −2.79 |
Acy3 | aspartoacylase (aminoacylase) 3 | 1.99 | Supt3 | suppressor of Ty 3 | −2.77 |
Fbxw20 | F-box and WD-40 domain protein 20 | 1.97 | Agap1 | ArfGAP with GTPase domain, ankyrin repeat and PH domain 1 | −2.75 |
Txnip | thioredoxin interacting protein | 1.97 | Prkca | protein kinase C, alpha | −2.72 |
Rasl11b | RAS-like, family 11, member B | 1.95 | Cdkal1 | CDK5 regulatory subunit associated protein 1-like 1 | −2.60 |
Zar1 | zygote arrest 1 | 1.94 | Tbc1d5 | TBC1 domain family, member 5 | −2.60 |
Trp53inp1 | transformation related protein 53 inducible nuclear protein 1 | 1.90 | Slc25a21 | solute carrier family 25 (mitochondrial oxodicarboxylate carrier), member 21 | −2.58 |
Faddos | Fas (TNFRSF6)-associated via death domain, opposite strand | 1.86 | Ctif | CBP80/20-dependent translation initiation factor | −2.56 |
Krtap10-4 | keratin associated protein 10-4 | 1.85 | Ptprg | protein tyrosine phosphatase, receptor type, G | −2.55 |
Ccne1 | cyclin E1 | 1.84 | Dis3l2 | DIS3 mitotic control homolog (S. cerevisiae)-like 2 | −2.55 |
Serpina3i | serine (or cysteine) peptidase inhibitor, clade A, member 3I | 1.84 | Cdk14 | cyclin-dependent kinase 14 | −2.52 |
Prl7d1 | prolactin family 7, subfamily d, member 1 | 1.84 | Fhod3 | formin homology 2 domain containing 3 | −2.50 |
Scn10a | sodium channel, voltage-gated, type X, alpha | 1.84 | Clybl | citrate lyase beta like | −2.48 |
S100a7a | S100 calcium binding protein A7A | 1.83 | Ror1 | receptor tyrosine kinase-like orphan receptor 1 | −2.48 |
Tmprss11d | transmembrane protease, serine 11d | 1.83 | Setbp1 | SET binding protein 1 | −2.47 |
Gene Name | Gene Description | Fold Change | Gene Name | Gene Description | Fold Change |
---|---|---|---|---|---|
Txnip | thioredoxin interacting protein | 12.18 | Ptn | pleiotrophin | −8.98 |
Nppb | natriuretic peptide type B | 10.60 | Gpc6 | glypican 6 | −6.49 |
Btg2 | B cell translocation gene 2, anti-proliferative | 9.11 | Angpt1 | angiopoietin 1 | −5.96 |
Cdkn1a | cyclin-dependent kinase inhibitor 1A (P21) | 8.43 | Cpq | carboxypeptidase Q | −4.95 |
Atf3 | activating transcription factor 3 | 5.83 | Npr3 | natriuretic peptide receptor 3 | −4.58 |
Trp53inp1 | transformation related protein 53 inducible nuclear protein 1 | 5.77 | Slc4a4 | solute carrier family 4 (anion exchanger), member 4 | −4.53 |
S100a7a | S100 calcium binding protein A7A | 5.56 | Kcnip1 | Kv channel-interacting protein 1 | −4.48 |
Eda2r | ectodysplasin A2 receptor | 5.54 | Ror1 | receptor tyrosine kinase-like orphan receptor 1 | −4.32 |
Mdm2 | transformed mouse 3T3 cell double minute 2 | 5.44 | Car3 | carbonic anhydrase 3 | −4.19 |
Fos | FBJ osteosarcoma oncogene | 5.25 | Setbp1 | SET binding protein 1 | −4.17 |
Hba-a2 | hemoglobin alpha, adult chain 2 | 5.06 | Gas1 | growth arrest specific 1 | −4.10 |
Tnfsf18 | tumor necrosis factor (ligand) superfamily, member 18 | 4.87 | Sprr2g | small proline-rich protein 2G | −4.08 |
