Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration
Abstract
:1. Introduction
2. Results
2.1. CaMBDs of Parkinson’s Marker Proteins
2.2. Dementia with Lewy Bodies: CaM-Binding of TMEM75 and GBA
2.3. CaM-Binding of ALS/FTD Risk Proteins
2.4. CaM-Binding Domains in Huntington Risk Proteins
3. Discussion
4. Materials and Methods
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AchR | Acetylcholine receptor |
AD | Alzheimer’s disease |
ALS | amyotrophic lateral sclerosis |
APOE | apolipoprotein E |
BD | Batten disease |
BIN1 | Bridging Integrator 1 |
C9orf72 | chromosome 9 open reading frame 72 |
CaM | calmodulin |
CaMBD | calmodulin binding domain |
CaMBP | calmodulin binding protein |
CD33 | myeloid cell surface antigen CD33 |
CH3L1/YKL-40 | chitinase-3-like protein I |
CHCHD10 | Coiled-coil-helix-coiled-coil-helix domain-containing protein 10 |
CLU | clusterin |
CR1 | complement receptor type 1 |
D2R | D2-dopamine receptor |
EPHA1 | ephrin type-A receptor 1 |
FTD | frontotemporal dementia |
FUS | fused in sarcoma RNA binding protein |
GBA | glucocerebrosidase |
GRN | progranulin |
HD | Huntington’s disease |
LBD | dementia with Lewy bodies |
LRRK2 | leucine-rich repeat kinase 2 |
MS | multiple sclerosis |
MS4A | membrane-spanning 4-domains subfamily A |
NCL | neuronal ceroid lipofuscinosis |
NLRP3 | NACHT, LRR, and PYD domains containing protein 3 |
PD | Parkinson’s disease |
PARK7 | Parkinsonism associated deglycase 7 |
PILRA | paired immunoglobin-like type 2 receptor alpha |
PINK1 | PTEN induced kinase 1 |
PP2B | calcineurin |
SNCA | α-synuclein SQSTM1, TGM1/2, transglutaminase 1/2 |
SQSTM1 | TGM1/2, transglutaminase 1/2 |
TMEM175 | transmembrane protein 175 |
TPD-43/TARDBP | TPD-43/TARDBP |
TREM2 | triggering receptor expressed on myeloid cells 2 |
VCP | Valosin-containing protein |
References
- Richmond-Raker, L.S.; D’Souza, S.; Milne, B.J.; Caspi, A.; Moffitt, T.E. Longitudinal associations of mental disorders with dementia 30-year analysis of 1.7 million New Zealand citizens. JAMA Psych. 2022, 79, 333–340. [Google Scholar] [CrossRef]
- Azam, S.; Haque, M.E.; Balakrishnan, R.; Kim, I.-S.; Choi, D.-K. The Ageing Brain: Molecular and Cellular Basis of Neurodegeneration. Front. Cell Dev. Biol. 2021, 9, 683459. [Google Scholar] [CrossRef]
- Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 2016, 539, 180–186. [Google Scholar] [CrossRef] [Green Version]
- Bourdenx, M.; Koulakiotis, N.S.; Sanoudou, D.; Bezard, E.; Dehay, B.; Tsarbopoulos, A. Protein aggregation and neurodegeneration in prototypical neurodegenerative diseases: Examples of amyloidopathies, tauopathies and synucleinopathies. Prog. Neurobiol. 2017, 155, 171–193. [Google Scholar] [CrossRef]
- Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science 2016, 353, 777–783. [Google Scholar] [CrossRef]
