Next Issue
Volume 44, December
Previous Issue
Volume 44, October
 
 
cimb-logo

Journal Browser

Journal Browser

Curr. Issues Mol. Biol., Volume 44, Issue 11 (November 2022) – 46 articles

Cover Story (view full-size image): Polyphenols, found in fruit and vegetables, are shown to perform the same chemical reaction as the metalloprotein superoxide dismutase enzymes (Cu, Zn, and Mn), which catalyze dismutation of the superoxide anion free radical (O2) into H2O2 and O2, as shown in (A), but without a metal or protein. This review describes the interaction between the superoxide radical and several polyphenols. Besides superoxide reactivity with a polyphenol H(hydroxyl), resulting in H2O2 formation, an additional polyphenol ring π–π interaction affects the transfer of the unpaired superoxide electron to the polyphenol ring and the release of a molecule of O2, as shown in (B). View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2666 KiB  
Article
Antifibrosis Efficacy of Apo-9-Fucoxanthinone-Contained Sargassum horneri Ethanol Extract on Nasal Polyp: An In Vitro and Ex Vivo Organ Culture Assay
by Mi-Jin Yim, Jeong Min Lee, Seok-Chun Ko, Hyun-Soo Kim, Ji-Yul Kim, Seong Kook Park, Dae-Sung Lee and Il-Whan Choi
Curr. Issues Mol. Biol. 2022, 44(11), 5815-5826; https://doi.org/10.3390/cimb44110395 - 21 Nov 2022
Cited by 2 | Viewed by 1779
Abstract
Sargassum horneri is a seaweed species with diverse bioactivities. However, its antifibrotic effects during nasal polyp (NP) formation are not clearly understood. Therefore, we investigated the inhibitory effect of S. horneri on fibrosis progression in NP-derived fibroblasts (NPDFs) and NP tissues ex vivo. [...] Read more.
Sargassum horneri is a seaweed species with diverse bioactivities. However, its antifibrotic effects during nasal polyp (NP) formation are not clearly understood. Therefore, we investigated the inhibitory effect of S. horneri on fibrosis progression in NP-derived fibroblasts (NPDFs) and NP tissues ex vivo. NPDFs were stimulated with TGF-β1 in the presence or absence of S. horneri ethanol extract (SHE). The extracellular matrix (ECM) protein production levels, myofibroblast differentiation (α-smooth muscle actin, α-SMA), and phosphorylation of Smad 2/3 and -ERK in TGF-β1-stimulated NPDFs were investigated using western blotting. Further, the contractile activity of SHE was assessed by performing a collagen gel contraction assay. The expression levels of collagen-1, fibronectin, and α-SMA were investigated in NP organ cultures treated with SHE. TGF-β1 stimulated ECM protein expression, myofibroblast differentiation, and collagen contractile activity while these were attenuated by pretreatment with SHE. We also found antifibrotic effect of SHE on ex vivo NP tissues. The antifibrotic effects of SHE were modulated through the attenuation of Smad 2/3 and ERK signaling pathways in TGF-β1-stimulated NPDFs. In conclusion, SHE inhibited ECM protein accumulation and myofibroblast differentiation during NP remodeling. Thus, SHE may be helpful as a treatment for NP recurrence after endoscopic sinus surgery. Full article
Show Figures

Figure 1

13 pages, 430 KiB  
Brief Report
Calmodulin Binding Domains in Critical Risk Proteins Involved in Neurodegeneration
by Danton H. O’Day
Curr. Issues Mol. Biol. 2022, 44(11), 5802-5814; https://doi.org/10.3390/cimb44110394 - 21 Nov 2022
Cited by 11 | Viewed by 2426
Abstract
Neurodegeneration leads to multiple early changes in cognitive, emotional, and social behaviours and ultimately progresses to dementia. The dysregulation of calcium is one of the earliest potentially initiating events in the development of neurodegenerative diseases. A primary neuronal target of calcium is the [...] Read more.
Neurodegeneration leads to multiple early changes in cognitive, emotional, and social behaviours and ultimately progresses to dementia. The dysregulation of calcium is one of the earliest potentially initiating events in the development of neurodegenerative diseases. A primary neuronal target of calcium is the small sensor and effector protein calmodulin that, in response to calcium levels, binds to and regulates hundreds of calmodulin binding proteins. The intimate and entangled relationship between calmodulin binding proteins and all phases of Alzheimer’s disease has been established, but the relationship to other neurodegenerative diseases is just beginning to be evaluated. Risk factors and hallmark proteins from Parkinson’s disease (PD; SNCA, Parkin, PINK1, LRRK2, PARK7), Huntington’s disease (HD; Htt, TGM1, TGM2), Lewy Body disease (LBD; TMEM175, GBA), and amyotrophic lateral sclerosis/frontotemporal disease (ALS/FTD; VCP, FUS, TDP-43, TBK1, C90rf72, SQSTM1, CHCHD10, SOD1) were scanned for the presence of calmodulin binding domains and, within them, appropriate binding motifs. Binding domains and motifs were identified in multiple risk proteins, some of which are involved in multiple neurodegenerative diseases. The potential calmodulin binding profiles for risk proteins involved in HD, PD, LBD, and ALS/FTD coupled with other studies on proven binding proteins supports the central and potentially critical role for calmodulin in neurodegenerative events. Full article
(This article belongs to the Special Issue Signaling Pathways, Development, and Biomarkers in Neuropathy)
Show Figures

Figure 1

14 pages, 2207 KiB  
Article
RIP140-Mediated NF-κB Inflammatory Pathway Promotes Metabolic Dysregulation in Retinal Pigment Epithelium Cells
by Zeli Guo, Yuli Shen, Jianwen Zhong, Zhuoyun Li, Qi Guo, Xiangchao Yao, Yandong Wang and Wenyu Wu
Curr. Issues Mol. Biol. 2022, 44(11), 5788-5801; https://doi.org/10.3390/cimb44110393 - 21 Nov 2022
Cited by 3 | Viewed by 1966
Abstract
Metabolic dysregulation of the retinal pigment epithelium (RPE) has been implicated in age-related macular degeneration (AMD). However, the molecular regulation of RPE metabolism remains unclear. RIP140 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PPAR-γ [...] Read more.
Metabolic dysregulation of the retinal pigment epithelium (RPE) has been implicated in age-related macular degeneration (AMD). However, the molecular regulation of RPE metabolism remains unclear. RIP140 is known to affect oxidative metabolism and mitochondrial biogenesis by negatively controlling mitochondrial pathways regulated by PPAR-γ co-activator-1 α(PGC-1α). This study aims to disclose the effect of RIP140 on the RPE metabolic program in vitro and in vivo. RIP140 protein levels were assayed by Western blotting. Gene expression was tested using quantitative real-time PCR (qRT-PCR), ATP production, and glycogen concentration assays, and the release of inflammatory factors was analyzed by commercial kits. Mice photoreceptor function was measured by electroretinography (ERG). In ARPE-19 cells, RIP140 overexpression changed the expression of the key metabolic genes and lipid processing genes, inhibited mitochondrial ATP production, and enhanced glycogenesis. Moreover, RIP140 overexpression promoted the translocation of NF-κB and increased the expression and production of IL-1β, IL-6, and TNF-α in ARPE-19 cells. Importantly, we also observed the overexpression of RIP140 through adenovirus delivery in rat retinal cells, which significantly decreased the amplitude of the a-wave and b-wave measured by ERG assay. Therapeutic strategies that modulate the activity of RIP140 could have clinical utility for the treatment of AMD in terms of preventing RPE degeneration. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