Ptgs2 | prostaglandin-endoperoxide synthase 2 | 4.87 | Tenm3 | teneurin transmembrane protein 3 | −3.96 |
Nr4a1 | nuclear receptor subfamily 4, group A, member 1 | 4.61 | Lphn2 | latrophilin 2 | −3.88 |
Tcrg-C4 | T cell receptor gamma, constant 4 | 4.17 | Magi1 | membrane associated guanylate kinase, WW and PDZ domain containing 1 | −3.85 |
Dynap | dynactin associated protein | 4.06 | Cdh18 | cadherin 18 | −3.83 |
Egr1 | early growth response 1 | 3.97 | Plxna2 | plexin A2 | −3.82 |
Snora75 | small nucleolar RNA, H/ACA box 75 | 3.95 | Atg10 | autophagy related 10 | −3.81 |
Gdf15 | growth differentiation factor 15 | 3.88 | Sprr2a2 | small proline-rich protein 2A2 | −3.78 |
Fas | Fas (TNF receptor superfamily member 6) | 3.66 | Ptprg | protein tyrosine phosphatase, receptor type, G | −3.72 |
Gene Name | Gene Description | Fold Change | Gene Name | Gene Description | Fold Change |
---|---|---|---|---|---|
r7b | trace amine-associated receptor 7B | 2.38 | Csf2 | colony stimulating factor 2 (granulocyte-macrophage) | −2.49 |
H2-DMb2 | histocompatibility 2, class II, locus Mb2 | 2.31 | Mcpt9 | mast cell protease 9 | −2.37 |
Rhox3f | reproductive homeobox 3F | 2.22 | Slc40a1 | solute carrier family 40 (iron-regulated transporter), member 1 | −2.34 |
Cdsn | corneodesmosin | 2.21 | Snora75 | small nucleolar RNA, H/ACA box 75 | −2.30 |
Scgb2b20 | secretoglobin, family 2B, member 20 | 2.20 | Tnfsf18 | tumor necrosis factor (ligand) superfamily, member 18 | −2.28 |
Ear1 | eosinophil-associated, ribonuclease A family, member 1 | 2.15 | mt-Tf | mitochondrially encoded tRNA phenylalanine | −2.16 |
Krt6b | keratin 6B | 2.13 | Cdon | cell adhesion molecule-related/down-regulated by oncogenes | −2.10 |
Snord98 | small nucleolar RNA, C/D box 98 | 2.12 | Tcrg-C4 | T cell receptor gamma, constant 4 | −2.08 |
Mterf1b | mitochondrial transcription termination factor 1b | 2.11 | Snora30 | small nucleolar RNA, H/ACA box 30 | −2.05 |
Klk1b27 | kallikrein 1-related peptidase b27 | 2.09 | Fos | FBJ osteosarcoma oncogene | −2.05 |
Eda | ectodysplasin-A | 2.08 | Btg2 | B cell translocation gene 2, anti-proliferative | −2.04 |
Atp6v1g3 | ATPase, H+ transporting, lysosomal V1 subunit G3 | 2.07 | Amd2 | S-adenosylmethionine decarboxylase 2 | −2.01 |
Mpeg1 | macrophage expressed gene 1 | 2.03 | Mnd1 | meiotic nuclear divisions 1 homolog (S. cerevisiae) | −1.99 |
Traj25 | T cell receptor alpha joining 25 | 2.03 | Arxes2 | adipocyte-related X-chromosome expressed sequence 2 | −1.99 |
Akr1c18 | aldo-keto reductase family 1, member C18 | 2.02 | Egr1 | early growth response 1 | −1.97 |
Ffar2 | free fatty acid receptor 2 | 1.95 | Gpx2-ps1 | glutathione peroxidase 2, pseudogene 1 | −1.93 |
Dlx6os1 | distal-less homeobox 6, opposite strand 1 | 1.94 | Arfip1 | ADP-ribosylation factor interacting protein 1 | −1.92 |
Spata16 | spermatogenesis associated 16 | 1.91 | Rhox4f | reproductive homeobox 4F | −1.90 |
Zfp438 | zinc finger protein 438 | 1.90 | Ampd1 | adenosine monophosphate deaminase 1 | −1.89 |