- Khachaturian, Z.S. Towards theories of brain aging. In Handbook of Studies on Psychiatry and Old Age; Kay, D.S., Burrows, G.W., Eds.; Elsevier Science Publishers, B.V.: Amsterdam, The Netherlands, 1984; pp. 7–30. [Google Scholar]
- Khachaturian, Z.S. Calcium hypothesis of Alzheimer’s disease and brain aging. Ann. N. Y. Acad. Sci. 1994, 747, 1–11. [Google Scholar] [CrossRef]
- O’Day, D.H.; Myre, M.A. Calmodulin-binding domains in Alzheimer’s disease proteins: Extending the calcium hypothesis. Biochem. Biophys. Res. Commun. 2004, 230, 1051–1054. [Google Scholar] [CrossRef]
- O’Day, D.H.; Eshak, K.; Myre, M.A. Calmodulin Binding Proteins and Alzheimer’s Disease: A Review. J. Alzheimer’s Dis. 2015, 46, 553–569. [Google Scholar] [CrossRef] [Green Version]
- O’Day, D.H.; Huber, R.L. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci. 2022, 23, 10. [Google Scholar] [CrossRef]
- Bao, J.; Sharp, A.H.; Wagster, M.V.; Becher, M.; Schilling, G.; Ross, C.A.; Dawson, V.L.; Dawson, T.M. Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc. Natl. Acad. Sci. USA 1996, 93, 5037–5042. [Google Scholar] [CrossRef]
- Puszkin, E.G.; Raghuraman, V. Catalytic properties of a calmodulin-regulated transglutaminase from human platelet and chicken gizzard. J. Biol. Chem. 1985, 260, 16012–16020. [Google Scholar] [CrossRef]
- Zainelli, G.M.; Ross, C.A.; Troncoso, J.C.; Fitzgerald, J.K.; Muma, N.A. Calmodulin regulates transglutamase 2 cross-linking of huntingtin. J. Neurosci. 2004, 24, 1954–1961. [Google Scholar] [CrossRef] [Green Version]
- Zainelli, G.M.; Dudek, N.L.; Ross, C.A.; Kim, S.-Y.; Muma, N.A. Mutant Huntingtin protein A substrate for transglutaminase 1, 2, and 3. J. Neuropathol. Exp. Neurol. 2005, 64, 58–65. [Google Scholar]
- Bofill-Cardona, E.; Kudlacek, O.; Yang, Q.; Ahorn, H.; Freissmuth, M.; Nanoff, C. Binding of calmodulin to the D2-Dopamine receptor reduces receptor signaling by arresting the G protein activation switch. J. Biol. Chem. 2020, 275, 32672–32680. [Google Scholar] [CrossRef] [Green Version]
- Martel, J.C.; Gatti McArthur, S. Dopamine Receptor Subtypes, Physiology and Pharmacology: New Ligands and Concepts in Schizophrenia. Front. Pharmacol. 2020, 11, 1003. [Google Scholar] [CrossRef]
- Martinez, J.; Moeller, I.; Erdjument-Bromagel, H.; Tempst, P.; Lauring, B. Parkinson’s disease-associated a-synuclein is a calmodulin substrate. J. Biol. Chem. 2003, 278, 17379–17387. [Google Scholar] [CrossRef] [Green Version]
- O’Day, D.H. Calmodulin binding proteins and Alzheimer’s disease: Biomarkers, regulatory enzymes and receptors that are regulated by calmodulin. Int. J. Mol. Sci. 2020, 21, 7344. [Google Scholar] [CrossRef]
- Robinson, A.J. Emerging role of CaMKII in neuropsychiatric disorders. Trends Neurosci. 2014, 37, 653–662. [Google Scholar] [CrossRef]