10 pages, 1716 KiB  
Article
Multiplex Detection of Pleurotus ostreatus Mycoviruses
by Xiaoyan Zhang, Haijing Hu, Yifan Wang, Junjie Yan, Yu Liu, Jianrui Wang and Xianhao Cheng
Curr. Issues Mol. Biol. 2022, 44(11), 5778-5787; https://doi.org/10.3390/cimb44110392 - 19 Nov 2022
Cited by 1 | Viewed by 1945
Abstract
Mycoviruses are viruses that specifically infect and replicate in fungi. Several mycoviruses have been previously reported in Pleurotus ostreatus, including the oyster mushroom spherical virus (OMSV), oyster mushroom isometric virus (OMIV), Pleurotus ostreatus spherical virus (POSV), and Pleurotus ostreatus virus 1 (PoV1). [...] Read more.
Mycoviruses are viruses that specifically infect and replicate in fungi. Several mycoviruses have been previously reported in Pleurotus ostreatus, including the oyster mushroom spherical virus (OMSV), oyster mushroom isometric virus (OMIV), Pleurotus ostreatus spherical virus (POSV), and Pleurotus ostreatus virus 1 (PoV1). This study was designed to develop a multiplex RT-PCR for simultaneous detection and differentiation of the four P. ostreatus mycoviruses. Four pairs of primers were designed from conserved regions based on the reported sequences and the multiplex RT-PCR products were 672 bp for OMSV, 540 bp for OMIV, 310 bp for POSV, and 200 bp for PoV1. The optimal annealing temperature of the multiplex RT-PCR was 62 °C and the detection limits of the plasmids were 100 fg for OMSV and OMIV and 1 pg for POSV and PoV1. This technique was successfully applied for the detection of OMSV, OMIV, and POSV from different P. ostreatus strains and the plasmid containing the PoV1 sequence. This methodology can serve as a powerful diagnostic tool for the survey of the incidence and epidemiology of the four P. ostreatus mycoviruses, further contributing to the prevention and treatment of mycoviral diseases in P. ostreatus. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

10 pages, 2999 KiB  
Communication
Assessment of Proliferation and Apoptosis in Testes of Rats after Experimental Localized Electron Irradiation
by Grigory Demyashkin, Sergey Koryakin, Aleksandr Moiseev, Vyatcheslav Saburov, Margarita Zatsepina, Maya Epifanova, Yulia Stepanova, Vladimir Shchekin, Matvey Vadyukhin, Petr Shegay and Andrei Kaprin
Curr. Issues Mol. Biol. 2022, 44(11), 5768-5777; https://doi.org/10.3390/cimb44110391 - 18 Nov 2022
Cited by 2 | Viewed by 1630
Abstract
Background and purpose: With the emergence of linear accelerators in radiotherapy, it becomes necessary to accurately select new dosing regimens. The purpose of this study was to assess the morphological changes of spermatogenesis after radiation exposure. Materials and methods: Male Wistar rats (n [...] Read more.
Background and purpose: With the emergence of linear accelerators in radiotherapy, it becomes necessary to accurately select new dosing regimens. The purpose of this study was to assess the morphological changes of spermatogenesis after radiation exposure. Materials and methods: Male Wistar rats (n = 40) were subjected to targeted ionizing radiation on a pulsed electron accelerator “NOVAC-11” with doses of 2, 8 and 12 Gy. Spermatogenesis was assessed a week later using light microscopy and immunohistochemical method (antibodies to Ki-67, Bcl-2, p53, Caspase 3). Results: A decrease in the number of normal germ cells was seen in all experimental groups, while radioresistant Sertoli and Leydig cells were barely affected. The most serious damage to the tubules and germ cells was observed in 8 and 12 Gy irradiation groups. IHC analysis of testes after irradiation showed a shift in the proliferative-apoptotic balance toward apoptosis of germ cells: a decrease in the expression levels of Ki-67 and Bcl-2, an increase in p53-positive and caspase 3-positive cells by the end of the experiment. Conclusion: Dose-dependent progressive pathomorphological changes in histoarchitectonics of the testes are traced, and a decrease in the number of germ cells is seen on the seventh day after irradiation with a pulsed electron accelerator “NOVAC-11”. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

12 pages, 764 KiB  
Review
Tumor Molecular and Microenvironment Characteristics in EBV-Associated Malignancies as Potential Therapeutic Targets: Focus on Gastric Cancer
by Aviva Atri-Schuller, Hassan Abushukair, Ludimila Cavalcante, Stijn Hentzen, Azhar Saeed and Anwaar Saeed
Curr. Issues Mol. Biol. 2022, 44(11), 5756-5767; https://doi.org/10.3390/cimb44110390 - 18 Nov 2022
Cited by 4 | Viewed by 2265
Abstract
Although most people are infected with Epstein-Barr Virus (EBV) during their lifetime, only a minority of them develop an EBV-associated malignancy. EBV acts in both direct and indirect ways to transform infected cells into tumor cells. There are multiple ways in which the [...] Read more.
Although most people are infected with Epstein-Barr Virus (EBV) during their lifetime, only a minority of them develop an EBV-associated malignancy. EBV acts in both direct and indirect ways to transform infected cells into tumor cells. There are multiple ways in which the EBV, host, and tumor environment interact to promote malignant transformation. This paper focuses on some of the mechanisms that EBV uses to transform the tumor microenvironment (TME) of EBV-associated gastric cancer (EBVaGC) for its benefit, including overexpression of Indoleamine 2,3-Dioxygenase 1 (IDO1), synergism between H. pylori and EBV co-infection, and M1 to M2 switch. In this review, we expand on different modalities and combinatorial approaches to therapeutically target this mechanism. Full article
(This article belongs to the Special Issue Targeting Tumor Microenvironment for Cancer Therapy)
Show Figures

Figure 1

15 pages, 1975 KiB  
Article
Essential Oil of Carvone Chemotype Lippia alba (Verbenaceae) Regulates Lipid Mobilization and Adipogenesis in Adipocytes
by Katherin Bonilla-Carvajal, Elena E. Stashenko and Natalia Moreno-Castellanos
Curr. Issues Mol. Biol. 2022, 44(11), 5741-5755; https://doi.org/10.3390/cimb44110389 - 18 Nov 2022
Cited by 8 | Viewed by 2191
Abstract
Obesity is characterized by an expansion of adipose tissue due to excessive accumulation of triglycerides in adipocytes, causing hypertrophy and hyperplasia, followed by hypoxia, alterations in adipocyte functionality, and chronic inflammation. However, current treatments require changes in lifestyle that are difficult to achieve [...] Read more.
Obesity is characterized by an expansion of adipose tissue due to excessive accumulation of triglycerides in adipocytes, causing hypertrophy and hyperplasia, followed by hypoxia, alterations in adipocyte functionality, and chronic inflammation. However, current treatments require changes in lifestyle that are difficult to achieve and some treatments do not generate sustained weight loss over time. Therefore, we evaluated the effect of the essential oil (EO) of Lippia alba (Verbenaceae) carvone chemotype on viability, lipid mobilization, and adipogenesis of adipocytes in two normal and pathological cellular models in vitro. In 3T3-L1 adipocytes, a normal and a pathological model of obesity were induced, and then the cells were treated with L. alba carvone chemotype EO to evaluate cell viability, lipid mobilization, and adipogenesis. L. alba carvone chemotype EO does not decrease adipocyte viability at concentrations of 0.1, 1, and 5 µg/mL; furthermore, there was evidence of changes in lipid mobilization and adipogenesis, leading to a reversal of adipocyte hypertrophy. These results could be due to effects produced by EO on lipogenic and lipolytic pathways, as well as modifications in the expression of adipogenesis genes. L. alba carvone chemotype EO could be considered as a possible treatment for obesity, using the adipocyte as a therapeutic target. Full article
(This article belongs to the Special Issue Natural Products as Potential Sources of Antidiabetic Compounds)
Show Figures