Cd27 | CD27 antigen | 1.89 | Nr4a2 | nuclear receptor subfamily 4, group A, member 2 | −1.89 |
Cisplatin vs. Control | Fold Change | Metformin + Cisplatin vs. Cisplatin | Fold Change |
---|---|---|---|
Ampd1 | 2.169397 | Ampd1 | −1.893582 |
Atf3 | 5.831965 | Atf3 | −1.753464 |
Btg2 | 9.106313 | Btg2 | −2.038355 |
Csf2 | 3.582915 | Csf2 | −2.488886 |
Cxcl1 | 2.812806 | Cxcl1 | −1.789373 |
Dffb | 1.934398 | Dffb | −1.763047 |
Egr1 | 3.969056 | Egr1 | −1.966299 |
Fos | 5.247514 | Fos | −2.049006 |
Fosl1 | 2.001054 | Fosl1 | −1.735427 |
Gabra4 | 1.834919 | Gabra4 | −1.870577 |
Gpx2-ps1 | 1.643713 | Gpx2-ps1 | −1.931494 |
Hist1h2bc | 1.921256 | Hist1h2bc | −3.030378 |
Hist1h2bg | 1.528113 | Hist1h2bg | −2.196096 |
Hyal3 | 2.210002 | Hyal3 | −1.743591 |
Ifnz | 3.560730 | Ifnz | −1.791521 |
Ighv1-59 | 1.670384 | Ighv1-59 | −2.564053 |
Igkv2-116 | 1.526292 | Igkv2-116 | −1.904914 |
Igkv4-57-1 | 1.920516 | Igkv4-57-1 | −2.084605 |
Klk1b26 | 1.637801 | Klk1b26 | −1.847820 |
Mir335 | 2.549508 | Mir335 | −2.489257 |
Mir669d | 3.325815 | Mir669d | −2.622897 |
Nr4a2 | 2.843824 | Nr4a2 | −1.890484 |
Rhox4f | 1.639365 | Rhox4f | −1.898595 |
Slc40a1 | 1.579318 | Slc40a1 | −2.344163 |
Snora75 | 3.949902 | Snora75 | −2.300169 |
Tcrg-C4 | 4.166688 | Tcrg-C4 | −2.079953 |
Tnfsf18 | 4.874364 | Tnfsf18 | −2.282116 |
Trav6-3 | 1.877071 | Trav6-3 | −1.724728 |
Txnip | 12.184051 | Txnip | −1.879019 |
Vmn2r115 | 2.249487 | Vmn2r115 | −1.745398 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Choi, S.; Park, S.H.; Im, G.J.; Chang, J. Transcriptomic Analysis of the Effect of Metformin against Cisplatin-Induced Ototoxicity: A Potential Mechanism of Metformin-Mediated Inhibition of Thioredoxin-Interacting Protein (Txnip) Gene Expression. Curr. Issues Mol. Biol. 2023, 45, 286-310. https://doi.org/10.3390/cimb45010021
Lee S, Choi S, Park SH, Im GJ, Chang J. Transcriptomic Analysis of the Effect of Metformin against Cisplatin-Induced Ototoxicity: A Potential Mechanism of Metformin-Mediated Inhibition of Thioredoxin-Interacting Protein (Txnip) Gene Expression. Current Issues in Molecular Biology. 2023; 45(1):286-310. https://doi.org/10.3390/cimb45010021
Chicago/Turabian StyleLee, Sehee, Sun Choi, Seok Hyun Park, Gi Jung Im, and Jiwon Chang. 2023. "Transcriptomic Analysis of the Effect of Metformin against Cisplatin-Induced Ototoxicity: A Potential Mechanism of Metformin-Mediated Inhibition of Thioredoxin-Interacting Protein (Txnip) Gene Expression" Current Issues in Molecular Biology 45, no. 1: 286-310. https://doi.org/10.3390/cimb45010021
APA StyleLee, S., Choi, S., Park, S. H., Im, G. J., & Chang, J. (2023). Transcriptomic Analysis of the Effect of Metformin against Cisplatin-Induced Ototoxicity: A Potential Mechanism of Metformin-Mediated Inhibition of Thioredoxin-Interacting Protein (Txnip) Gene Expression. Current Issues in Molecular Biology, 45(1), 286-310. https://doi.org/10.3390/cimb45010021