- Orme, T.; Guerreiro, R.; Bras, J. The Genetics of dementia with Lewy Bodies: Current understanding and future directions. Curr. Neurol. Neurosci. Rep. 2018, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- Hauser, D.N.; Primiani, C.T.; Cookson, M.R. The effects of variants in the PARK2 (parkin), PINK1, and PARK7 (DJ-1) genes along with evidence for their pathogenicity. Curr. Protein Pep. Sci. 2017, 18, 702–714. [Google Scholar] [CrossRef]
- Rivero-Ríos, P.; Romo-Lozano, M.; Fasiczka, R.; Naaldijk, Y.; Hilfiker, S. LRRK2-related Parkinson’s Disease due to altered endolysosomal biology with variable Lewy Body pathology: A hypothesis. Front. Neurosci. 2020, 14, 556. [Google Scholar] [CrossRef] [PubMed]
- Abramzon, Y.A.; Fratta, P.; Traynor, B.J.; Chia, R. The overlapping genetics of Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front. Neurosci. 2020, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Ciryam, P.; Lambert-Smith, I.A.; Bean, D.M.; Freer, R.; Cid, F.; Tartaglia, G.G.; Saunders, D.N.; Wilson, M.R.; Oliver, S.G.; Morimoto, R.I.; et al. Spinal motor neuron protein supersaturation patterns are associated with inclusion body formation in ALS. Proc. Nat. Acad. Sci. USA 2017, 114, E3935–E3943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudek, N.L.; Dai, Y.; Muma, N.A. Protective effects of interrupting the binding of calmodulin to mutant huntingtin. J. Neuropathol. Exp. Neurol. 2008, 67, 355–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dudek, N.L.; Dai, Y.; Muma, N.A. Neuroprotective effects of calmodulin peptide 76-121aa: Disruption of calmodulin binding to mutant huntingtin. Brain Pathol. 2010, 20, 176–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, H.; Zhong, H.; Xue, Z. Protein domain identification methods and online resources. Comput. Struct. Biotech. 2021, 19, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Minhas, F.; Ben-Hur, A. Multiple instance learning of calmodulin binding sites. Bioinformatics 2012, 28, i416–i422. [Google Scholar] [CrossRef] [Green Version]
- Mruk, K.; Farley, B.M.; Ritacco, A.W.; Kobertz, W.R. Calmodulation meta-analysis: Predicting calmodulin binding via canonical motif clustering. J. Gen. Physiol. 2014, 144, 105–114. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, A.R.; Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J. 1997, 11, 331–340. [Google Scholar] [CrossRef]
- Chin, D.; Means, A.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 2000, 10, 322–328. [Google Scholar] [CrossRef]
- Tidow, H.; Nissen, P. Structural diversity of calmodulin binding to its target sites. FEBS J. 2013, 280, 5551–5565. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.M.M.; Enomoto, M.; Ikura, M.; Marshall, C.B. A non-canonical calmodulin target motif comprising a polybasic region and lipidated terminal residue regulates localization. Int. J. Mol. Sci. 2020, 21, 2751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Kirberger, M.; Yang, J.J. Aspects and prediction of calmodulin binding proteins. Int. J. Mol. Sci. 2021, 22, 308. [Google Scholar]