Figure 1

13 pages, 1931 KiB  
Article
Oral Administration of Myelin Oligodendrocyte Glycoprotein Attenuates Experimental Autoimmune Encephalomyelitis through Induction of Th2/Treg Cells and Suppression of Th1/Th17 Immune Responses
by Dariush Haghmorad, Bahman Yousefi, Majid Eslami, Ali Rashidy-Pour, Mahdieh Tarahomi, Maryam Jadid Tavaf, Azita Soltanmohammadi, Simin Zargarani, Aleksandr Kamyshnyi and Valentyn Oksenych
Curr. Issues Mol. Biol. 2022, 44(11), 5728-5740; https://doi.org/10.3390/cimb44110388 - 18 Nov 2022
Cited by 5 | Viewed by 3128
Abstract
Multiple Sclerosis (MS) is a demyelinating autoimmune disorder of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) has been widely used to determine the pathogenesis of the disease and evaluate new treatment strategies for MS. Therefore, we investigated the efficacy of oral [...] Read more.
Multiple Sclerosis (MS) is a demyelinating autoimmune disorder of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) has been widely used to determine the pathogenesis of the disease and evaluate new treatment strategies for MS. Therefore, we investigated the efficacy of oral administration of a Myelin Oligodendrocyte Glycoprotein (MOG) in the treatment of EAE. Female C57BL/6 mice were utilized in three groups (Control group, received PBS orally; prevention group, oral administration of MOG35–55 two weeks before EAE induction; treatment group, oral administration of MOG35–55 after EAE induction). MOG administration, both as prevention and treatment, significantly controlled clinical score, weight loss, CNS inflammation, and demyelination, mainly through the modulation of T cell proliferation, and reduction in pro-inflammatory cytokines and transcription factors, including TNF-α, IFN-γ, IL-17, T-bet, and ROR-γt. MOG administration, both as prevention and treatment, also induced anti-inflammatory cytokines and transcription factors, including IL-4, TGF-β, GATA-3, and Foxp3. The results showed that oral administration of MOG, both as prevention and treatment, could efficiently control EAE development. Immunomodulatory mechanisms include the induction of Th2 and Treg cells and the suppression of pro-inflammatory Th1 and Th17 cells. Full article
Show Figures

Figure 1

10 pages, 2237 KiB  
Communication
Single-Step Protocol for Isolating the Recombinant Extracellular Domain of the Luteinizing Hormone Receptor from the Ovis aries Testis
by José Luis Villalpando-Aguilar, Itzel López-Rosas, Arnulfo Montero-Pardo, Elisa Azuara-Liceaga, Javier de Jesús Valencia-Méndez, Cynthia R. Trejo-Muñoz and Carlos Kubli-Garfias
Curr. Issues Mol. Biol. 2022, 44(11), 5718-5727; https://doi.org/10.3390/cimb44110387 - 17 Nov 2022
Viewed by 1934
Abstract
The luteinizing hormone receptor (LHR) is a glycoprotein member of the G protein-coupled receptors superfamily. It participates in corpus luteum formation and ovulation in females and acts in testosterone synthesis and spermatogenesis in males. In this study, we extracted RNA from sheep testicles [...] Read more.
The luteinizing hormone receptor (LHR) is a glycoprotein member of the G protein-coupled receptors superfamily. It participates in corpus luteum formation and ovulation in females and acts in testosterone synthesis and spermatogenesis in males. In this study, we extracted RNA from sheep testicles and synthetized the cDNA to amplify the gene lhr-bed. This gene consists of 762 bp and encodes 273 amino acids of the extracellular domain of LHR. The lhr-bed was cloned into pJET1.2/blunt, then subcloned into pCOLD II, and finally, transformed in E. coli BL21 (DE3) cells. Because the induced rLHR-Bed protein was found in the insoluble fraction, we followed a modified purification protocol involving induction at 25 °C, subjection to denaturing conditions, and on-column refolding to increase solubility. We confirmed rLHR-Bed expression by means of Western blot and mass spectrometry analysis. It is currently known that the structure stem-loop 5′UTR on pCOLD II vector is stable at 15 °C. We predicted and obtained RNAfold stability at 25 °C. We successfully obtained the recombinant LHR extracellular domain, with protein yields of 0.2 mg/L, and purity levels of approximately 90%, by means of a single chromatographic purification step. The method described here may be used to obtain large quantities of rLHR-Bed in the future. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

18 pages, 1449 KiB  
Review
The Crosstalk between the Blood–Brain Barrier Dysfunction and Neuroinflammation after General Anaesthesia
by Xinxin Yang and Xiangdong Chen
Curr. Issues Mol. Biol. 2022, 44(11), 5700-5717; https://doi.org/10.3390/cimb44110386 - 17 Nov 2022
Cited by 16 | Viewed by 4575
Abstract
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general [...] Read more.
As we know, with continuous medical progress, the treatment of many diseases can be conducted via surgery, which often relies on general anaesthesia for its satisfactory performance. With the widespread use of general anaesthetics, people are beginning to question the safety of general anaesthesia and there is a growing interest in central nervous system (CNS) complications associated with anaesthetics. Recently, abundant evidence has suggested that both blood–brain barrier (BBB) dysfunction and neuroinflammation play roles in the development of CNS complications after anaesthesia. Whether there is a crosstalk between BBB dysfunction and neuroinflammation after general anaesthesia, and whether this possible crosstalk could be a therapeutic target for CNS complications after general anaesthesia needs to be clarified by further studies. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

9 pages, 1242 KiB  
Article
Caffeic Acid Phenethyl Ester Induces Vascular Endothelial Growth Factor Production and Inhibits CXCL10 Production in Human Dental Pulp Cells
by Hitomi Kuramoto, Tadashi Nakanishi, Daisuke Takegawa, Katsuhiro Mieda and Keiichi Hosaka
Curr. Issues Mol. Biol. 2022, 44(11), 5691-5699; https://doi.org/10.3390/cimb44110385 - 15 Nov 2022
Cited by 4 | Viewed by 1881
Abstract
The survival rate of root non-vital teeth is lower than that of vital teeth. Therefore, to preserve the dental pulp is very important. The vascular endothelial growth factor (VEGF) is the most potent angiogenic factor involved in the vitality of dental pulp including [...] Read more.
The survival rate of root non-vital teeth is lower than that of vital teeth. Therefore, to preserve the dental pulp is very important. The vascular endothelial growth factor (VEGF) is the most potent angiogenic factor involved in the vitality of dental pulp including reparative dentin formation. Caffeic acid phenethyl ester (CAPE) is a physiologically active substance of propolis and has some bioactivities such as anti-inflammatory effects. However, there are no reports on the effects of CAPE on dental pulp inflammation. In this study, we investigated the effects of CAPE on VEGF and inflammatory cytokine production in human dental pulp cells (HDPCs) to apply CAPE to an ideal dental pulp protective agent. We found that CAPE induced VEGF production from HDPCs. Moreover, CAPE induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK), and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) in HDPCs. Furthermore, CAPE inhibited C-X-C motif chemokine ligand 10 (CXCL10) production in Pam3CSK4- and tumor necrosis factor-alpha (TNF-α)-stimulated HDPCs. In conclusion, these results suggest that CAPE might be useful as a novel biological material for vital pulp therapy by exerting the effects of VEGF production and anti-inflammatory activities. Full article
(This article belongs to the Special Issue Bioactives and Inflammation)
Show Figures

Figure 1

25 pages, 5773 KiB  
Review
Review of Developments in Combating COVID-19 by Vaccines, Inhibitors, Radiations, and Nonthermal Plasma
by Ihn Han, Sohail Mumtaz, Sekar Ashokkumar, Dharmendra Kumar Yadav and Eun Ha Choi
Curr. Issues Mol. Biol. 2022, 44(11), 5666-5690; https://doi.org/10.3390/cimb44110384 - 15 Nov 2022
Cited by 6 | Viewed by 2611
Abstract
Global society has been highly pressured by the COVID-19 pandemic, which has exposed vulnerabilities in supply chains for disinfection products, personal protective equipment, and medical resources worldwide. It is critically necessary to find effective treatments and medications for these viral infections. This review [...] Read more.
Global society has been highly pressured by the COVID-19 pandemic, which has exposed vulnerabilities in supply chains for disinfection products, personal protective equipment, and medical resources worldwide. It is critically necessary to find effective treatments and medications for these viral infections. This review summarizes and emphasizes critical features of recent breakthroughs in vaccines, inhibitors, radiations, and innovative nonthermal atmospheric plasma (NTAP) technologies to inactivate COVID-19. NTAP has emerged as an effective, efficient, and safe method of viral inactivation. NTAP can be used to inactivate viruses in an environmentally friendly manner, as well as activate animal and plant viruses in a variety of matrices. Researchers and engineers desire to help the medical world deal with the ongoing COVID-19 epidemic by establishing techniques that make use of widely available NTAP technologies. NTAP technology is not dependent on viral strain, and it does not necessitate months or years of research to develop specific vaccines for each novel or arising viral disease. We believe the NTAP is a highly promising technique for combating COVID-19 and other viruses. Thus, NTAP technology could be a significant breakthrough in the near future in assisting humans in combating COVID-19 infections. We hope that this review provides a platform for readers to examine the progress made in the fight against COVID-19 through the use of vaccines, inhibitors, radiation, and NTAP. Full article
(This article belongs to the Special Issue Drug Development and Repositioning Methodology on COVID-19)
Show Figures

Figure 1

11 pages, 2451 KiB  
Article
Deletion of Antigen-Presenting Cells in Lipopolysaccharide-Induced Acute Kidney Injury (AKI) Affects the Exacerbation and Repair in AKI
by Jinhai Li, Yuji Nozaki, Hiroki Akazawa, Kazuya Kishimoto, Koji Kinoshita and Itaru Matsumura
Curr. Issues Mol. Biol. 2022, 44(11), 5655-5665; https://doi.org/10.3390/cimb44110383 - 14 Nov 2022
Cited by 1 | Viewed by 2246
Abstract
The pathogenesis of acute kidney injury (AKI) is complex and involves various immune and inflammatory responses. Antigen-presenting cells such as macrophages and dendritic cells (DCs) were recently reported to have diverse functions in AKI depending on the pathogenesis and disease phase. Herein, we [...] Read more.
The pathogenesis of acute kidney injury (AKI) is complex and involves various immune and inflammatory responses. Antigen-presenting cells such as macrophages and dendritic cells (DCs) were recently reported to have diverse functions in AKI depending on the pathogenesis and disease phase. Herein, we intraperitoneally administered liposomal clodronate (LC) to lipopoly-saccharide (LPS)-induced AKI model mice in order to deplete antigen-presenting cells (e.g., macrophages and DCs). After the LPS injection, the mice were divided into LC-treated (LPS + LC) and saline-treated groups (LPS), and the immune responses of macrophages and DCs in the acute and recovery phases were evaluated. The LPS + LC-treated group exhibited significantly suppressed renal macrophages and DC infiltration at 18 h and improved survival at 120 h after LPS injection. Via the depletion of macrophages and DC infiltrations, the serum and renal tissue inflammatory cytokines/chemokines were suppressed at 18 h and reversed at 120 h. Tubular kidney injury molecule-1 expression was decreased at 18 h and increased at 120 h. These findings indicate that LC administration suppressed tubular and interstitial injury in the acute phase of AKI and affected delayed tissue repair in the recovery phase. They are important for understanding innate and acquired immune responses in the therapeutic strategy for LPS-induced AKI. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 3898 KiB  
Article
MIFNN: Molecular Information Feature Extraction and Fusion Deep Neural Network for Screening Potential Drugs
by Jingjing Wang, Hongzhen Li, Wenhan Zhao, Tinglin Pang, Zengzhao Sun, Bo Zhang and Huaqiang Xu
Curr. Issues Mol. Biol. 2022, 44(11), 5638-5654; https://doi.org/10.3390/cimb44110382 - 13 Nov 2022
Viewed by 2718
Abstract
Molecular property prediction is essential for drug screening and reducing the cost of drug discovery. Current approaches combined with deep learning for drug prediction have proven their viability. Based on the previous deep learning networks, we propose the Molecular Information Fusion Neural Network [...] Read more.
Molecular property prediction is essential for drug screening and reducing the cost of drug discovery. Current approaches combined with deep learning for drug prediction have proven their viability. Based on the previous deep learning networks, we propose the Molecular Information Fusion Neural Network (MIFNN). The features of MIFNN are as follows: (1) we extracted directed molecular information using 1D-CNN and the Morgan fingerprint using 2D-CNN to obtain more comprehensive feature information; (2) we fused two molecular features from one-dimensional and two-dimensional space, and we used the directed message-passing method to reduce the repeated collection of information and improve efficiency; (3) we used a bidirectional long short-term memory and attention module to adjust the molecular feature information and improve classification accuracy; (4) we used the particle swarm optimization algorithm to improve the traditional support vector machine. We tested the performance of the model on eight publicly available datasets. In addition to comparing the overall classification capability with the baseline model, we conducted a series of ablation experiments to verify the optimization of different modules in the model. Compared with the baseline model, our model achieved a maximum improvement of 14% on the ToxCast dataset. The performance was very stable on most datasets. On the basis of the current experimental results, MIFNN performed better than previous models on the datasets applied in this paper. Full article
(This article belongs to the Special Issue Advances in Computational Neuroscience)
Show Figures

Figure 1

16 pages, 4029 KiB  
Article
Genome-Wide Identification and Expression Analysis of the NAC Gene Family in Kandelia obovata, a Typical Mangrove Plant
by Man-Man Sun, Xiu Liu, Xiao-Juan Huang, Jing-Jun Yang, Pei-Ting Qin, Hao Zhou, Ming-Guo Jiang and Hong-Ze Liao
Curr. Issues Mol. Biol. 2022, 44(11), 5622-5637; https://doi.org/10.3390/cimb44110381 - 13 Nov 2022
Cited by 12 | Viewed by 2578
Abstract
The NAC (NAM, ATAF1/2, and CUC2) gene family, one of the largest transcription factor families in plants, acts as positive or negative regulators in plant response and adaption to various environmental stresses, including cold stress. Multiple reports on the [...] Read more.
The NAC (NAM, ATAF1/2, and CUC2) gene family, one of the largest transcription factor families in plants, acts as positive or negative regulators in plant response and adaption to various environmental stresses, including cold stress. Multiple reports on the functional characterization of NAC genes in Arabidopsis thaliana and other plants are available. However, the function of the NAC genes in the typical woody mangrove (Kandelia obovata) remains poorly understood. Here, a comprehensive analysis of NAC genes in K. obovata was performed with a pluri-disciplinary approach including bioinformatic and molecular analyses. We retrieved a contracted NAC family with 68 genes from the K. obovata genome, which were unevenly distributed in the chromosomes and classified into ten classes. These KoNAC genes were differentially and preferentially expressed in different organs, among which, twelve up-regulated and one down-regulated KoNAC genes were identified. Several stress-related cis-regulatory elements, such as LTR (low-temperature response), STRE (stress response element), ABRE (abscisic acid response element), and WUN (wound-responsive element), were identified in the promoter regions of these 13 KoNAC genes. The expression patterns of five selected KoNAC genes (KoNAC6, KoNAC15, KoNAC20, KoNAC38, and KoNAC51) were confirmed by qRT-PCR under cold treatment. These results strongly implied the putative important roles of KoNAC genes in response to chilling and other stresses. Collectively, our findings provide valuable information for further investigations on the function of KoNAC genes. Full article
(This article belongs to the Special Issue Functional Genomics and Comparative Genomics Analysis in Plants)
Show Figures