- Lurie, D.I. An Integrative Approach to Neuroinflammation in Psychiatric disorders and Neuropathic Pain. J. Exp. Neurosci. 2018, 12, 1179069518793639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, E.W.; Aarsland, D.; Ffytche, D.; Taddei, R.N.; van Wamelen, D.J.; Wan, Y.-M.; Tan, E.K.; Chaudhuri, K.R. Amyloid-b and Parkinson’s disease. J. Neurol. 2019, 266, 2605–2619. [Google Scholar] [CrossRef] [PubMed]
- Zalchick, S.V.; McGrath, K.M.; Caraveo, G. The role of Ca2+ signaling in Parkinson’s disease. Dis. Mod. Mech. 2017, 10, 519–535. [Google Scholar] [CrossRef] [Green Version]
- Bohush, A.; Leśniak, W.; Weis, S.; Filipek, A. Calmodulin and its binding proteins in Parkinson’s disease. Int. J. Mol. Med. 2021, 22, 2016. [Google Scholar] [CrossRef]
- Zhang, W.; Ross, P.J.; Ells, J.; Salter, M.W. Targeting NMDA receptors in neuropsychiatric disorders by drug screening on human neurons derived from pluripotent stem cells. Transl. Psych. 2022, 12, 243. [Google Scholar] [CrossRef]
- Erskine, D.; Taylor, J.-P.; Bakker, G.; Brown, A.J.H.; Tasker, T.; Nathan, P.J. Cholinergic muscarinic M1 and M4 receptors as therapeutic targets for cognitive, behavioural and psychological symptoms in psychiatric and neurological disorders. Drug Disc. Today 2019, 24, 2307–2314. [Google Scholar] [CrossRef]
- Corbacho, I.; Berrocal, M.; Torok, K.; Mata, A.M.; Gutierrez-Merino, C. High affinity binding of amyloid β-peptide to calmodulin: Structural and functional implications. Biochem. Biophys. Res. Commun. 2017, 486, 992–997. [Google Scholar] [CrossRef] [Green Version]
- Padilla, R.; Maccioni, R.B.; Avila, J. Calmodulin binds to a tubulin binding site of the microtubule associated protein tau. Mol. Cell. Biochem. 1990, 97, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Lange, J.; Lunde, K.A.; Sletten, C.; Moller, S.G.; Tysnes, O.-B.; Alves, G.; Larsen, J.P.; Maple-Grodem, J. Association of a BACE1 gene polymorphism with Parkinson’s disease in a Norwegian population. Park. Dis. 2015, 2015, 973290. [Google Scholar]
- Chavez, S.E.; O’Day, D.H. Calmodulin binds to and regulates the activity of beta-secretase (BACE1). Curr. Res. Alzheimer’s Dis. 2007, 1, 37–47. [Google Scholar]
- Xiang, Y.; Xin, J.; Le, W.; Yang, Y. Neurogranin: A potential biomarker of neurological and mental diseases. Front. Aging Neurosci. 2020, 12, 58743. [Google Scholar] [CrossRef]
- Yap, T.L.; Gruschus, J.M.; Velayati, A.; Westboek, W.; Goldin, E.; Moaven, N.; Sidransky, E.; Lee, J.C. a-Synuclein interacts with glucocerebrocidase providing a molecular link between Parkinson and Gaucher diseases. J. Biol. Chem. 2011, 286, 28080–28088. [Google Scholar] [CrossRef] [Green Version]
- Guzman-Martinez, L.; Maccioni, R.B.; Andrade, V.; Navarrete, L.P.; Pastor, M.G.; Ramos-Escobar, N. Neuroinflammation as a common feature of neurodegenerative disorders. Front. Pharmacol. 2019, 10, 1008. [Google Scholar] [CrossRef] [Green Version]
- Surmeier, D.J.; Schumacker, P.T.; Guzman, J.D.; Ilijic, E.; Yang, B.; Zampese, E. Calcium and Parkinson’s disease. Biochem. Biophys. Res. Commun. 2016, 483, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Avenali, M.; Blandini, F.; Cerri, S. Glucocerebroside defects as a major risk factor for Parkinson’s disease. Front. Aging. Neurosci. 2020, 12, 97. [Google Scholar] [CrossRef] [Green Version]
- Rockenstein, E.; Clarke, J.; Viel, C.; Panarello, N.; Treleaven, C.M.; Kim, C.; Spencer, B.; Adame, A.; Park, H.; Dodge, J.C.; et al. Glucocerebroside modulates cognitive and motor activities in murine models of Parkinson’s disease. Human Mol. Genet. 2016, 25, 2645–2660. [Google Scholar]
- Balestrino, R.; Schapira, A.H.V. Glucocerebrosidase and Parkinson disease: Molecular, clinical, and therapeutic implications. Neuroscientist 2018, 24, 540–559. [Google Scholar] [CrossRef]
- Ma, S.; Attarwala, I.Y.; Xie, X.-Q. SQSTMI/p62: A potential target for neurodegenerative disease. ACS Chem. Neurosci. 2019, 10, 2094–2114. [Google Scholar] [CrossRef] [PubMed]
- Falcon, B.; Zhang, W.; Murzin, A.G.; Murshudov, G.; Garringer, H.J.; Vidal, R.; Crowther, R.A.; Ghetti, B.; Scheres, S.H.W.; Goedert, M. Structures of filaments from Pick’s disease reveal a novel tau protein fold. Nature 2018, 561, 137–140. [Google Scholar] [CrossRef] [PubMed]
- Nishijima, K.; O’hara, K.; Kaneko, K.; Hachiya, N. Calmodulin-like skin protein (CLSP) is a novel biomarker candidate for Pick’s disease by unfoldin-modified proteomic analysis. J. Neurol. Neurophysiol. 2012, 1, S11–S13. [Google Scholar]
- Jeitner, T.M.; Muma, N.A.; Battaile, K.P.; Cooper, A.J.L. Transglutamase activation in neurodegenerative diseases. Future Neurol. 2009, 4, 449–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, S.R.L.; Schapira, A.H.V. Glucocerebrosidase mutations: A paradigm for neurodegeration pathways. Free Radic. Biol. Med. 2021, 175, 42–56. [Google Scholar] [CrossRef]
- Min, B.; Chung, K.C. New insight into transglutamase 2 and link to neurodegenerative diseases. BMB Rep. 2018, 51, 5–13. [Google Scholar] [CrossRef]
- Linnertz, C.; Lutz, M.W.; Ervin, J.F.; Allen, J.; Miller, N.R.; Welsh-Bohmer, K.A.; Roses, A.D.; Chiba-Falek, O. The genetic contributions of SNCA and LRRK2 genes to Lewy Body pathology in Alzheimer’s Disease. Hum. Mol. Gen. 2014, 23, 4814–4821. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Yin, Y.-X.; Mahmood, Q.; Wang, X.-J.; Gao, Y.-P.; Gou, G.-J.; Ahmed, M.M.; Kohji, F.; Du, Y.-Z.; Han, F. Calmodulin inhibitor ameliorates cognitive dysfunction via inhibiting nitrosative stress and NLRP3 signaling in mice with bilateral carotid artery stenosis. CNS Neurosci. Ther. 2017, 23, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Hong, H.-S.; Hwang, J.-Y.; Son, S.-M.; Kim, Y.-H.; Moon, M.; Mook-Jung, I. FK506 reduces amyloid plaque burden and induces MMP-9 in AbPP/PS1 double transgenic mice. J. Alzheimer’s Dis. 2010, 22, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Rozkalne, A.; Hyman, B.T.; Spires-Jones, T.L. Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol. Dis. 2011, 41, 650–654. [Google Scholar] [CrossRef] [Green Version]
- Taglialatella, G.; Rastellini, C.; Cicalese, L. Reduced incidence of dementia in solid organ transplant patients treated with calcineurin inhibitors. J. Alzheimer’s Dis. 2015, 47, 329–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassal, D.; Gratz, D.; Hund, T.J. Challenges and opportunities for therapeutic targeting of calmodulin kinase in heart. Front. Pharmacol. 2020, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- González-Naranjo, P.; Pérez, C.; González-Sánchez, M.; Gironda-Martínez, A.; Ulzurrun, E.; Bartolome, F.; Rubio-Fernandez, M.; Martin-Requero, A.; Campillo, N.E.; Paez, J.A. Multitarget drugs as potential therapeutic agents for Alzheimer’s disease. A new family of 5-substituted indazole derivatives as cholinergic and BACE1 inhibitors. J. Enz. Inhib. Med. Chem. 2022, 37, 2348–2356. [Google Scholar] [CrossRef] [PubMed]
- Yap, K.L.; Kim, J.; Truong, K.; Sherman, M.; Yuan, T.; Ikura, M. Calmodulin target database. J. Struct. Funct. Genom. 2000, 1, 8–14. [Google Scholar] [CrossRef]
- O’Day, D.H. Alzheimer’s Disease: A short introduction to the calmodulin hypothesis. AIMS Neurosci. 2019, 6, 231–239. [Google Scholar] [CrossRef]
- Canobbio, I.; Catricalà, S.; Balduini, C.; Torti, M. Calmodulin regulates the non-amyloidogenic metabolism of amyloid precursor protein in platelets. Biochim. Biophys. Acta Bioenergy 2011, 1813, 500–506. [Google Scholar] [CrossRef]
- Michno, K.; Knight, D.; Campusano, J.M.; van de Hoef, D.; Boulianne, G.L. Intracellular calcium deficits in Drosophila cholinergic neurons expressing wild type or FAD-mutant presenilin. PLoS ONE 2009, 4, e6904. [Google Scholar] [CrossRef]
Protein/Uniprot | CaMBD Sequence/Binding Motif |
---|---|
Parkinson’s Disease | |
1 12 | |
SNCA/ | 32KTKQGVAEAAGKTKEGVLYVGSKTKEGVVH50 |
P37840 | 1 12 |
32KTKQGVAEAAGKTKEGVLYVGSKTKEGVVH50 | |
1 8 14 | |
PINK1/isoform 1 | 72RQSVAGLAARLQRQFVVRAW90 |
Q9BXM7 | 1 5 10 |
72RQSVAGLAARLQRQFVVRAW90 | |
1 14 | |
72RQSVAGLAARLQRQFVVRAW90 | |
1 5 10 | |
72RQSVAGLAARLQRQFVVRAW90 | |
1 10 | |
PINK1/isoform 2 | 211ALKNLKLDKMVGWLLQQSAA230 |
Q9BXM7 | 1 14 |
211ALKNLKLDKMVGWLLQQSAA230 | |
1 10 | |
211ALKNLKLDKMVGWLLQQSAA230 | |
1 10 | |
LRRK2/ | 776TISIGKGDSQIISLLLRRLA795 |
Q5S007 | 1 14 |
776TISIGKGDSQIISLLLRRLA | |
1 12 | |
776TISIGKGDSQIISLLLRRLA | |
1 16 | |
776TISIGKGDSQIISLLLRRLA | |
non-canonical: | |
PARK7/ | 93KEQENRKGLIAAICAGPT110 |
Q99497 | |
Lewy Body Dementia | |
1 5 10 | |
TMEM175/ | 172IQRSAHRALYRRHVLGIVL190 |
Q9BSA9 | 1 14 |
172IQRSAHRALYRRHVLGIVL190 | |
1 10 | |
172IQRSAHRALYRRHVLGIVL190 | |
1 12 | |
172IQRSAHRALYRRHVLGIVL190 | |
1 10 | |
172IQRSAHRALYRRHVLGIVL190 | |
1 12 | |
GBA/ | 249ARYFVKFLDAYAEHKLQFW268 |
P04062 | 1 16 |
249ARYFVKFLDAYAEHKLQFW268 | |
1 10 | |
249ARYFVKFLDAYAEHKLQFW268 | |
1 12 | |
1GBA/ | 32KTKQGVAEAAGKTKEGVLYVGSKTKEGVVH50 |
P04062 | 1 14 |
32KTKQGVAEAAGKTKEGVLYVGSKTKEGVVH50 | |
1 10 | |
32KTKQGVAEAAGKTKEGVLYVGSKTKEGVVH50 | |
1 12 | |
32KTKQGVAEAAGKTKEGVLYVGSKTKEGVVH50 | |
1GBA IQ motif | 204LQLAQRPVSLLASP217 |
Protein/Uniprot | CaMBD Sequence/Binding Motif |
---|---|
FUS/ | 1 5 10 |
P35637 | 301VADYFKQIGIIKTNKKTGQ319 |
TDP43/ | 1 16 |
Q13148 | 135VKKDLKTGHSKGFGFVRFT153 |
1 12 | |
135VKKDLKTGHSKGFGFVRFT153 | |
1 14 | |
135VKKDLKTGHSKGFGFVRFT153 | |
TBK1/ | 1 12 |
Q9UHD2 | 22NVFRGRHKKTGDLFAIKVF40 |
1 14 | |
22NVFRGRHKKTGDLFAIKVF40 | |
1 12 | |
22NVFRGRHKKTGDLFAIKVF40 | |
1 14 | |
22NVFRGRHKKTGDLFAIKVF40 | |
1 16 | |
22NVFRGRHKKTGDLFAIKVF40 | |
C9orf72/ | 1 5 10 |
Q96LT7 | 241AEKVNKIVRTLCLFLTPAER260 |
1 12 | |
241AEKVNKIVRTLCLFLTPAER260 | |
IQ-Like Motif | |
SQSTM1/ | 63FQAHYRDEDGDLVA77 |
Q13501 |
Protein/Uniprot | CaMBD Sequence/Binding Motif |
---|---|
1 12 | |
Huntingtin/ | 177NGAPRSLRAALWRFAELAHLVR197 |
P42858 | 1 8 14 |
177NGAPRSLRAALWRFAELAHLVR197 | |
1 5 10 | |
177NGAPRSLRAALWRFAELAHLVR197 | |
1 12 | |
Huntingtin/ | 2535PLKALDTRFGRKLSIIRGIV2554 |
P42858 | 1 8 14 |
2535PLKALDTRFGRKLSIIRGIV2554 | |
1 12 | |
2535PLKALDTRFGRKLSIIRGIV2554 | |
1 16 | |
2535PLKALDTRFGRKLSIIRGIV2554 | |
1 12 | |
2535PLKALDTRFGRKLSIIRGIV2554 | |
1 16 | |
TGM2/ | 414KSINRSLIVGLKISTKSVGR433 |
P21980 | 1 12 |
414KSINRSLIVGLKISTKSVGR433 | |
1 5 10 | |
414KSINRSLIVGLKISTKSVGR433 | |
1 12 | |
TGM2/ | 665VVNFESDKLKAVKGFRNV683 |
P21980 | 1 8 14 |
665VVNFESDKLKAVKGFRNV683 | |
1 10 | |
665VVNFESDKLKAVKGFRNV683 | |
1 12 | |
665VVNFESDKLKAVKGFRNV683 | |
1 10 | |
665VVNFESDKLKAVKGFRNV683 | |
1 12 | |
TGM1/ | 607RRTVKLHLYLSVTFYTGVS625 |
P22735 | 1 5 10 |
607RRTVKLHLYLSVTFYTGVS625 | |
1 10 | |
TGM3/ | 493LAVGKEVNLVLLLKNLSRDT512 |
Q08188 | 1 12 |
493LAVGKEVNLVLLLKNLSRDT512 | |
1 16 | |
493LAVGKEVNLVLLLKNLSRDT512 | |
1 5 10 | |
493LAVGKEVNLVLLLKNLSRDT512 | |
1 14 | |
493LAVGKEVNLVLLLKNLSRDT512 | |
1 5 10 | |
493LAVGKEVNLVLLLKNLSRDT512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Day, D.H. Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration. Curr. Issues Mol. Biol. 2022, 44, 5802-5814. https://doi.org/10.3390/cimb44110394
O’Day DH. Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration. Current Issues in Molecular Biology. 2022; 44(11):5802-5814. https://doi.org/10.3390/cimb44110394
Chicago/Turabian StyleO’Day, Danton H. 2022. "Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration" Current Issues in Molecular Biology 44, no. 11: 5802-5814. https://doi.org/10.3390/cimb44110394
APA StyleO’Day, D. H. (2022). Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration. Current Issues in Molecular Biology, 44(11), 5802-5814. https://doi.org/10.3390/cimb44110394