Figure 1

17 pages, 3250 KiB  
Article
Design, Synthesis, and Bioactivity of Novel Quinazolinone Scaffolds Containing Pyrazole Carbamide Derivatives as Antifungal Agents
by Zhiwei Lei, Jianmei Yao, Huifang Liu, Xianjin Bai, Xingsi Gao, Qiuyuan Pan and Wen Yang
Curr. Issues Mol. Biol. 2022, 44(11), 5605-5621; https://doi.org/10.3390/cimb44110380 - 12 Nov 2022
Cited by 4 | Viewed by 2211
Abstract
In this study, 32 novel quinazolinone-scaffold-containing pyrazole carbamide derivatives were designed and synthesized in a search for a novel fungicide against Rhizoctonia solani. Single-crystal X-ray diffraction of 3-(difluoromethyl)-N-(2-((6,7-difluoro-4-oxoquinazolin-3(4H)-yl)methyl)phenyl)-1-methyl-1H-pyrazole-4-carboxamide (6a11) confirmed the structure of the target compounds. The [...] Read more.
In this study, 32 novel quinazolinone-scaffold-containing pyrazole carbamide derivatives were designed and synthesized in a search for a novel fungicide against Rhizoctonia solani. Single-crystal X-ray diffraction of 3-(difluoromethyl)-N-(2-((6,7-difluoro-4-oxoquinazolin-3(4H)-yl)methyl)phenyl)-1-methyl-1H-pyrazole-4-carboxamide (6a11) confirmed the structure of the target compounds. The in vitro antifungal activity of the target compounds against R. solani was evaluated at 100 µg/mL. The structure–activity relationship analysis results revealed that antifungal activity was highest when the substitution activity was at position 6. Moreover, the position and number of chlorine atoms directly affected the antifungal activity. Further in vitro bioassays revealed that 6a16 (EC50 = 9.06 mg/L) had excellent antifungal activity against R. solani that was higher than that of the commercial fungicide fluconazole (EC50 = 12.29 mg/L) but lower than that of bixafen (EC50 = 0.34 mg/L). Scanning electron microscopy), 7.33 (SEM) revealed that N-(2-((6,8-dichloro-4-oxoquinazolin-3(4H)-yl)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxamide (6a16) also affected the mycelial morphology. The findings revealed that molecular hybridization was an effective tool for designing antifungal candidates. Meanwhile, pyrazolecarbamide derivatives bearing a quinazolinone fragment exhibited potential antifungal activity against R. solani. Full article
Show Figures

Figure 1

12 pages, 1142 KiB  
Review
RNA Editing in Chloroplast: Advancements and Opportunities
by Taimyiah Mohammed, Ahmad Firoz and Ahmed M. Ramadan
Curr. Issues Mol. Biol. 2022, 44(11), 5593-5604; https://doi.org/10.3390/cimb44110379 - 12 Nov 2022
Cited by 6 | Viewed by 2991
Abstract
Many eukaryotic and prokaryotic organisms employ RNA editing (insertion, deletion, or conversion) as a post-transcriptional modification mechanism. RNA editing events are common in these organelles of plants and have gained particular attention due to their role in the development and growth of plants, [...] Read more.
Many eukaryotic and prokaryotic organisms employ RNA editing (insertion, deletion, or conversion) as a post-transcriptional modification mechanism. RNA editing events are common in these organelles of plants and have gained particular attention due to their role in the development and growth of plants, as well as their ability to cope with abiotic stress. Owing to rapid developments in sequencing technologies and data analysis methods, such editing sites are being accurately predicted, and many factors that influence RNA editing are being discovered. The mechanism and role of the pentatricopeptide repeat protein family of proteins in RNA editing are being uncovered with the growing realization of accessory proteins that might help these proteins. This review will discuss the role and type of RNA editing events in plants with an emphasis on chloroplast RNA editing, involved factors, gaps in knowledge, and future outlooks. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 3372 KiB  
Article
Cold Tolerance of ScCBL6 Is Associated with Tonoplast Transporters and Photosynthesis in Arabidopsis
by Yanli Zhou, Jingling Zhang, Changhong Zhao, Guangqiang Long, Chengli Zhou, Xudong Sun, Yunqiang Yang, Chengjun Zhang and Yongping Yang
Curr. Issues Mol. Biol. 2022, 44(11), 5579-5592; https://doi.org/10.3390/cimb44110378 - 10 Nov 2022
Viewed by 1905
Abstract
Plants that are adapted to harsh environments offer enormous opportunity to understand stress responses in ecological systems. Stipa capillacea is widely distributed in the frigid and arid region of the Tibetan Plateau, but its signal transduction system under cold stress has not been [...] Read more.
Plants that are adapted to harsh environments offer enormous opportunity to understand stress responses in ecological systems. Stipa capillacea is widely distributed in the frigid and arid region of the Tibetan Plateau, but its signal transduction system under cold stress has not been characterized. In this study, we isolated a cDNA encoding the signal transduction protein, ScCBL6, from S. capillacea, and evaluated its role in cold tolerance by ectopically expressing it in Arabidopsis. Full-length ScCBL6 encode 227 amino acids, and are clustered with CBL6 in Stipa purpurea and Oryza sativa in a phylogenetic analysis. Compared with tolerance in wild-type (WT) plants, ScCBL6-overexpressing plants (ScCBL6-OXP) were more tolerant to cold stress but not to drought stress, as confirmed by their high photosynthetic capacity (Fv/Fm) and survival rate under cold stress. We further compared their cold-responsive transcriptome profiles by RNA sequencing. In total, 3931 genes were differentially expressed by the introduction of ScCBL6. These gene products were involved in multiple processes such as the immune system, lipid catabolism, and secondary metabolism. A KEGG pathway analysis revealed that they were mainly enriched in plant hormone signal transduction and biomacromolecule metabolism. Proteins encoded by differentially expressed genes were predicted to be localized in chloroplasts, mitochondria, and vacuoles, suggesting that ScCBL6 exerts a wide range of functions. Based on its tonoplast subcellular location combined with integrated transcriptome and physiological analyses of ScCBL6-OXP, we inferred that ScCBL6 improves plant cold stress tolerance in Arabidopsis via the regulation of photosynthesis, redox status, and tonoplast metabolite transporters. Full article
(This article belongs to the Special Issue Stress and Signal Transduction in Plants)
Show Figures

Figure 1

17 pages, 5585 KiB  
Article
Human Non-Hypertrophic Nonunion Tissue Contains Osteoblast Lineage Cells and E-BMP-2 Activates Osteogenic and Chondrogenic Differentiation
by Ryo Yoshikawa, Tomoaki Fukui, Keisuke Oe, Yohei Kumabe, Takahiro Oda, Kenichi Sawauchi, Kyohei Takase, Yuya Yamamoto, Yoshitada Sakai, Ryosuke Kuroda and Takahiro Niikura
Curr. Issues Mol. Biol. 2022, 44(11), 5562-5578; https://doi.org/10.3390/cimb44110377 - 9 Nov 2022
Viewed by 1560
Abstract
In this study, we examined the proliferation capability and osteogenic and chondrogenic differentiation potential of non-hypertrophic nonunion cells (NHNCs), and the effect of Escherichia coli-derived BMP-2 (E-BMP-2) on them. We enrolled five patients with non-hypertrophic nonunion. NHNCs isolated from nonunion tissue sampled [...] Read more.
In this study, we examined the proliferation capability and osteogenic and chondrogenic differentiation potential of non-hypertrophic nonunion cells (NHNCs), and the effect of Escherichia coli-derived BMP-2 (E-BMP-2) on them. We enrolled five patients with non-hypertrophic nonunion. NHNCs isolated from nonunion tissue sampled during surgery were cultured, passaged, counted every 14 days, and analyzed. NHNCs were homogenous fibroblastic adherent cells and long-lived through at least 10 passages, with a slight decline. The cells were consistently positive for mesenchymal stem cell-related markers CD73 and CD105, and negative for the hematopoietic markers CD14 and CD45. NHNCs could differentiate into osteoblast lineage cells; however, they did not have strong calcification or sufficient chondrogenic differentiation capability. E-BMP-2 did not affect the proliferative capability of the cells but improved their osteogenic differentiation capability by increasing alkaline phosphatase activity and upregulating the gene expression of osterix, bone sialoprotein, and osteocalcin. E-BMP-2 enhanced their chondrogenic differentiation capability by upregulating the gene expression of aggrecan and collagen type II. We showed, for the first time, that NHNCs have the capacity to differentiate into osteoblast-lineage cells, although the chondrogenic differentiation potential was poor. Local application of E-BMP-2 with preservation of nonunion tissue is a potential treatment option for non-hypertrophic nonunion. Full article
(This article belongs to the Special Issue Recent Advances in Musculoskeletal Regenerative Medicine)
Show Figures

Figure 1

12 pages, 8176 KiB  
Article
Altered Expression of Interleukin-18 System mRNA at the Level of Endometrial Myometrial Interface in Women with Adenomyosis
by Liang-Hsuan Chen, She-Hung Chan, Chin-Jung Li, Hsien-Ming Wu and Hong-Yuan Huang
Curr. Issues Mol. Biol. 2022, 44(11), 5550-5561; https://doi.org/10.3390/cimb44110376 - 9 Nov 2022
Cited by 6 | Viewed by 2138
Abstract
Adenomyosis is a uterine pathology characterized by a deep invasion of endometrial glands and stroma, disrupting the endometrial–myometrial interface (EMI). Interleukin-18 (IL-18) system is a dominant cytokine involved in the menstrual cycle of human endometrium. IL-18 may play a defensive role against maternal [...] Read more.
Adenomyosis is a uterine pathology characterized by a deep invasion of endometrial glands and stroma, disrupting the endometrial–myometrial interface (EMI). Interleukin-18 (IL-18) system is a dominant cytokine involved in the menstrual cycle of human endometrium. IL-18 may play a defensive role against maternal immune response in the uterine cavity. The present study was designed to determine IL-18-mediated immune response at the level of EMI. We uncovered that mRNA of IL-18 system, including IL-18, IL-18 receptor (IL-18R), and its antagonist, IL-18 binding protein (IL-18BP), expressed in eutopic, ectopic endometrium, and corresponding myometrium in patients with adenomyosis. IL-18 system was demonstrated in paired tissue samples by immunochemistry and immunofluorescence study. According to RT-PCR with CT value quantification and 2−∆∆Ct method, a significant down-regulation of IL-18BP in corresponding myometrium in comparison to eutopic endometrium (p < 0.05) indicates that the IL-18 system acts as a local immune modulator at the level of EMI and regulating cytokine networks in the pathogenesis of adenomyosis. Furthermore, an increased IL-18 antagonist to agonist ratio was noted in ectopic endometrium compared with corresponding myometrium. We suggest that altered IL-18 system expression contributes to immunological dysfunction and junctional zone disturbance in women with adenomyosis. Full article
(This article belongs to the Special Issue Molecular Research in Reproductive Biology)
Show Figures

Figure 1

7 pages, 2136 KiB  
Article
Usage of DNA Fingerprinting Technology to Check Sample Error and Contamination in Molecular Laboratories
by Dahui Qin, Mark Forster, Shital M. Gandhi, Ratilal Akabari, Zhong Zheng, Janella Lal and Katherine Lovinger
Curr. Issues Mol. Biol. 2022, 44(11), 5543-5549; https://doi.org/10.3390/cimb44110375 - 8 Nov 2022
Viewed by 3279
Abstract
Sample identification error is a severe medical error in clinical molecular diagnostic laboratories, which can lead to reporting the wrong results for the patient involved. Sample contamination can also lead to incorrect test reports. Avoiding sample identification error and sample contamination could be [...] Read more.
Sample identification error is a severe medical error in clinical molecular diagnostic laboratories, which can lead to reporting the wrong results for the patient involved. Sample contamination can also lead to incorrect test reports. Avoiding sample identification error and sample contamination could be life-saving. Sample switch and sample contamination could happen on laboratory bench works, especially when pipetting into multi-well plates. It is difficult to realize such errors during laboratory bench work. Laboratory staff may not be aware of such an error when it happens. DNA fingerprinting technology can be used to determine sample identity and subsequently identify sample switch and sample contamination in the laboratory. Our laboratory has explored the usage of this technology in our quality control process and successfully established that DNA fingerprinting can be used to monitor sample switch and sample contamination in next-generation sequencing and BCR/ABL1 real-time PCR bench work. Full article
(This article belongs to the Special Issue Next-Generation Sequencing (NGS) Technique and Personalized Medicine)
Show Figures

Figure 1

12 pages, 1593 KiB  
Article
Influence of Technological Stages of Preparation of Rooster Semen for Short-Term and Long-Term Storage on Its Quality Characteristics
by Yulia Silyukova, Elena Fedorova and Olga Stanishevskaya
Curr. Issues Mol. Biol. 2022, 44(11), 5531-5542; https://doi.org/10.3390/cimb44110374 - 7 Nov 2022
Cited by 7 | Viewed by 2276
Abstract
There is a problem of declining quality of rooster semen in the “native semen-equilibrium-short-term and long-term storage (cryopreservation)” cycle. The aim of this study was to determine the effects of various methods of preparing rooster semen on its qualitative characteristics, taking into account [...] Read more.
There is a problem of declining quality of rooster semen in the “native semen-equilibrium-short-term and long-term storage (cryopreservation)” cycle. The aim of this study was to determine the effects of various methods of preparing rooster semen on its qualitative characteristics, taking into account the method of removing possible contaminants (centrifugation or filtration), and to evaluate the change in the composition of the cytosol of the spermatozoon of the native semen, during equilibration of the diluted semen and during short-term storage. In this study, semen from roosters (n = 22) of the Russian White breed was used. Experiment 1: semen was divided into 3 aliquots: I—was diluted with synthetic cryoprotective medium (1:1 with LCM control, II—was filtered (membrane pore Ø 0.2 μm), and III—was centrifugated (at 3000 rpm for 10 min). Native and frozen/thawed semen was evaluated. Experiment 2: the composition of carbohydrates and polyols of the spermatozoa of native semen was evaluated during equilibration and after storage (3 h). The results of Experiment 1 showed an advantage in the quality of filtered semen compared to centrifuged in terms of progressive motility (41.0% vs. 27.0%) and chromatin integrity (56.6% vs. 33.6%). Results from frozen/thawed samples of filtered semen compared to centrifuged in terms of progressive motility were 25.5% vs. 5.5%, respectively, and in terms of chromatin integrity—83.5% vs. 64.4%, respectively. The results of Experiment 2 showed the main component in the composition of the native spermatozoa cytosol in assessing the content of carbohydrates and polyols was inositol—75.6%. The content of inositol decreased during storage by 6.5 times (from 0.030 mg/mL to 0.007 mg/mL), proposing the role of inositol as the main antioxidant in the cytosol of spermatozoa, which makes it biologically justified to introduce inositol into the composition of synthetic diluents, including cryoprotective ones. Full article
(This article belongs to the Special Issue Molecular Research in Reproductive Biology)
Show Figures

Figure 1

15 pages, 613 KiB  
Review
Head-to-Head Comparison between Peptide-Based Radiopharmaceutical for PET and SPECT in the Evaluation of Neuroendocrine Tumors: A Systematic Review
by Giulia Poletto, Diego Cecchin, Stefania Sperti, Luca Filippi, Nicola Realdon and Laura Evangelista
Curr. Issues Mol. Biol. 2022, 44(11), 5516-5530; https://doi.org/10.3390/cimb44110373 - 7 Nov 2022
Cited by 10 | Viewed by 1982
Abstract
We compared head-to-head the most used radiolabeled peptides for single photon computed emission tomography (SPECT) and positron emission tomography (PET) imaging of neuroendocrine tumors (NETs). A comprehensive literature search was performed in PubMed, Web of Science, and Scopus databases. The following words, coupled [...] Read more.
We compared head-to-head the most used radiolabeled peptides for single photon computed emission tomography (SPECT) and positron emission tomography (PET) imaging of neuroendocrine tumors (NETs). A comprehensive literature search was performed in PubMed, Web of Science, and Scopus databases. The following words, coupled two by two, were used: 68Ga-DOTATOC; 68Ga-DOTATATE; 68Ga-DOTANOC; 99mTc-EDDA/HYNIC-TOC; 64Cu-DOTATATE; and 111In-DTPA-octreotide. Moreover, a second-step search strategy was adopted by using the following combined terms: “Somatostatin receptor imaging,”; “Somatostatin receptor imaging” and “Functional,”; “Somatostatin receptor imaging” and “SPECT,”; and “Somatostatin receptor imaging” and “PET”. Eligible criteria were: (1) original articles focusing on the clinical application of the radiopharmaceutical agents in NETs; (2) original articles in the English language; (3) comparative studies (head-to-head comparative or matched-paired studies). Editorials, letters to the editor, reviews, pictorial essays, clinical cases, or opinions were excluded. A total of 1077 articles were found in the three electronic databases. The full texts of 104 articles were assessed for eligibility. Nineteen articles were finally included. Most articles focused on the comparison between 111In-DTPA-Octreotide and 68Ga-DOTATOC/TATE. Few papers compared 64Cu-DOTATATE and 68Ga-DOTATOC/TATE, or SPECT tracers. The rates of true positivity were 63.7%, 58.5%, 78.4% and 82.4%, respectively, for 111In-DTPA-Octreotide, 99mTc-EDDA/HYNIC-TOC, 68Ga-DOTATATE/TOC and 64Cu-DOTATATE. In conclusion, as highly expected, PET tracers are more suitable for the in vivo identification of NETs. Indeed, in comparative studies, they demonstrated a higher true positive rate than SPECT agents. Full article
Show Figures

Figure 1

18 pages, 1614 KiB  
Review
The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset
by Renan Brito Gadelha, Caio Bezerra Machado, Flávia Melo Cunha de Pinho Pessoa, Laudreísa da Costa Pantoja, Igor Valentim Barreto, Rodrigo Monteiro Ribeiro, Manoel Odorico de Moraes Filho, Maria Elisabete Amaral de Moraes, André Salim Khayat and Caroline Aquino Moreira-Nunes
Curr. Issues Mol. Biol. 2022, 44(11), 5498-5515; https://doi.org/10.3390/cimb44110372 - 4 Nov 2022
Cited by 2 | Viewed by 2518
Abstract
The WD repeat containing antisense to TP53 (WRAP53) gene codifies an antisense transcript for tumor protein p53 (TP53), stabilization (WRAP53α), and a functional protein (WRAP53β, WDR79, or TCAB1). The WRAP53β protein functions as a scaffolding protein that is important [...] Read more.
The WD repeat containing antisense to TP53 (WRAP53) gene codifies an antisense transcript for tumor protein p53 (TP53), stabilization (WRAP53α), and a functional protein (WRAP53β, WDR79, or TCAB1). The WRAP53β protein functions as a scaffolding protein that is important for telomerase localization, telomere assembly, Cajal body integrity, and DNA double-strand break repair. WRAP53β is one of many proteins known for containing WD40 domains, which are responsible for mediating a variety of cell interactions. Currently, WRAP53 overexpression is considered a biomarker for a diverse subset of cancer types, and in this study, we describe what is known about WRAP53β’s multiple interactions in cell protein trafficking, Cajal body formation, and DNA double-strand break repair and its current perspectives as a biomarker for cancer. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era)
Show Figures

Figure 1

13 pages, 3015 KiB  
Article
Targeted Metabolic and Transcriptomic Analysis of Pinus yunnanensis var. pygmaea with Loss of Apical Dominance
by Feng Xiao, Yang Zhao, Xiurong Wang and Yao Yang
Curr. Issues Mol. Biol. 2022, 44(11), 5485-5497; https://doi.org/10.3390/cimb44110371 - 3 Nov 2022
Cited by 6 | Viewed by 2007
Abstract
Pinus yunnanensis var. pygmaea demonstrates obvious loss of apical dominance, inconspicuous main trunk, which can be used as an ideal material for dwarfing rootstocks. In order to find out the reasons for the lack of apical dominance of P. pygmaea, endogenous phytohormone [...] Read more.
Pinus yunnanensis var. pygmaea demonstrates obvious loss of apical dominance, inconspicuous main trunk, which can be used as an ideal material for dwarfing rootstocks. In order to find out the reasons for the lack of apical dominance of P. pygmaea, endogenous phytohormone content determination by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and comparative transcriptomes were performed on the shoot apical meristem and root apical meristem of three pine species (P. massoniana, P. pygmaea, and P. elliottii). The results showed that the lack of CK and the massive accumulation of ABA and GA-related hormones may be the reasons for the loss of shoot apical dominance and the formation of multi-branching, the abnormal synthesis of diterpenoid biosynthesis may lead to the influence of GA-related synthesis, and the high expression of GA 2-oxidase (GA2ox) gene may be the cause of dwarfing. Weighted correlation network analysis (WGCNA) screened some modules that were highly expressed in the shoot apical meristem of P. pygmaea. These findings provided valuable information for identifying the network regulation of shoot apical dominance loss in P. pygmaea and enhanced the understanding of the molecular mechanism of shoot apical dominance growth differences among Pinus species. Full article
(This article belongs to the Special Issue Advanced Research in Plant Metabolomics)
Show Figures

Figure 1

11 pages, 1991 KiB  
Article
Exendin-4 Increases Scavenger Receptor Class BI Expression via Activation of AMPK/FoxO1 in Human Vascular Endothelial Cells
by Jingya Lyu, Hitomi Imachi, Kensaku Fukunaga, Seisuke Sato, Toshihiro Kobayashi, Takanobu Saheki, Salimah Japar, Hisakazu Iwama, Yuta Matsumura, Miyo Ozaki, Takafumi Yoshimura and Koji Murao
Curr. Issues Mol. Biol. 2022, 44(11), 5474-5484; https://doi.org/10.3390/cimb44110370 - 3 Nov 2022
Cited by 4 | Viewed by 1808
Abstract
Glucagon-like peptide-1 receptor agonist (GLP-1RA) has been clinically proven to protect endothelial function. Previously, we demonstrated that endothelial NO synthase (eNOS) was activated by high-density lipoprotein (HDL) via its scavenger receptor of the B class/human homologue of SR-BI, CD36 and LIMPII analogous-1(hSR-BI/CLA-1). Here, [...] Read more.
Glucagon-like peptide-1 receptor agonist (GLP-1RA) has been clinically proven to protect endothelial function. Previously, we demonstrated that endothelial NO synthase (eNOS) was activated by high-density lipoprotein (HDL) via its scavenger receptor of the B class/human homologue of SR-BI, CD36 and LIMPII analogous-1(hSR-BI/CLA-1). Here, we investigated the effect of GLP-1RA and exendin-4 on the expression of hSR-BI/CLA-1 in HUVECs. Our results confirmed that GLP-1R was expressed in HUVECs by PCR and exendin-4 significantly enhanced HDL-induced eNOS activation. Next, exendin-4 increased the expression of hSR-BI/CLA-1 and a blockade of GLP-1R cancelled this effect. Further, the hSR-BI/CLA-1 transcriptional activity was enhanced by exendin-4, which was diminished by the inhibition of AMPK or dominant-negative AMPK-α-subunit. Moreover, AMPK was phosphorylated by the activation of GLP-1R. Next, ChIP assay demonstrated that exendin-4 increased the FoxO1-binding in the hSR-BI/CLA-1 promoter by upregulation of FoxO1. Mutation of FoxO1-binding or silencing of FoxO1 cancelled the effect of exendin-4 on hSR-BI/CLA-1 expression. Exendin-4 reduced FoxO1 phosphorylation and induced its nuclear accumulation, while this effect was altered by the blocking of GLP-1R or inhibition of AMPK pathway. In summary, our results proved that exendin-4 increased hSR-BI/CLA-1 expression via the AMPK/FoxO1 pathway to activate eNOS, providing a basic mechanism underlining the protective effect of GLP-1RA on endothelial function. Full article
Show Figures

Figure 1

34 pages, 1930 KiB  
Review
OMICS in Fodder Crops: Applications, Challenges, and Prospects
by Pawan Kumar, Jagmohan Singh, Gurleen Kaur, Paul Motunrayo Adunola, Anju Biswas, Sumandeep Bazzer, Harpreet Kaur, Ishveen Kaur, Harpreet Kaur, Karansher Singh Sandhu, Shailaja Vemula, Balwinder Kaur, Varsha Singh and Te Ming Tseng
Curr. Issues Mol. Biol. 2022, 44(11), 5440-5473; https://doi.org/10.3390/cimb44110369 - 3 Nov 2022
Cited by 8 | Viewed by 5142
Abstract
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle’s health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional [...] Read more.
Biomass yield and quality are the primary targets in forage crop improvement programs worldwide. Low-quality fodder reduces the quality of dairy products and affects cattle’s health. In multipurpose crops, such as maize, sorghum, cowpea, alfalfa, and oat, a plethora of morphological and biochemical/nutritional quality studies have been conducted. However, the overall growth in fodder quality improvement is not on par with cereals or major food crops. The use of advanced technologies, such as multi-omics, has increased crop improvement programs manyfold. Traits such as stay-green, the number of tillers per plant, total biomass, and tolerance to biotic and/or abiotic stresses can be targeted in fodder crop improvement programs. Omic technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, provide an efficient way to develop better cultivars. There is an abundance of scope for fodder quality improvement by improving the forage nutrition quality, edible quality, and digestibility. The present review includes a brief description of the established omics technologies for five major fodder crops, i.e., sorghum, cowpea, maize, oats, and alfalfa. Additionally, current improvements and future perspectives have been highlighted. Full article
(This article belongs to the Special Issue Genetic Sight: Plant Traits during Postharvest)
Show Figures

Figure 1

13 pages, 1588 KiB  
Article
Development of Duplex LAMP Technique for Detection of Porcine Epidemic Diarrhea Virus (PEDV) and Porcine Circovirus Type 2 (PCV 2)
by Supatra Areekit, Pongbun Tangjitrungrot, Sintawee Khuchareontaworn, Kankanit Rattanathanawan, Pornpun Jaratsing, Montri Yasawong, Gaysorn Chansiri, Nareerat Viseshakul and Kosum Chansiri
Curr. Issues Mol. Biol. 2022, 44(11), 5427-5439; https://doi.org/10.3390/cimb44110368 - 3 Nov 2022
Cited by 8 | Viewed by 2336
Abstract
Porcine epidemic diarrhea virus (PEDV) and porcine circovirus type 2 (PCV2) are both important global pathogenic viruses which have a significant impact on the swine industry. In this study, a duplex loop-mediated isothermal amplification (duplex LAMP) method was developed in combination with lateral [...] Read more.
Porcine epidemic diarrhea virus (PEDV) and porcine circovirus type 2 (PCV2) are both important global pathogenic viruses which have a significant impact on the swine industry. In this study, a duplex loop-mediated isothermal amplification (duplex LAMP) method was developed in combination with lateral flow dipstick (LFD) for simultaneous detection of PEDV and PCV2 using specific sets of primers and probes designed based on the conserved regions of a spike gene (KF272920) and an ORF gene (EF493839), respectively. The limit of detection (LOD) values of the duplex LAMP-LFD for the detection of PEDV and PCV2 were 0.1 ng/µL and 0.246 ng/µL, respectively. The LOD of duplex LAMP-LFD was 10-times more sensitive than conventional PCR and RT-PCR-agarose gel-electrophoresis (PCR-AGE and RT-PCR-AGE). No cross-reaction to each other and to other pathogenic viruses that can infect pigs were observed according to analytical specificity tests. The duplex LAMP-LFD method for the simultaneous detection of PEDV and PCV2 co-infection could be completed within approximately 1.5 h, and only a simple heating block was required for isothermal amplification. The preliminary validation using 50 swine clinical samples with positive and negative PEDV and/or PCV2 revealed that the sensitivity, specificity, and accuracy of duplex LAMP-LFD were all 100% in comparison to conventional PCR and RT-PCR. Hence, this study suggests that duplex LAMP-LFD is a promising tool for the early detection and initial screening of PEDV and PCV2, which could be beneficial for prevention, planning, and epidemiological surveys of these diseases. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

11 pages, 2852 KiB  
Article
Sargassum horneri (Turner) C. Agardh Extract Regulates Neuroinflammation In Vitro and In Vivo
by Jun Hwi Cho, Dae Hyun Kim, Jong Suk Lee, Mi-Suk Seo, Mi Eun Kim and Jun Sik Lee
Curr. Issues Mol. Biol. 2022, 44(11), 5416-5426; https://doi.org/10.3390/cimb44110367 - 3 Nov 2022
Cited by 7 | Viewed by 2016
Abstract
Previously, we reported that Sargassum horneri (Turner) C. Agardh (S. horneri) is a brown algae species that exerts anti-inflammatory activity toward murine macrophages. However, the anti-neuroinflammatory effects and the mechanism of S. horneri on microglia cells are still unknown. We investigated [...] Read more.
Previously, we reported that Sargassum horneri (Turner) C. Agardh (S. horneri) is a brown algae species that exerts anti-inflammatory activity toward murine macrophages. However, the anti-neuroinflammatory effects and the mechanism of S. horneri on microglia cells are still unknown. We investigated the anti-neuroinflammatory effects of S. horneri extract on microglia in vitro and in vivo. In the present study, we found that S. horneri was not cytotoxic to BV-2 microglia cells and it significantly decreased lipopolysaccharide (LPS)-induced NO production. Moreover, S. horneri also diminished the protein expression of iNOS, COX-2, and cytokine production, including IL-1β, TNF-α, and IL-6, on LPS-stimulated microglia activation. S. horneri elicited anti-neuroinflammatory effects by inhibiting phosphorylation of p38 MAPK and NF-κB. In addition, S. horneri inhibited astrocytes and microglia activation in LPS-challenged mice brain. Therefore, these results suggested that S. horneri exerted anti-neuroinflammatory effects on LPS-stimulated microglia cell activation by inhibiting neuroinflammatory factors and NF-κB signaling. Full article
(This article belongs to the Special Issue Bioactives and Inflammation)
Show Figures

Figure 1

11 pages, 2865 KiB  
Article
The Core Jasmonic Acid-Signalling Module CoCOI1/CoJAZ1/CoMYC2 Are Involved in Jas Mediated Growth of the Pollen Tube in Camellia oleifera
by Yiyao Liu, Junqin Zhou, Mengqi Lu, Jin Yang and Xiaofeng Tan
Curr. Issues Mol. Biol. 2022, 44(11), 5405-5415; https://doi.org/10.3390/cimb44110366 - 2 Nov 2022
Cited by 6 | Viewed by 1890
Abstract
Camellia oleifera is a woody edible oil species with late self-incompatibility characteristics. Previous transcriptome analysis showed that genes involved in jasmonic acid signal transduction were significantly different in self-and cross-pollinated pistils of Camellia oleifera. To investigate the relationship between jasmonate signal and [...] Read more.
Camellia oleifera is a woody edible oil species with late self-incompatibility characteristics. Previous transcriptome analysis showed that genes involved in jasmonic acid signal transduction were significantly different in self-and cross-pollinated pistils of Camellia oleifera. To investigate the relationship between jasmonate signal and self-incompatibility by studying the core genes of jasmonate signal transduction. The results showed that exogenous JA and MeJA at 1.0 mM significantly inhibited pollen tube germination and pollen tube elongation. and JA up-regulated CoCOI1, CoJAZ1, and CoMYC, the core genes of jasmonate signal transduction. Subcellular localization indicated that CoCOI1 and CoJAZ1 were located in the nucleus and CoMYC2 in the endoplasmic reticulum. The three genes exhibited tissue-specific expression pattern. CoCOI1 was significantly expressed in pollen, CoJAZ1 was significantly expressed in ovary, CoMYC2 was significantly expressed in filaments, but not in pollen. Furthermore, CoJAZ1 and CoMYC2 were highly expressing at 24 h in self-pollinated styles. These results suggested that JA signal transduction of C. oleifera was involved in the process of self-pollination, and thus in the process of plant defense. When pollen tubes grew slowly in the style, ovary may receive JA signal, which initiates the molecular mechanism of inhibiting the growth of self-pollinating pollen tubes. Full article
(This article belongs to the Special Issue Stress and Signal Transduction in Plants)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop