OMICS in Fodder Crops: Applications, Challenges, and Prospects
Abstract
:1. Introduction
1.1. Sorghum
1.2. Cowpea
1.3. Maize
1.4. Oats
1.5. Alfalfa
2. Conclusions and Future Prospect
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Skibbe, A. Some fodder plants and feeding stuffs-their culture and chemical composition. J. Dep. Agric. 1922, 4, 338–349. [Google Scholar]
- Fè, D.; Cericola, F.; Byrne, S.; Lenk, I.; Ashraf, B.H.; Pedersen, M.G.; Roulund, N.; Asp, T.; Janss, L.; Jensen, C.S.; et al. Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genom. 2015, 16, 921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skøt, L.; Sanderson, R.; Thomas, A.; Skøt, K.; Thorogood, D.; Latypova, G.; Asp, T.; Armstead, I. Allelic variation in the perennial ryegrass FLOWERING LOCUS T gene is associated with changes in flowering time across a range of populations. Plant Physiol. 2011, 155, 1013–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinozuka, H.; Cogan, N.O.I.; Spangenberg, G.C.; Forster, J.W. Quantitative Trait Locus (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial ryegrass (Lolium perenne L.). BMC Genet. 2012, 13, 101. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Yagi, K.; Sakai, H.; Kobayashi, K. Influence of elevated CO2 and nitrogen nutrition on rice plant growth, soil microbial biomass, dissolved organic carbon and dissolved CH4. Plant Soil 2004, 258, 81–90. [Google Scholar] [CrossRef]
- Lukyanova, M.; Kovshov, V.; Zalilova, Z.; Lukyanov, V.; Araslanbaev, I. A systemic comparative economic approach efficiency of fodder production. J. Innov. Entrep. 2021, 10, 48. [Google Scholar] [CrossRef]
- Kumar, S.; Bhat, V. Application of omics technologies in forage crop improvement. In OMICS Applications in Crop Science; CRC Press: Boca Raton, FL, USA, 2013; pp. 523–548. ISBN 978-1-4665-8525-6. [Google Scholar]
- Li, Q.; Yan, J. Sustainable agriculture in the era of omics: Knowledge-driven crop breeding. Genome Biol. 2020, 21, 154. [Google Scholar] [CrossRef]
- Groen, S.C.; Ćalić, I.; Joly-Lopez, Z.; Platts, A.E.; Choi, J.Y.; Natividad, M.; Dorph, K.; Mauck, W.M.; Bracken, B.; Cabral, C.L.U.; et al. The strength and pattern of natural selection on gene expression in rice. Nature 2020, 578, 572–576. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Ke, Q.; Kwak, S.-S.; Zhang, S.; Deng, X. Physiological and Differential Proteomic Analyses of Imitation Drought Stress Response in Sorghum bicolor Root at the Seedling Stage. Int. J. Mol. Sci. 2020, 21, 9174. [Google Scholar] [CrossRef]
- Somegowda, V.K.; Rayaprolu, L.; Rathore, A.; Deshpande, S.P.; Gupta, R. Genome-Wide Association Studies (GWAS) for Traits Related to Fodder Quality and Biofuel in Sorghum: Progress and Prospects. Protein Pept. Lett. 2021, 28, 843–854. [Google Scholar] [CrossRef]
- Vinayan, M.T.; Babu, R.; Jyothsna, T.; Zaidi, P.H.; Blümmel, M. A note on potential candidate genomic regions with implications for maize stover fodder quality. Field Crops Res. 2013, 153, 102–106. [Google Scholar] [CrossRef]
- Biazzi, E.; Nazzicari, N.; Pecetti, L.; Brummer, E.C.; Palmonari, A.; Tava, A.; Annicchiarico, P. Genome-Wide Association Mapping and Genomic Selection for Alfalfa (Medicago sativa) Forage Quality Traits. PLoS ONE 2017, 12, e0169234. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tang, W.; Zhang, Y.-W.; Chen, K.-N.; Wang, C.; Liu, Y.; Zhan, Q.; Wang, C.; Wang, S.-B.; Xie, S.-Q.; et al. Genome-Wide Association Studies for Five Forage Quality-Related Traits in Sorghum (Sorghum bicolor L.). Front. Plant Sci. 2018, 9, 1146. [Google Scholar] [CrossRef]
- Al-Qurainy, F.; Alshameri, A.; Gaafar, A.-R.; Khan, S.; Nadeem, M.; Alameri, A.A.; Tarroum, M.; Ashraf, M. Comprehensive Stress-Based De Novo Transcriptome Assembly and Annotation of Guar (Cyamopsis tetragonoloba (L.) Taub.): An Important Industrial and Forage Crop. Int. J. Genomics 2019, 2019, 7295859. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Kefauver, S.C.; Zaman-Allah, M.; Olsen, M.S.; Cairns, J.E. Translating High-Throughput Phenotyping into Genetic Gain. Trends Plant Sci. 2018, 23, 451–466. [Google Scholar] [CrossRef] [Green Version]
- Abdurakhmonov, I.Y. Plant Genomics; InTech: London, UK, 2016; ISBN 978-953-51-2455-9. [Google Scholar]
- Pérez-de-Castro, A.M.; Vilanova, S.; Cañizares, J.; Pascual, L.; Blanca, J.M.; Díez, M.J.; Prohens, J.; Picó, B. Application of genomic tools in plant breeding. Curr. Genom. 2012, 13, 179–195. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, A.J.; Chao, S.; Asoro, F.G.; Heffner, E.L.; Hayashi, T.; Iwata, H.; Smith, K.P.; Sorrells, M.E.; Jannink, J.-L. Genomic Selection in Plant Breeding. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2011; Volume 110, pp. 77–123. ISBN 9780123855312. [Google Scholar]
- Peleman, J.D.; van der Voort, J.R. Breeding by design. Trends Plant Sci. 2003, 8, 330–334. [Google Scholar] [CrossRef]
- Collard, B.C.Y.; Mackill, D.J. Marker-assisted selection: An approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [Green Version]
- Suhre, K.; McCarthy, M.I.; Schwenk, J.M. Genetics meets proteomics: Perspectives for large population-based studies. Nat. Rev. Genet. 2021, 22, 19–37. [Google Scholar] [CrossRef]
- Mustafa, G.; Komatsu, S. Plant proteomic research for improvement of food crops under stresses: A review. Mol. Omics 2021, 17, 860–880. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Li, C.; Zhang, X.; Li, Y.; Zhang, D.; Shi, Y.; Song, Y.; Li, Y.; Yang, D.; Wang, T. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Sci. 2020, 292, 110380. [Google Scholar] [CrossRef] [PubMed]
- Führs, H.; Götze, S.; Specht, A.; Erban, A.; Gallien, S.; Heintz, D.; Van Dorsselaer, A.; Kopka, J.; Braun, H.-P.; Horst, W.J. Characterization of leaf apoplastic peroxidases and metabolites in Vigna unguiculata in response to toxic manganese supply and silicon. J. Exp. Bot. 2009, 60, 1663–1678. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Sandhu, K.S.; Kamal, R.; Kaur, K.; Singh, J.; Röder, M.S.; Muqaddasi, Q.H. Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: Applications, challenges, and prospects. Plants 2021, 10, 1989. [Google Scholar] [CrossRef] [PubMed]
- Falk, K.G.; Jubery, T.Z.; O’Rourke, J.A.; Singh, A.; Sarkar, S.; Ganapathysubramanian, B.; Singh, A.K. Soybean Root System Architecture Trait Study through Genotypic, Phenotypic, and Shape-Based Clusters. Plant Phenomics 2020, 2020, 1925495. [Google Scholar] [CrossRef]
- Gill, T.; Gill, S.K.; Saini, D.K.; Chopra, Y.; de Koff, J.P.; Sandhu, K.S. A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. Phenomics 2022, 2, 156–183. [Google Scholar] [CrossRef]
- Arya, S.; Sandhu, K.S.; Singh, J.; Kumar, S. Deep learning: As the new frontier in high-throughput plant phenotyping. Euphytica 2022, 218, 47. [Google Scholar] [CrossRef]
- Sankaran, S.; Quirós, J.J.; Miklas, P.N. Unmanned aerial system and satellite-based high resolution imagery for high-throughput phenotyping in dry bean. Comput. Electron. Agric. 2019, 165, 104965. [Google Scholar] [CrossRef]
- Calviño, M.; Messing, J. Sweet sorghum as a model system for bioenergy crops. Curr. Opin. Biotechnol. 2012, 23, 323–329. [Google Scholar] [CrossRef]
- Silva, T.N.; Thomas, J.B.; Dahlberg, J.; Rhee, S.Y.; Mortimer, J.C. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J. Exp. Bot. 2022, 73, 646–664. [Google Scholar] [CrossRef]
- Paterson, A.H.; Bowers, J.E.; Bruggmann, R.; Dubchak, I.; Grimwood, J.; Gundlach, H.; Haberer, G.; Hellsten, U.; Mitros, T.; Poliakov, A.; et al. The Sorghum bicolor genome and the diversification of grasses. Nature 2009, 457, 551–556. [Google Scholar] [CrossRef]
- Cooper, E.A.; Brenton, Z.W.; Flinn, B.S.; Jenkins, J.; Shu, S.; Flowers, D.; Luo, F.; Wang, Y.; Xia, P.; Barry, K.; et al. A new reference genome for Sorghum bicolor reveals high levels of sequence similarity between sweet and grain genotypes: Implications for the genetics of sugar metabolism. BMC Genom. 2019, 20, 420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Kong, W.; Robertson, J.; Goff, V.H.; Epps, E.; Kerr, A.; Mills, G.; Cromwell, J.; Lugin, Y.; Phillips, C.; et al. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae). BMC Plant Biol. 2015, 15, 107. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Liu, J.; Jia, R.; Bao, S.; Haixia; Chen, X. Physiological and TMT-based proteomic analysis of oat early seedlings in response to alkali stress. J. Proteom. 2019, 193, 10–26. [Google Scholar] [CrossRef]
- Ortiz, D.; Ferruzzi, M.G. Identification and Quantification of Carotenoids and Tocochromanols in Sorghum Grain by High-Performance Liquid Chromatography. Methods Mol. Biol. 2019, 1931, 141–151. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Prom, L.K.; Cooper, E.A.; Knoll, J.E.; Ni, X. Genome-wide association mapping of anthracnose (Colletotrichum sublineolum) resistance in the US sorghum association panel. Plant Genome 2018, 11, 170099. [Google Scholar] [CrossRef] [Green Version]
- Adeyanju, A.; Little, C.; Yu, J.; Tesso, T. Genome-Wide Association Study on Resistance to Stalk Rot Diseases in Grain Sorghum. G3: Genes Genomes Genet. 2015, 5, 1165–1175. [Google Scholar] [CrossRef] [Green Version]
- Nida, H.; Girma, G.; Mekonen, M.; Tirfessa, A.; Seyoum, A.; Bejiga, T.; Birhanu, C.; Dessalegn, K.; Senbetay, T.; Ayana, G.; et al. Genome-wide association analysis reveals seed protein loci as determinants of variations in grain mold resistance in sorghum. Theor. Appl. Genet. 2021, 134, 1167–1184. [Google Scholar] [CrossRef]
- Rai, K.M.; Thu, S.W.; Balasubramanian, V.K.; Cobos, C.J.; Disasa, T.; Mendu, V. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop. Front. Plant Sci. 2016, 7, 1287. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Mehta, R.; Messing, J. A new high-throughput assay for determining soluble sugar in sorghum internode-extracted juice. Planta 2018, 248, 785–793. [Google Scholar] [CrossRef]
- Quinby, J.R.; Karper, R.E. Inheritance of height in sorghum. Agron. J. 1954, 46, 211–216. [Google Scholar] [CrossRef]
- Hilley, J.; Truong, S.; Olson, S.; Morishige, D.; Mullet, J. Identification of dw1, a regulator of sorghum stem internode length. PLoS ONE 2016, 11, e0151271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilley, J.L.; Weers, B.D.; Truong, S.K.; McCormick, R.F.; Mattison, A.J.; McKinley, B.A.; Morishige, D.T.; Mullet, J.E. Sorghum dw2 encodes a protein kinase regulator of stem internode length. Sci. Rep. 2017, 7, 4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, M.J.; Carneiro, P.C.S.; de Souza Carneiro, J.E.; Damasceno, C.M.B.; Parrella, N.N.L.D.; Pastina, M.M.; Simeone, M.L.F.; Schaffert, R.E.; da Costa Parrella, R.A. Evaluation of the potential of lines and hybrids of biomass sorghum. Ind. Crops Prod. 2018, 125, 379–385. [Google Scholar] [CrossRef]
- Kebrom, T.H.; Burson, B.L.; Finlayson, S.A. Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol. 2006, 140, 1109–1117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toor, M.D.; Adnan, M.; Javed, M.S.; Habibah, U.; Arshad, A.; Din, M.M.; Ahmad, R. Foliar application of Zn: Best way to mitigate drought stress in plants; A review. Int. J. Appl. Res. 2020, 6, 16–20. [Google Scholar]
- Harris, K.; Subudhi, P.K.; Borrell, A.; Jordan, D.; Rosenow, D.; Nguyen, H.; Klein, P.; Klein, R.; Mullet, J. Sorghum stay-green QTL individually reduce post-flowering drought-induced leaf senescence. J. Exp. Bot. 2007, 58, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Varoquaux, N.; Cole, B.; Gao, C.; Pierroz, G.; Baker, C.R.; Patel, D.; Madera, M.; Jeffers, T.; Hollingsworth, J.; Sievert, J.; et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl. Acad. Sci. USA 2019, 116, 27124–27132. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Yang, Z.; Han, G.; Zhao, X.; Yin, S.; Yuan, F.; Wang, B. The developmental dynamics of the sweet sorghum root transcriptome elucidate the differentiation of apoplastic barriers. Plant Signal. Behav. 2020, 15, 1724465. [Google Scholar] [CrossRef]
- Ngara, R.; Goche, T.; Swanevelder, D.Z.H.; Chivasa, S. Sorghum’s Whole-Plant Transcriptome and Proteome Responses to Drought Stress: A Review. Life 2021, 11, 704. [Google Scholar] [CrossRef]
- Kanbar, A.; Shakeri, E.; Alhajturki, D.; Riemann, M.; Bunzel, M.; Morgano, M.T.; Stapf, D.; Nick, P. Sweet versus grain sorghum: Differential sugar transport and accumulation are linked with vascular bundle architecture. Ind. Crops Prod. 2021, 167, 113550. [Google Scholar] [CrossRef]
- Ngara, R.; Ndimba, B.K. Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies. Proteomics 2014, 14, 611–621. [Google Scholar] [CrossRef]
- Bray, E.A. Plant responses to water deficit. Trends Plant Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Woldesemayat, A.A.; Modise, D.M.; Ndimba, B.K. Identification of proteins in response to terminal drought stress in sorghum (Sorghum bicolor (L.) Moench) using two-dimensional gel-electrophoresis and MALDI-TOF-TOF MS/MS. Ind. J. Plant Physiol. 2018, 23, 24–39. [Google Scholar] [CrossRef]
- Goche, T.; Shargie, N.G.; Cummins, I.; Brown, A.P.; Chivasa, S.; Ngara, R. Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Sci. Rep. 2020, 10, 11835. [Google Scholar] [CrossRef]
- Rajarajan, K.; Ganesamurthy, K.; Raveendran, M.; Jeyakumar, P.; Yuvaraja, A.; Sampath, P.; Prathima, P.T.; Senthilraja, C. Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis. Mol. Biol. Rep. 2021, 48, 2453–2462. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, Z.; Li, Y.; Li, Z.; Liu, H.; Zhou, W. Metabolite Profiling of Sorghum Seeds of Different Colors from Different Sweet Sorghum Cultivars Using a Widely Targeted Metabolomics Approach. Int. J. Genomics 2020, 2020, 6247429. [Google Scholar] [CrossRef]
- Tugizimana, F.; Djami-Tchatchou, A.T.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Metabolomic Analysis of Defense-Related Reprogramming in Sorghum bicolor in Response to Colletotrichum sublineolum Infection Reveals a Functional Metabolic Web of Phenylpropanoid and Flavonoid Pathways. Front. Plant Sci. 2018, 9, 1840. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.C.; Chung, Y.S.; Lee, Y.G.; Kang, Y.; Park, Y.J.; Park, S.U.; Kim, C. Prediction of dhurrin metabolism by transcriptome and metabolome analyses in sorghum. Plants 2020, 9, 1390. [Google Scholar] [CrossRef]
- Watanabe, K.; Guo, W.; Arai, K.; Takanashi, H.; Kajiya-Kanegae, H.; Kobayashi, M.; Yano, K.; Tokunaga, T.; Fujiwara, T.; Tsutsumi, N.; et al. High-Throughput Phenotyping of Sorghum Plant Height Using an Unmanned Aerial Vehicle and Its Application to Genomic Prediction Modeling. Front. Plant Sci. 2017, 8, 421. [Google Scholar] [CrossRef] [Green Version]
- Young, S.N.; Kayacan, E.; Peschel, J.M. Design and field evaluation of a ground robot for high-throughput phenotyping of energy sorghum. Precision Agric. 2019, 20, 697–722. [Google Scholar] [CrossRef] [Green Version]
- Gomez, F.E.; Carvalho, G.; Shi, F.; Muliana, A.H.; Rooney, W.L. High throughput phenotyping of morpho-anatomical stem properties using X-ray computed tomography in sorghum. Plant Methods 2018, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.C.; Singh, V.; Hunt, C.; Mace, E.; van Oosterom, E.; Sulman, R.; Jordan, D.; Hammer, G. Development of a phenotyping platform for high throughput screening of nodal root angle in sorghum. Plant Methods 2017, 13, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukar, O.; Belko, N.; Chamarthi, S.; Togola, A.; Batieno, J.; Owusu, E.; Haruna, M.; Diallo, S.; Umar, M.L.; Olufajo, O.; et al. Cowpea (Vigna unguiculata): Genetics, genomics and breeding. Plant Breed. 2019, 138, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.B.; Ajeigbe, H.A.; Tarawali, S.A.; Fernandez-Rivera, S.; Abubakar, M. Improving the production and utilization of cowpea as food and fodder. Field Crops Res. 2003, 84, 169–177. [Google Scholar] [CrossRef]
- Kolawole, G.O.; Tian, G.; Singh, B.B. Differential response of cowpea lines to aluminum and phosphorus application. J. Plant Nutr. 2000, 23, 731–740. [Google Scholar] [CrossRef]
- Sanginga, N.; Lyasse, O.; Singh, B.B. Phosphorus use efficiency and nitrogen balance of cowpea breeding lines in a low P soil of the derived savanna zone in West Africa. Plant Soil 2000, 220, 119–128. [Google Scholar] [CrossRef]
- Quinn, J.; Myers, R. Cowpea: A Versatile Legume for Hot, Dry Conditions; Jefferson Institute: Columbia, MO, USA, 1999. [Google Scholar]
- Chinma, C.E.; Emelife, I.G.; Alemede, I.C. Physicochemical and functional properties of some nigerian cowpea varieties. Pak. J. Nutr. 2007, 7, 186–190. [Google Scholar] [CrossRef] [Green Version]
- Langyintuo, A.S.; Ntoukam, G.; Murdock, L.; Lowenberg-DeBoer, J.; Miller, D.J. Consumer preferences for cowpea in Cameroon and Ghana. Agric. Econ. 2004, 30, 203–213. [Google Scholar] [CrossRef]
- Rego, C.H.Q.; França-Silva, F.; Gomes-Junior, F.G.; de Moraes, M.H.D.; Medeiros, A.D.; Silva, C.B.D. Using Multispectral Imaging for Detecting Seed-Borne Fungi in Cowpea. Agriculture 2020, 10, 361. [Google Scholar] [CrossRef]
- Zhou, Z.; Zang, Y.; Shen, B.; Zhou, X.; Luo, X. Detection of cowpea weevil (Callosobruchus maculatus (F.)) in soybean with hyperspectral spectrometry and a backpropagation neural network. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August 2010; pp. 1223–1227. [Google Scholar]
- ElMasry, G.; Mandour, N.; Ejeez, Y.; Demilly, D.; Al-Rejaie, S.; Verdier, J.; Belin, E.; Rousseau, D. Multichannel imaging for monitoring chemical composition and germination capacity of cowpea (Vigna unguiculata) seeds during development and maturation. Crop J. 2021, 10, 1399–1411. [Google Scholar] [CrossRef]
- Amaral, J.B.C.; Lopes, F.B.; de Magalhães, A.C.M.; Kujawa, S.; Taniguchi, C.A.K.; dos Teixeira, A.S.; de Lacerda, C.F.; Queiroz, T.R.G.; de Andrade, E.M.; da Araújo, I.C.S.; et al. Quantifying nutrient content in the leaves of cowpea using remote sensing. Appl. Sci. 2022, 12, 458. [Google Scholar] [CrossRef]
- Burridge, J.; Jochua, C.N.; Bucksch, A.; Lynch, J.P. Legume shovelomics: High—Throughput phenotyping of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculata subsp, unguiculata) root architecture in the field. Field Crops Res. 2016, 192, 21–32. [Google Scholar] [CrossRef]
- Singh, P. Current status of feed and forage in management of livestock in India. In Managing Agriculture for a Better Tomorrow: The Indian Experience; MD Publishing: New Delhi, India, 1998; p. 85. [Google Scholar]
- Singh, B.B.; Chambliss, O.; Sharma, B. Recent Advances in Cowpea Breeding. Recent Advances in Cowpea Breeding; IITA: Montpellier, France, 1997. [Google Scholar]
- Boukar, O.; Fatokun, C.A.; Huynh, B.-L.; Roberts, P.A.; Close, T.J. Genomic tools in cowpea breeding programs: Status and perspectives. Front. Plant Sci. 2016, 7, 757. [Google Scholar] [CrossRef] [Green Version]
- Samireddypalle, A.; Boukar, O.; Grings, E.; Fatokun, C.A.; Kodukula, P.; Devulapalli, R.; Okike, I.; Blümmel, M. Cowpea and groundnut haulms fodder trading and its lessons for multidimensional cowpea improvement for mixed crop livestock systems in west africa. Front. Plant Sci. 2017, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Fatokun, C.A. A linkage map for cowpea (Vigna unguiculata (L.) Walp) based on DNA markers (2n = 22). A Compilation of Linkage and Restriction Maps of Genetically Studied Organisms. Genetic Maps 1993, 2, 6256–6258. [Google Scholar]
- Fatokun, C.A.; Young, N.; Myers, G. Molecular Markers and Genome Mapping in Cowpea; IITA: Montpellier, France, 1997. [Google Scholar]
- Spencer, M.; Ndiaye, M.A.; Gueye, M.; Diouf, D.; Ndiaye, M.; Gresshoff, P.M. DNA-based relatedness of cowpea [Vigna unguiculata (L.) Walp.] genotypes using DNA amplification fingerprinting. Physiol. Mol. Biol. Plants 2000, 6, 81–88. [Google Scholar]
- Mignouna, H.D.; Ellis, N.T.; Knox, M.R.; Asiedu, R.; Ng, Q.N. Analysis of genetic diversity in Guinea yams (Dioscorea spp.) using AFLP fingerprinting. Trop. Agric. 1998, 75, 224–229. [Google Scholar]
- Zannouou, A.; Kossou, D.K.; Ahanchede, A.; Zoundjihékpon, J.; Agbicodo, E.; Struik, P.C.; Sanni, A. Genetic variability of cultivated cowpea in Benin assessed by random amplified polymorphic DNA. Afr. J. Biotechnol. 2008, 7, 24. [Google Scholar]
- Ogunkanmi, L.A.; Ogundipe, O.T.; Ng, N.Q.; Fatokun, C.A. Genetic diversity in wild relatives of cowpea (Vigna unguiculata) as revealed by simple sequence repeats (SSR) markers. J. Food Agric. Env. 2008, 6, 263–268. [Google Scholar]
- Mahamadou, S.; Jeremy, T.O.; Bhavani, S.G.; Michael, P.T. Genetic diversity of cowpea (Vigna unguiculata L. Walp) cultivars in Burkina Faso resistant to Striga gesnerioides. Afr. J. Biotechnol. 2010, 9, 8146–8153. [Google Scholar] [CrossRef]
- Ghalmi, N.; Malice, M.; Jacquemin, J.-M.; Ounane, S.-M.; Mekliche, L.; Baudoin, J.-P. Morphological and molecular diversity within Algerian cowpea (Vigna unguiculata (L.) Walp.) landraces. Genet. Resour. Crop Evol. 2010, 57, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Choumane, W.; Winter, P.; Weigand, F.; Kahl, G. Conservation and variability of sequence-tagged microsatellite sites (STMSs) from chickpea (Cicer aerietinum L.) within the genus Cicer. Theor. Appl. Genet. 2000, 101, 269–278. [Google Scholar] [CrossRef]
- Huynh, B.-L.; Close, T.J.; Roberts, P.A.; Hu, Z.; Wanamaker, S.; Lucas, M.R.; Chiulele, R.; Cissé, N.; David, A.; Hearne, S.; et al. Gene pools and the genetic architecture of domesticated cowpea. Plant Genome 2013, 6, 122. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Shi, A.; Mou, B.; Qin, J.; Motes, D.; Lu, W.; Ma, J.; Weng, Y.; Yang, W.; Wu, D. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp). PLoS ONE 2016, 11, e0160941. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Amatriaín, M.; Lo, S.; Herniter, I.A.; Boukar, O.; Fatokun, C.; Carvalho, M.; Castro, I.; Guo, Y.; Huynh, B.; Roberts, P.A.; et al. The UCR Minicore: A resource for cowpea research and breeding. Legume Sci. 2021, 3, e95. [Google Scholar] [CrossRef]
- Menéndez, C.M.; Hall, A.E.; Gepts, P. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor. Appl. Genet. 1997, 95, 1210–1217. [Google Scholar] [CrossRef]
- Ubi, B.E.; Mignouna, H.; Thottappilly, G. Construction of a Genetic Linkage Map and QTL Analysis Using a Recombinant Inbred Population Derived from an Intersubspecific Cross of Cowpea (Vigna unguiculata (L.) Walp.). Breed. Sci. 2000, 50, 161–172. [Google Scholar] [CrossRef]
- Muchero, W.; Diop, N.N.; Bhat, P.R.; Fenton, R.D.; Wanamaker, S.; Pottorff, M.; Hearne, S.; Cisse, N.; Fatokun, C.; Ehlers, J.D.; et al. A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc. Natl. Acad. Sci. USA 2009, 106, 18159–18164. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.R.; Diop, N.-N.; Wanamaker, S.; Ehlers, J.D.; Roberts, P.A.; Close, T.J. Cowpea–Soybean Synteny Clarified through an Improved Genetic Map. Plant Genome J. 2011, 4, 218. [Google Scholar] [CrossRef] [Green Version]
- Menancio-Hautea, D.; Fatokun, C.A.; Kumar, L.; Danesh, D.; Young, N.D. Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor. Appl. Genet. 1993, 86, 797–810. [Google Scholar] [CrossRef]
- Xu, P.; Wu, X.; Muñoz-Amatriaín, M.; Wang, B.; Wu, X.; Hu, Y.; Huynh, B.-L.; Close, T.J.; Roberts, P.A.; Zhou, W.; et al. Genomic regions, cellular components and gene regulatory basis underlying pod length variations in cowpea (V. unguiculata L. Walp). Plant Biotechnol. J. 2017, 15, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Burridge, J.D.; Schneider, H.M.; Huynh, B.-L.; Roberts, P.A.; Bucksch, A.; Lynch, J.P. Genome-wide association mapping and agronomic impact of cowpea root architecture. Theor. Appl. Genet. 2017, 130, 419–431. [Google Scholar] [CrossRef]
- Omomowo, O.I.; Babalola, O.O. Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Front. Plant Sci. 2021, 12, 751731. [Google Scholar] [CrossRef]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.-D. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef]
- Paudel, D.; Dareus, R.; Rosenwald, J.; Muñoz-Amatriaín, M.; Rios, E.F. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time in Cowpea (Vigna unguiculata [L.] Walp.). Front. Genet. 2021, 12, 667038. [Google Scholar] [CrossRef]
- Fatokun, C.; Girma, G.; Abberton, M.; Gedil, M.; Unachukwu, N.; Oyatomi, O.; Yusuf, M.; Rabbi, I.; Boukar, O. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 2018, 8, 16035. [Google Scholar] [CrossRef]
- Muñoz-Amatriaín, M.; Mirebrahim, H.; Xu, P.; Wanamaker, S.I.; Luo, M.; Alhakami, H.; Alpert, M.; Atokple, I.; Batieno, B.J.; Boukar, O.; et al. Genome resources for climate-resilient cowpea, an essential crop for food security. Plant J. 2017, 89, 1042–1054. [Google Scholar] [CrossRef] [Green Version]
- Salifou, M.; Tignegre, J.B.L.S.; Tongoona, P.; Offei, S.; Ofori, K.; Danquah, E. Differential responses of 15 cowpea genotypes to three Striga hot spots in Niger. Int. J. Biol. Chem. Sci. 2017, 11, 1413. [Google Scholar] [CrossRef] [Green Version]
- Dinesh, H.B.; Lohithaswa, H.C.; Viswanatha, K.P.; Singh, P.; Rao, A.M. Identification and marker-assisted introgression of QTL conferring resistance to bacterial leaf blight in cowpea (Vigna unguiculata (L.) Walp.). Plant Breed. 2016, 135, 506–512. [Google Scholar] [CrossRef]
- Boukar, O.; Abberton, M.; Oyatomi, O.; Togola, A.; Tripathi, L.; Fatokun, C. Introgression Breeding in Cowpea [Vigna unguiculata (L.) Walp.]. Front. Plant Sci. 2020, 11, 567425. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.; Jiang, C.; Huang, Z.; Torres-Jerez, I.; Chang, J.; Zhang, H.; Udvardi, M.; Liu, R.; Verdier, J. The Vigna unguiculata Gene Expression Atlas (VuGEA) from de novo assembly and quantification of RNA-seq data provides insights into seed maturation mechanisms. Plant J. 2016, 88, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Amorim, L.L.B.; Ferreira-Neto, J.R.C.; Bezerra-Neto, J.P.; Pandolfi, V.; de Araújo, F.T.; da Silva Matos, M.K.; Santos, M.G.; Kido, E.A.; Benko-Iseppon, A.M. Cowpea and abiotic stresses: Identification of reference genes for transcriptional profiling by qPCR. Plant Methods 2018, 14, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spriggs, A.; Henderson, S.T.; Hand, M.L.; Johnson, S.D.; Taylor, J.M.; Koltunow, A. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea (Vigna unguiculata (L.) Walp) [version 2; peer review: 3 approved]. Gates Open Res. 2018, 2, 7. [Google Scholar] [CrossRef]
- Chen, H.; Chen, H.; Hu, L.; Wang, L.; Wang, S.; Wang, M.L.; Cheng, X. Genetic diversity and a population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection. Crop J. 2017, 5, 363–372. [Google Scholar] [CrossRef]
- Lucas, M.R.; Huynh, B.-L.; Roberts, P.A.; Close, T.J. Introgression of a rare haplotype from Southeastern Africa to breed California blackeyes with larger seeds. Front. Plant Sci. 2015, 6, 126. [Google Scholar] [CrossRef] [Green Version]
- Lima, E.N.; dos Silva, M.L.S.; de Abreu, C.E.B.; Mesquita, R.O.; Lobo, M.D.P.; de Monteiro-Moreira, A.C.O.; Gomes-Filho, E.; de Bertini, C.H.C.M. Research Article Differential proteomics in contrasting cowpea genotypes submitted to different water regimes. Genet. Mol. Res. 2019, 18. [Google Scholar] [CrossRef]
- Parker, C. Protection of crops against parasitic weeds. Crop Prot. 1991, 10, 6–22. [Google Scholar] [CrossRef]
- Lane, J.A.; Moore, T.H.; Child, D.V.; Bailey, J.A. Variation in virulence of Striga gesnerioides on cowpea: New sources of crop resistance. Adv. Cowpea Res. 1997, 84, 225–230. [Google Scholar]
- Botanga, C.J.; Timko, M.P. Phenetic relationships among different races of Striga gesnerioides (Willd.) Vatke from West Africa. Genome 2006, 49, 1351–1365. [Google Scholar] [CrossRef] [Green Version]
- Fery, R.L.; Singh, B.B. Cowpea Genetics: A Review of the Recent Literature; International Institute of Tropical Agriculture: Ibadan, Nigeria, 1997; pp. 13–29. [Google Scholar]
- Singh, B.B.; Emechebe, A.M.; Atokple, I.D.K. Inheritance of alectra resistance in cowpea genotype B 301. Crop Sci. 1993, 33, 70–72. [Google Scholar] [CrossRef]
- Atokple, I.D.K.; Singh, B.B.; Emechebe, A.M. Genetics of resistance to striga and alectra in cowpea. J. Hered. 1995, 86, 45–49. [Google Scholar] [CrossRef]
- Singh, S.E.; Jackai, L.E. Insect pests of cowpeas in Africa: Their life cycle, economic importance and potential for control. Cowpea Res. Prod. Util. 1985, 2, 217–231. [Google Scholar]
- Bata, H.D.; Singh, B.B.; Singh, S.R.; Ladeinde, T.A.O. Inheritance of resistance to aphid in cowpea1. Crop Sci. 1987, 27, 892–894. [Google Scholar] [CrossRef] [Green Version]
- Souleymane, A.; Aken’Ova, M.E.; Fatokun, C.A.; Alabi, O.Y. Screening for resistance to cowpea aphid (Aphis craccivora Koch) in wild and cultivated cowpea (Vigna unguiculata L. Walp.) accessions. Int. J. Sci. Environ. Technol. 2013, 2, 611–621. [Google Scholar]
- Lo, S.; Muñoz-Amatriaín, M.; Boukar, O.; Herniter, I.; Cisse, N.; Guo, Y.-N.; Roberts, P.A.; Xu, S.; Fatokun, C.; Close, T.J. Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci. Rep. 2018, 8, 6261. [Google Scholar] [CrossRef] [Green Version]
- Togola, A.; Boukar, O.; Servent, A.; Chamarthi, S.; Tamò, M.; Fatokun, C. Identification of sources of resistance in cowpea mini core accessions to Aphis craccivora Koch (Homoptera: Aphididae) and their biochemical characterization. Euphytica. 2020, 216, 88. [Google Scholar] [CrossRef]
- Diouf, D. Recent advances in cowpea [Vigna unguiculata (L.) Walp.]“omics” research for genetic improvement. Afr. J. Biotechnol. 2011, 10, 2803–2810. [Google Scholar]
- Carneiro, R.G.S.; Oliveira, D.C.; Isaias, R.M.S. Developmental anatomy and immunocytochemistry reveal the neo-ontogenesis of the leaf tissues of Psidium myrtoides (Myrtaceae) towards the globoid galls of Nothotrioza myrtoidis (Triozidae). Plant Cell Rep. 2014, 33, 2093–2106. [Google Scholar] [CrossRef]
- Nogueira, F.C.S.; Gonçalves, E.F.; Jereissati, E.S.; Santos, M.; Costa, J.H.; Oliveira-Neto, O.B.; Soares, A.A.; Domont, G.B.; Campos, F.A.P. Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Rep. 2007, 26, 1333–1343. [Google Scholar] [CrossRef]
- Gomes, A.M.F.; Rodrigues, A.P.; António, C.; Rodrigues, A.M.; Leitão, A.E.; Batista-Santos, P.; Nhantumbo, N.; Massinga, R.; Ribeiro-Barros, A.I.; Ramalho, J.C. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 2020, 175, 104060. [Google Scholar] [CrossRef]
- Goufo, P.; Moutinho-Pereira, J.M.; Jorge, T.F.; Correia, C.M.; Oliveira, M.R.; Rosa, E.A.S.; António, C.; Trindade, H. Cowpea (Vigna unguiculata L. Walp.) Metabolomics: Osmoprotection as a Physiological Strategy for Drought Stress Resistance and Improved Yield. Front. Plant Sci. 2017, 8, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, H.J.; Park, C.H.; Lee, K.B.; Kim, J.K.; Park, J.S.; Lee, J.-W.; Park, S.U. Metabolic Analysis of Vigna unguiculata Sprouts Exposed to Different Light-Emitting Diodes. Nat. Prod. Commun. 2018, 13, 1934578X1801301. [Google Scholar] [CrossRef] [Green Version]
- Ramalingam, A.; Kudapa, H.; Pazhamala, L.T.; Weckwerth, W.; Varshney, R.K. Proteomics and metabolomics: Two emerging areas for legume improvement. Front. Plant Sci. 2015, 6, 1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Sun, T.; Xu, W.; Sun, Y.; Wang, B.; Wang, Y.; Li, Y.; Wang, J.; Wu, X.; Lu, Z.; et al. Unraveling the Genetic Architecture of Two Complex, Stomata-Related Drought-Responsive Traits by High-Throughput Physiological Phenotyping and GWAS in Cowpea (Vigna unguiculata L. Walp). Front. Genet. 2021, 12, 743758. [Google Scholar] [CrossRef]
- Sun, C.X.; Gao, X.X.; Li, M.Q.; Fu, J.Q.; Zhang, Y.L. Plastic responses in the metabolome and functional traits of maize plants to temperature variations. Plant Biol. 2016, 18, 249–261. [Google Scholar] [CrossRef]
- Ganie, A.H.; Ahmad, A.; Pandey, R.; Aref, I.M.; Yousuf, P.Y.; Ahmad, S.; Iqbal, M. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions. PLoS ONE 2015, 10, e0129520. [Google Scholar] [CrossRef]
- Yadav, O.P.; Hossain, F.; Karjagi, C.G.; Kumar, B.; Zaidi, P.H.; Jat, S.L.; Chawla, J.S.; Kaul, J.; Hooda, K.S.; Kumar, P.; et al. Genetic improvement of maize in india: Retrospect and prospects. Agric. Res. 2015, 4, 325–338. [Google Scholar] [CrossRef]
- Shiferaw, B.; Prasanna, B.M.; Hellin, J.; Bänziger, M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Sec. 2011, 3, 307–327. [Google Scholar] [CrossRef] [Green Version]
- Gaffney, I.; Sallach, J.B.; Wilson, J.; Bergström, E.; Thomas-Oates, J. Metabolomic Approaches to Studying the Response to Drought Stress in Corn (Zea mays) Cobs. Metabolites 2021, 11, 438. [Google Scholar] [CrossRef]
- Adunola, M.P.; Fayeun, L.S.; Fadara, A.B. Impact of climate change on armyworm infestation on maize in Nigeria: A review. J. Plant Breed. Crop Sci. 2021, 13, 158–167. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Song, R.; He, X.; Mao, P.; Jia, S. Non-Destructive Identification of Naturally Aged Alfalfa Seeds via Multispectral Imaging Analysis. Sensors 2021, 21, 5804. [Google Scholar] [CrossRef]
- De Yassitepe, J.E.C.T.; da Silva, V.C.H.; Hernandes-Lopes, J.; Dante, R.A.; Gerhardt, I.R.; Fernandes, F.R.; da Silva, P.A.; Vieira, L.R.; Bonatti, V.; Arruda, P. Maize transformation: From plant material to the release of genetically modified and edited varieties. Front. Plant Sci. 2021, 12, 766702. [Google Scholar] [CrossRef]
- Liu, J.; Fernie, A.R.; Yan, J. The Past, Present, and Future of Maize Improvement: Domestication, Genomics, and Functional Genomic Routes toward Crop Enhancement. Plant Commun. 2020, 1, 100010. [Google Scholar] [CrossRef]
- Strable, J.; Scanlon, M.J. Maize (Zea mays): A model organism for basic and applied research in plant biology. Cold Spring Harb. Protoc. 2009, 2009, pdb.emo132. [Google Scholar] [CrossRef] [Green Version]
- Birchler, J.A. The cytogenetic localization of the alcohol dehydrogenase-1 locus in maize. Genetics 1980, 94, 687–700. [Google Scholar] [CrossRef]
- Gardiner, J.M.; Coe, E.H.; Melia-Hancock, S.; Hoisington, D.A.; Chao, S. Development of a core RFLP map in maize using an immortalized F2 population. Genetics 1993, 134, 917–930. [Google Scholar] [CrossRef]
- Weber, D.; Helentjaris, T. Mapping RFLP loci in maize using B-A translocations. Genetics 1989, 121, 583–590. [Google Scholar] [CrossRef]
- Burr, B.; Burr, F.A.; Thompson, K.H.; Albertson, M.C.; Stuber, C.W. Gene mapping with recombinant inbreds in maize. Genetics 1988, 118, 519–526. [Google Scholar] [CrossRef]
- Helentjaris, T.; Slocum, M.; Wright, S.; Schaefer, A.; Nienhuis, J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 1986, 72, 761–769. [Google Scholar] [CrossRef]
- Dong, Q.; Roy, L.; Freeling, M.; Walbot, V.; Brendel, V. ZmDB, an integrated database for maize genome research. Nucleic Acids Res. 2003, 31, 244–247. [Google Scholar] [CrossRef] [PubMed]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnable, P.S.; Ware, D.; Fulton, R.S.; Stein, J.C.; Wei, F.; Pasternak, S.; Liang, C.; Zhang, J.; Fulton, L.; Graves, T.A.; et al. The B73 maize genome: Complexity, diversity, and dynamics. Science 2009, 326, 1112–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakradhar, T.; Hindu, V.; Reddy, P.S. Genomic-based-breeding tools for tropical maize improvement. Genetica 2017, 145, 525–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zein, I.; Wenzel, G.; Andersen, J.R.; Lübberstedt, T. Low Level of Linkage Disequilibrium at the COMT (Caffeic Acid O-methyl Transferase) Locus in European Maize (Zea mays L.). Genet. Resour. Crop Evol. 2007, 54, 139–148. [Google Scholar] [CrossRef]
- Pinter, J.; Glenn, F.; Pen, S.; Pok, I.; Hegyi, Z.; Zsubori, Z.T.; Hadi, G.; Marton, C.L. Utilizing Leafy genes as resources in quality silage maize breeding. Maydica 2012, 56, 243–250. [Google Scholar]
- Barrière, Y.; Argillier, O. Brown-midrib genes of maize: A review. Agronomie 1993, 13, 865–876. [Google Scholar] [CrossRef] [Green Version]
- Andersen, J.R.; Zein, I.; Wenzel, G.; Krützfeldt, B.; Eder, J.; Ouzunova, M.; Lübberstedt, T. High levels of linkage disequilibrium and associations with forage quality at a phenylalanine ammonia-lyase locus in European maize (Zea mays L.) inbreds. Theor. Appl. Genet. 2007, 114, 307–319. [Google Scholar] [CrossRef]
- Wang, H.; Li, K.; Hu, X.; Liu, Z.; Wu, Y.; Huang, C. Genome-wide association analysis of forage quality in maize mature stalk. BMC Plant Biol. 2016, 16, 227. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Luo, L.; Cao, Y.; Liu, Y.; Li, Y.; Wu, W.; Lan, Y.; Jiang, Y.; Gao, S.; Zhang, Z.; et al. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf. BMC Genom. 2018, 19, 91. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Xie, J.; Zhang, H.; Wang, Z.; Jiang, H.; Gao, S. Enzymatic activity and chlorophyll fluorescence imaging of maize seedlings (Zea mays L.) after exposure to low doses of chlorsulfuron and cadmium. J. Integr. Agric. 2018, 17, 826–836. [Google Scholar] [CrossRef] [Green Version]
- Vinayan, M.T.; Seetharam, K.; Babu, R.; Zaidi, P.H.; Blummel, M.; Nair, S.K. Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.). Sci. Rep. 2021, 11, 686. [Google Scholar] [CrossRef]
- Hey, S.; Baldauf, J.; Opitz, N.; Lithio, A.; Pasha, A.; Provart, N.; Nettleton, D.; Hochholdinger, F. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. J. Exp. Bot. 2017, 68, 2175–2185. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, X. Transcriptome and metabolomic analyses reveal regulatory networks controlling maize stomatal development in response to blue light. Int. J. Mol. Sci. 2021, 22, 5393. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, S.-W.; Tang, X.-L.; Wang, S.; Wang, X.; Zhang, X.-X.; Zhou, J.-J.; Xi, J.-H. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Holotrichia parallela larvae feeding. Genome 2020, 63, 1–12. [Google Scholar] [CrossRef]
- Zhou, K.; Zeng, X.; Zhang, B.; Aslam, M.; Xin, H.; Liu, W.; Zou, H. Bulk segregant transcriptome analysis based differential expression of drought response genes in maize. Pak. J. Agric. Sci. 2020, 57, 909–923. [Google Scholar]
- Du, H.; Zhu, J.; Su, H.; Huang, M.; Wang, H.; Ding, S.; Zhang, B.; Luo, A.; Wei, S.; Tian, X.; et al. Bulked segregant RNA-seq reveals differential expression and SNPs of candidate genes associated with waterlogging tolerance in maize. Front. Plant Sci. 2017, 8, 1022. [Google Scholar] [CrossRef] [Green Version]
- Kebede, A.Z.; Johnston, A.; Schneiderman, D.; Bosnich, W.; Harris, L.J. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genom. 2018, 19, 131. [Google Scholar] [CrossRef] [Green Version]
- Yue, R.; Lu, C.; Qi, J.; Han, X.; Yan, S.; Guo, S.; Liu, L.; Fu, X.; Chen, N.; Yin, H.; et al. Transcriptome analysis of cadmium-treated roots in maize (Zea mays L.). Front. Plant Sci. 2016, 7, 1298. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, R.; Li, L.; Yang, Y.; Ding, Y.; Guan, H.; Wang, X.; Zhang, A.; Wen, H. Negligible transcriptome and metabolome alterations in RNAi insecticidal maize against Monolepta hieroglyphica. Plant Cell Rep. 2020, 39, 1539–1547. [Google Scholar] [CrossRef]
- He, W.; Zhu, Y.; Leng, Y.; Yang, L.; Zhang, B.; Yang, J.; Zhang, X.; Lan, H.; Tang, H.; Chen, J.; et al. Transcriptomic analysis reveals candidate genes responding maize gray leaf spot caused by Cercospora zeina. Plants 2021, 10, 2257. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Yu, H.; Wang, P.; Guerrero, M.L.; Mural, R.V.; Mizero, O.N.; Grzybowski, M.; Song, B.; van Dijk, K.; Schachtman, D.P.; et al. A role for heritable transcriptomic variation in maize adaptation to temperate environments. BioRxiv 2022, 39. [Google Scholar] [CrossRef]
- Dukowic-Schulze, S.; Sundararajan, A.; Mudge, J.; Ramaraj, T.; Farmer, A.D.; Wang, M.; Sun, Q.; Pillardy, J.; Kianian, S.; Retzel, E.F.; et al. The transcriptome landscape of early maize meiosis. BMC Plant Biol. 2014, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Teoh, K.T.; Requesens, D.V.; Devaiah, S.P.; Johnson, D.; Huang, X.; Howard, J.A.; Hood, E.E. Transcriptome analysis of embryo maturation in maize. BMC Plant Biol. 2013, 13, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Wang, B.; Xie, F.; Zhang, L.; Gong, J.; Zhu, W.; Li, X.; Feng, F.; Huang, J. QTL mapping and transcriptome analysis identify candidate genes regulating pericarp thickness in sweet corn. BMC Plant Biol. 2020, 20, 117. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.T.; Zhang, Y.L.; Chen, S.X.; Yin, G.H.; Yang, Z.Z.; Lee, S.; Liu, C.G.; Zhao, D.D.; Ma, Y.K.; Song, F.Q.; et al. Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer. BMC Genom. 2015, 16, 224. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Chen, Z.; Tian, L.; Ding, Y.; Zhang, J.; Zhou, J.; Liu, P.; Chen, Y.; Wu, L. Comparative proteomics combined with analyses of transgenic plants reveal ZmREM1.3 mediates maize resistance to southern corn rust. Plant Biotechnol. J. 2019, 17, 2153–2168. [Google Scholar] [CrossRef]
- Dong, A.; Yang, Y.; Liu, S.; Zenda, T.; Liu, X.; Wang, Y.; Li, J.; Duan, H. Comparative proteomics analysis of two maize hybrids revealed drought-stress tolerance mechanisms. Biotechnol. Biotechnol. Equip. 2020, 34, 763–780. [Google Scholar] [CrossRef]
- Yue, J.Y.; Wang, L.H.; Dou, X.T.; Wang, Y.J.; Wang, H.Z. Comparative metabolomic profiling in the roots of salt-tolerant and salt-intolerant maize cultivars treated with NaCl stress. Biol. Plant. 2020, 64, 569–577. [Google Scholar] [CrossRef]
- Begcy, K.; Nosenko, T.; Zhou, L.-Z.; Fragner, L.; Weckwerth, W.; Dresselhaus, T. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiol. 2019, 181, 683–700. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.X.; Li, M.Q.; Gao, X.X.; Liu, L.N.; Wu, X.F.; Zhou, J.H. Metabolic response of maize plants to multi-factorial abiotic stresses. Plant Biol. 2016, 18 (Suppl. 1), 120–129. [Google Scholar] [CrossRef]
- Adak, A.; Murray, S.; Anderson, S.L. Phenomic data-driven prediction through field-based high throughput phenotyping, and integration with genomic data in maize. In Proceedings of the Plant and Animal Genome XXIX Conference, San Diego, CA, USA, 8–12 January 2022. [Google Scholar]
- Xu, Z.; Chen, X.; Lu, X.; Zhao, B.; Yang, Y.; Liu, J. Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiol. Biochem. 2021, 160, 315–328. [Google Scholar] [CrossRef]
- Andon, M.B.; Anderson, J.W. State of the Art Reviews: The Oatmeal-Cholesterol Connection: 10 Years Later. Am. J. Lifestyle Med. 2008, 2, 51–57. [Google Scholar] [CrossRef]
- Loskutov, I.; Shelenga, T.; Blinova, E.; Gnutikov, A.; Konarev, A. Metabolomic profiling in evaluation of cultivated oat species with different ploidy level. BIO Web Conf. 2021, 36, 01026. [Google Scholar] [CrossRef]
- Peterson, D.M. Composition and nutritional characteristics of oat grain and products. In Oat Science and Technology; Marshall, H.G., Sorrells, M.E., Eds.; Agronomy Monographs; American Society of Agronomy, Crop Science Society of America: Madison, WI, USA, 1992; pp. 265–292. ISBN 9780891181101. [Google Scholar]
- Newell, M.A.; Kim, H.J.; Asoro, F.G.; Lauter, A.M.; White, P.J.; Scott, M.P.; Jannink, J.-L. Microenzymatic evaluation of oat (Avena sativa L.) β-Glucan for high-throughput phenotyping. Cereal Chem. J. 2014, 91, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Stevens, E.J.; Armstrong, K.W.; Bezar, H.J.; Griffin, W.B. Fodder Oats: An Overview; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; pp. 1–9. [Google Scholar]
- Maki, K.C.; Galant, R.; Samuel, P.; Tesser, J.; Witchger, M.S.; Ribaya-Mercado, J.D.; Blumberg, J.B.; Geohas, J. Effects of consuming foods containing oat beta-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur. J. Clin. Nutr. 2007, 61, 786–795. [Google Scholar] [CrossRef] [Green Version]
- Jackson, E.W.; Wise, M.; Bonman, J.M.; Obert, D.E.; Hu, G.; Peterson, D.M. QTLs affecting α-tocotrienol, α-tocopherol, and total tocopherol concentrations detected in the Ogle/TAM O-301 oat mapping population. Crop Sci. 2008, 48, 2141–2152. [Google Scholar] [CrossRef]
- Pretorius, C.J.; Tugizimana, F.; Steenkamp, P.A.; Piater, L.A.; Dubery, I.A. Metabolomics for biomarker discovery: Key signatory metabolic profiles for the identification and discrimination of oat cultivars. Metabolites 2021, 11, 165. [Google Scholar] [CrossRef]
- Ladizinsky, G. Chromosome rearrangements in the hexaploid oats. Heredity 1970, 25, 457–461. [Google Scholar] [CrossRef] [Green Version]
- Kianian, S.F.; Wu, B.C.; Fox, S.L.; Rines, H.W.; Phillips, R.L. Aneuploid marker assignment in hexaploid oat with the C genome as a reference for determining remnant homoeology. Genome 1997, 40, 386–396. [Google Scholar] [CrossRef]
- O’Donoughue, L.S.; Wang, Z.; Röder, M.; Kneen, B.; Leggett, M.; Sorrells, M.E.; Tanksley, S.D. An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula). Genome 1992, 35, 765–771. [Google Scholar] [CrossRef]
- Tinker, N.A.; Kilian, A.; Wight, C.P.; Heller-Uszynska, K.; Wenzl, P.; Rines, H.W.; Bjørnstad, A.; Howarth, C.J.; Jannink, J.-L.; Anderson, J.M.; et al. New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genom. 2009, 10, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portyanko, V.A.; Hoffman, D.L.; Lee, M.; Holland, J.B. A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 2001, 44, 249–265. [Google Scholar] [CrossRef] [PubMed]
- De Koeyer, D.L.; Tinker, N.A.; Wight, C.P.; Deyl, J.; Burrows, V.D.; O’Donoughue, L.S.; Lybaert, A.; Molnar, S.J.; Armstrong, K.C.; Fedak, G.; et al. A molecular linkage map with associated QTLs from a hulless x covered spring oat population. Theor. Appl. Genet. 2004, 108, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Rossnagel, B.G.; Kaeppler, H.F. Genetic analysis of quantitative trait loci for groat protein and oil content in oat. Crop Sci. 2004, 44, 254–260. [Google Scholar] [CrossRef]
- Oliver, R.E.; Tinker, N.A.; Lazo, G.R.; Chao, S.; Jellen, E.N.; Carson, M.L.; Rines, H.W.; Obert, D.E.; Lutz, J.D.; Shackelford, I.; et al. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species. PLoS ONE 2013, 8, e58068. [Google Scholar] [CrossRef]
- Chaffin, A.S.; Huang, Y.-F.; Smith, S.; Bekele, W.A.; Babiker, E.; Gnanesh, B.N.; Foresman, B.J.; Blanchard, S.G.; Jay, J.J.; Reid, R.W.; et al. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial subgenome rearrangement. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.-F.; Poland, J.A.; Wight, C.P.; Jackson, E.W.; Tinker, N.A. Using genotyping-by-sequencing (GBS) for genomic discovery in cultivated oat. PLoS ONE 2014, 9, e102448. [Google Scholar] [CrossRef] [Green Version]
- Newell, M.A.; Asoro, F.G.; Scott, M.P.; White, P.J.; Beavis, W.D.; Jannink, J.-L. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Theor. Appl. Genet. 2012, 125, 1687–1696. [Google Scholar] [CrossRef] [Green Version]
- Asoro, F.G.; Newell, M.A.; Scott, M.P.; Beavis, W.D.; Jannink, J. Genome-wide association study for beta-glucan concentration in elite north american oat. Crop Sci. 2013, 53, 542–553. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Holland, J.B.; Munkvold, G.P.; Jannink, J.-L. Responses to selection for partial resistance to crown rust in oat. Crop Sci. 2006, 46, 1260–1265. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.D. Crown Rust. In Diseases, Distribution, Epidemiology, and Control; Elsevier: Cambridge, MA, USA, 1985; pp. 131–172. ISBN 9780121484026. [Google Scholar]
- Chong, J.; Brown, P.D. Genetics of resistance to Puccinia coronata f. sp. avenae in two Avena Sativa Accessions. Can. J. Plant Pathol. 1996, 18, 286–292. [Google Scholar] [CrossRef]
- Wight, C.P.; O’Donoughue, L.S.; Chong, J.; Tinker, N.A.; Molnar, S.J. Discovery, localization, and sequence characterization of molecular markers for the crown rust resistance genes Pc38, Pc39, and Pc48 in cultivated oat (Avena sativa L.). Mol. Breed. 2005, 14, 349–361. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Chong, J.; Jackson, E.W.; Obert, D.E. Characterization and mapping of a crown rust resistance gene complex (pc58) in TAM O-301. Crop Sci. 2006, 46, 2630–2635. [Google Scholar] [CrossRef]
- Jackson, E.W.; Obert, D.E.; Menz, M.; Hu, G.; Avant, J.B.; Chong, J.; Bonman, J.M. Characterization and mapping of oat crown rust resistance genes using three assessment methods. Phytopathology 2007, 97, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Kulcheski, F.R.; Graichen, F.A.S.; Martinelli, J.A.; Locatelli, A.B.; Federizzi, L.C.; Delatorre, C.A. Molecular mapping of Pc68, a crown rust resistance gene in Avena sativa. Euphytica 2010, 175, 423–432. [Google Scholar] [CrossRef]
- Bush, A.L.; Wise, R.P. High-resolution mapping adjacent to the Pc71 crown-rust resistance locus in hexaploid oat. Mol. Breed. 1998, 4, 13–21. [Google Scholar] [CrossRef]
- Gnanesh, B.N.; Mitchell Fetch, J.; Menzies, J.G.; Beattie, A.D.; Eckstein, P.E.; McCartney, C.A. Chromosome location and allele-specific PCR markers for marker-assisted selection of the oat crown rust resistance gene Pc91. Mol. Breed. 2013, 32, 679–686. [Google Scholar] [CrossRef]
- Gnanesh, B.N.; McCartney, C.A.; Eckstein, P.E.; Mitchell Fetch, J.W.; Menzies, J.G.; Beattie, A.D. Genetic analysis and molecular mapping of a seedling crown rust resistance gene in oat. Theor. Appl. Genet. 2015, 128, 247–258. [Google Scholar] [CrossRef]
- Carson, M.L. Virulence in Oat Crown Rust (Puccinia coronata f. sp. avenae) in the United States from 2006 through 2009. Plant Dis. 2011, 95, 1528–1534. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Leonard, K.J.; Salmeron, J.J. A North American System of Nomenclature for Puccinia coronata f. sp. avenae. Plant Dis. 2000, 84, 580–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, J. Inheritance of resistance to two Puccinia coronata isolates in a partial resistant oat line MN841801. Acta Phytopathol. Entomol. Hung. 2000, 35, 37–40. [Google Scholar]
- Portyanko, V.A.; Chen, G.; Rines, H.W.; Phillips, R.L.; Leonard, K.J.; Ochocki, G.E.; Stuthman, D.D. Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in cultivated oat, Avena sativa L. Theor. Appl. Genet. 2005, 111, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Acevedo, M.; Jackson, E.W.; Chong, J.; Rines, H.W.; Harrison, S.; Bonman, J.M. Identification and validation of quantitative trait loci for partial resistance to crown rust in oat. Phytopathology 2010, 100, 511–521. [Google Scholar] [CrossRef]
- Babiker, E.M.; Gordon, T.C.; Jackson, E.W.; Chao, S.; Harrison, S.A.; Carson, M.L.; Obert, D.E.; Bonman, J.M. Quantitative Trait Loci from Two Genotypes of Oat (Avena sativa) Conditioning Resistance to Puccinia coronata. Phytopathology 2015, 105, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Gnanesh, B.N.; Chong, J.; Chen, G.; Beattie, A.D.; Mitchell Fetch, J.W.; Kutcher, H.R.; Eckstein, P.E.; Menzies, J.G.; Jackson, E.W.; et al. A major quantitative trait locus conferring adult plant partial resistance to crown rust in oat. BMC Plant Biol. 2014, 14, 250. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Kaeppler, H.F. Identification of quantitative trait loci for resistance to crown rust in oat line MAM17-5. Crop Sci. 2003, 43, 358–366. [Google Scholar] [CrossRef]
- Winkler, L.R.; Michael Bonman, J.; Chao, S.; Admassu Yimer, B.; Bockelman, H.; Esvelt Klos, K. Population Structure and genotype-phenotype associations in a collection of oat landraces and historic cultivars. Front. Plant Sci. 2016, 7, 1077. [Google Scholar] [CrossRef] [Green Version]
- Montilla-Bascón, G.; Rispail, N.; Sánchez-Martín, J.; Rubiales, D.; Mur, L.A.J.; Langdon, T.; Howarth, C.J.; Prats, E. Genome-wide association study for crown rust (Puccinia coronata f. sp. avenae) and powdery mildew (Blumeria graminis f. sp. avenae) resistance in an oat (Avena sativa) collection of commercial varieties and landraces. Front. Plant Sci. 2015, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Klos, K.E.; Yimer, B.A.; Babiker, E.M.; Beattie, A.D.; Bonman, J.M.; Carson, M.L.; Chong, J.; Harrison, S.A.; Ibrahim, A.M.H.; Kolb, F.L.; et al. Genome-Wide Association Mapping of Crown Rust Resistance in Oat Elite Germplasm. Plant Genome 2017, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Herrmann, M. Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat. Theor. Appl. Genet. 2006, 113, 429–437. [Google Scholar] [CrossRef]
- Simons, M.D. Oats: A Standardized System of Nomenclature for Genes and Chromosomes and Catalog of Genes Governing Characteristers; U.S. Dept. of Agriculture, Science and Education Administration: Washington, DC, USA, 1978.
- Wight, C.P.; Tinker, N.A.; Kianian, S.F.; Sorrells, M.E.; O’Donoughue, L.S.; Hoffman, D.L.; Groh, S.; Scoles, G.J.; Li, C.D.; Webster, F.H.; et al. A molecular marker map in “Kanota” x “Ogle” hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. Genome 2003, 46, 28–47. [Google Scholar] [CrossRef] [Green Version]
- Kianian, S.F.; Egli, M.A.; Phillips, R.L.; Rines, H.W.; Somers, D.A.; Gengenbach, B.G.; Webster, F.H.; Livingston, S.M.; Groh, S.; O’Donoughue, L.S.; et al. Association of a major groat oil content QTL and an acetyl-CoA carboxylase gene in oat. Theor. Appl. Genet. 1999, 98, 884–894. [Google Scholar] [CrossRef]
- Tanhuanpää, P.; Manninen, O.; Kiviharju, E. QTLs for important breeding characteristics in the doubled haploid oat progeny. Genome 2010, 53, 482–493. [Google Scholar] [CrossRef]
- Hizbai, B.T.; Gardner, K.M.; Wight, C.P.; Dhanda, R.K.; Molnar, S.J.; Johnson, D.; Frégeau-Reid, J.; Yan, W.; Rossnagel, B.G.; Holland, J.B.; et al. Quantitative trait loci affecting oil content, oil composition, and other agronomically important traits in oat. Plant Genome 2012, 5, 104. [Google Scholar] [CrossRef] [Green Version]
- Kianian, S.F.; Phillips, R.L.; Rines, H.W.; Fulcher, R.G.; Webster, F.H.; Stuthman, D.D. Quantitative trait loci influencing β-glucan content in oat (Avena sativa, 2n=6x=42). Theor. Appl. Genet. 2000, 101, 1039–1048. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, J.J.; Garvin, D.F. Reference Genome-Directed Resolution of Homologous and Homeologous Relationships within and between Different Oat Linkage Maps. Plant Genome J. 2011, 4, 178. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Gonzalez, J.J.; Tu, Z.J.; Garvin, D.F. Analysis and annotation of the hexaploid oat seed transcriptome. BMC Genom. 2013, 14, 471. [Google Scholar] [CrossRef] [Green Version]
- Jinqiu, Y.; Bing, L.; Tingting, S.; Jinglei, H.; Zelai, K.; Lu, L.; Wenhua, H.; Tao, H.; Xinyu, H.; Zengqing, L.; et al. Integrated Physiological and Transcriptomic Analyses Responses to Altitude Stress in Oat (Avena sativa L.). Front. Genet. 2021, 12, 638683. [Google Scholar] [CrossRef]
- Zechmann, B. Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress. Plants 2020, 9, 1067. [Google Scholar] [CrossRef]
- Allwood, J.W.; Xu, Y.; Martinez-Martin, P.; Palau, R.; Cowan, A.; Goodacre, R.; Marshall, A.; Stewart, D.; Howarth, C. Rapid UHPLC-MS metabolite profiling and phenotypic assays reveal genotypic impacts of nitrogen supplementation in oats. Metabolomics 2019, 15, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annicchiarico, P. Alfalfa forage yield and leaf/stem ratio: Narrow-sense heritability, genetic correlation, and parent selection procedures. Euphytica 2015, 205, 409–420. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Barrett, B.; Brummer, E.C.; Julier, B.; Marshall, A.H. Achievements and challenges in improving temperate perennial forage legumes. CRC Crit. Rev. Plant Sci. 2015, 34, 327–380. [Google Scholar] [CrossRef]
- Blondon, F.; Marie, D.; Brown, S.; Kondorosi, A. Genome size and base composition in Medicago sativa and M. truncatula species. Genome 1994, 37, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, A.; Yu, L.-X.; Peel, M.; See, D.; Wagner, S.; Norberg, S.; Zhang, Z. Self-incompatibility, Inbreeding Depression, and Potential to Develop Inbred Lines in Alfalfa. In The Alfalfa Genome; Yu, L.-X., Kole, C., Eds.; Compendium of Plant Genomes; Springer International Publishing: Cham, Switzerland, 2021; pp. 255–269. ISBN 978-3-030-74465-6. [Google Scholar]
- Li, X.; Brummer, E.C. Applied genetics and genomics in alfalfa breeding. Agronomy 2012, 2, 40–61. [Google Scholar] [CrossRef] [Green Version]
- Hawkins, C.; Yu, L.-X. Recent progress in alfalfa (Medicago sativa L.) genomics and genomic selection. Crop J. 2018, 6, 565–575. [Google Scholar] [CrossRef]
- Brummer, E.C.; Bouton, J.H.; Kochert, G. Development of an RFLP map in diploid alfalfa. Theor. Appl. Genet. 1993, 86, 329–332. [Google Scholar] [CrossRef]
- Echt, C.S.; Kidwell, K.K.; Knapp, S.J.; Osborn, T.C.; McCoy, T.J. Linkage mapping in diploid alfalfa (Medicago sativa). Genome 1994, 37, 61–71. [Google Scholar] [CrossRef]
- Diwan, N.; Bouton, J.H.; Kochert, G.; Cregan, P.B. Mapping of simple sequence repeat (SSR) DNA markers in diploid and tetraploid alfalfa. Theor. Appl. Genet. 2000, 101, 165–172. [Google Scholar] [CrossRef]
- Brouwer, D.J.; Duke, S.H.; Osborn, T.C. Mapping Genetic Factors Associated with Winter Hardiness, Fall Growth, and Freezing Injury in Autotetraploid Alfalfa. Crop Sci. 2000, 40, 1387. [Google Scholar] [CrossRef]
- Julier, B.; Flajoulot, S.; Barre, P.; Cardinet, G.; Santoni, S.; Huguet, T.; Huyghe, C. Construction of two genetic linkage maps in cultivated tetraploid alfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol. 2003, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Sledge, M.K.; Ray, I.M.; Jiang, G. An expressed sequence tag SSR map of tetraploid alfalfa (Medicago sativa L.). Theor. Appl. Genet. 2005, 111, 980–992. [Google Scholar] [CrossRef]
- Hackett, C.A.; Luo, Z.W. TetraploidMap: Construction of a linkage map in autotetraploid species. J. Hered. 2003, 94, 358–359. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wei, Y.; Acharya, A.; Jiang, Q.; Kang, J.; Brummer, E.C. A saturated genetic linkage map of autotetraploid alfalfa (Medicago sativa L.) developed using genotyping-by-sequencing is highly syntenous with the Medicago truncatula genome. G3: Genes Genomes Genet. 2014, 4, 1971–1979. [Google Scholar] [CrossRef]
- Choi, H.-K.; Kim, D.; Uhm, T.; Limpens, E.; Lim, H.; Mun, J.-H.; Kalo, P.; Penmetsa, R.V.; Seres, A.; Kulikova, O.; et al. A sequence-based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics 2004, 166, 1463–1502. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wei, Y.; Moore, K.J.; Michaud, R.; Viands, D.R.; Hansen, J.L.; Acharya, A.; Brummer, E.C. Association mapping of biomass yield and stem composition in a tetraploid alfalfa breeding population. Plant Genome 2011, 4, 122. [Google Scholar] [CrossRef] [Green Version]
- Ray, I.M.; Han, Y.E.L.; Meenach, C.D.; Santantonio, N.; Sledge, M.K.; Pierce, C.A.; Sterling, T.M.; Kersey, R.K.; Bhandari, H.S.; Monteros, M.J. Identification of quantitative trait loci for alfalfa forage biomass productivity during drought stress. Crop Sci. 2015, 55, 2012–2033. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wei, Y.; Brummer, E.C. Prevalence of segregation distortion in diploid alfalfa and its implications for genetics and breeding applications. Theor. Appl. Genet. 2011, 123, 667–679. [Google Scholar] [CrossRef]
- Sakiroglu, M.; Sherman-Broyles, S.; Story, A.; Moore, K.J.; Doyle, J.J.; Charles Brummer, E. Patterns of linkage disequilibrium and association mapping in diploid alfalfa (M. sativa L.). Theor. Appl. Genet. 2012, 125, 577–590. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Zhang, T.; Wang, M.; Zhang, Y.; Yang, Q. Research progress in the quantitative trait loci (QTL) and genomic selection of alfalfa. Acta Prataculturae Sin. 2014, 23, 304–312. [Google Scholar]
- Jia, C.; Wu, X.; Chen, M.; Wang, Y.; Liu, X.; Gong, P.; Xu, Q.; Wang, X.; Gao, H.; Wang, Z. Identification of genetic loci associated with crude protein and mineral concentrations in alfalfa (Medicago sativa) using association mapping. BMC Plant Biol. 2017, 17, 97. [Google Scholar] [CrossRef] [Green Version]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Pol, J.A.; Kawamoto, K.; Buckler, E.S. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, L.; Lindstrom, O.M.; Markham, J.; Missaoui, A.M. Dissecting key adaptation traits in the polyploid perennial Medicago Sativa using GBS-SNP mapping. Front. Plant Sci. 2018, 9, 934. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Kang, J.; Long, R.; Yu, L.-X.; Sun, Y.; Wang, Z.; Zhao, Z.; Zhang, T.; Yang, Q. Construction of high-density genetic linkage map and mapping quantitative trait loci (QTL) for flowering time in autotetraploid alfalfa (Medicago sativa L.) using genotyping by sequencing. Plant Genome 2020, 13, e20045. [Google Scholar] [CrossRef]
- Rosyara, U.R.; De Jong, W.S.; Douches, D.S.; Endelman, J.B. Software for genome-wide association studies in autopolyploids and its application to potato. Plant Genome 2016, 9, 123. [Google Scholar] [CrossRef]
- Shen, C.; Du, H.; Chen, Z.; Lu, H.; Zhu, F.; Chen, H.; Meng, X.; Liu, Q.; Liu, P.; Zheng, L.; et al. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol. Plant 2020, 13, 1250–1261. [Google Scholar] [CrossRef]
- Li, X.; Wei, Y.; Acharya, A.; Hansen, J.L.; Crawford, J.L.; Viands, D.R.; Michaud, R.; Claessens, A.; Brummer, E.C. Genomic prediction of biomass yield in two selection cycles of a tetraploid alfalfa breeding population. Plant Genome 2015, 8, 134. [Google Scholar] [CrossRef]
- Medina, C.A.; Hawkins, C.; Liu, X.-P.; Peel, M.; Yu, L.-X. Genome-wide association and prediction of traits related to salt tolerance in autotetraploid alfalfa (Medicago sativa L.). Int. J. Mol. Sci. 2020, 21, 3361. [Google Scholar] [CrossRef]
- Jia, C.; Zhao, F.; Wang, X.; Han, J.; Zhao, H.; Liu, G.; Wang, Z. Genomic Prediction for 25 Agronomic and Quality Traits in Alfalfa (Medicago sativa). Front. Plant Sci. 2018, 9, 1220. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.S.; Xu, W.W.; Tesfaye, M.; Lamb, J.F.S.; Jung, H.G.; Samac, D.A.; Vance, C.P.; Gronwald, J.W. Single-feature polymorphism discovery in the transcriptome of tetraploid alfalfa. Plant Genome 2009, 2, 155. [Google Scholar] [CrossRef]
- Tesfaye, M.; Silverstein, K.A.T.; Bucciarelli, B.; Samac, D.A.; Vance, C.P. The AffymetrixMedicago GeneChiparray is applicable for transcript analysis of alfalfa (Medicago sativa). Functional Plant Biol. 2006, 33, 783. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.S.; Xu, W.W.; Tesfaye, M.; Lamb, J.F.S.; Jung, H.-J.G.; VandenBosch, K.A.; Vance, C.P.; Gronwald, J.W. Transcript profiling of two alfalfa genotypes with contrasting cell wall composition in stems using a cross-species platform: Optimizing analysis by masking biased probes. BMC Genom. 2010, 11, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, S.S.; Tu, Z.J.; Cheung, F.; Xu, W.W.; Lamb, J.F.S.; Jung, H.-J.G.; Vance, C.P.; Gronwald, J.W. Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genom. 2011, 12, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Acharya, A.; Farmer, A.D.; Crow, J.A.; Bharti, A.K.; Kramer, R.S.; Wei, Y.; Han, Y.; Gou, J.; May, G.D.; et al. Prevalence of single nucleotide polymorphism among 27 diverse alfalfa genotypes as assessed by transcriptome sequencing. BMC Genom. 2012, 13, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Postnikova, O.A.; Shao, J.; Nemchinov, L.G. Analysis of the alfalfa root transcriptome in response to salinity stress. Plant Cell Physiol. 2013, 54, 1041–1055. [Google Scholar] [CrossRef]
- Dong, W.; Liu, X.; Li, D.; Gao, T.; Song, Y. Transcriptional profiling reveals that a MYB transcription factor MsMYB4 contributes to the salinity stress response of alfalfa. PLoS ONE 2018, 13, e0204033. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Xu, Y.; Hettenhausen, C.; Lu, C.; Shen, G.; Zhang, C.; Li, J.; Song, J.; Lin, H.; Wu, J. Comparative analysis of alfalfa (Medicago sativa L.) leaf transcriptomes reveals genotype-specific salt tolerance mechanisms. BMC Plant Biol. 2018, 18, 35. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Kang, Y.; Torres-Jerez, I.; Cheung, F.; Town, C.D.; Zhao, P.X.; Udvardi, M.K.; Monteros, M.J. Genome-wide SNP discovery in tetraploid alfalfa using 454 sequencing and high resolution melting analysis. BMC Genom. 2011, 12, 350. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; Li, W.; Zhao, J.; Zhang, S.; Xu, H.; Liu, Y.; Guo, C. Transcriptome sequencing analysis of alfalfa reveals CBF genes potentially playing important roles in response to freezing stress. Genet. Mol. Biol. 2017, 40, 824–833. [Google Scholar] [CrossRef] [Green Version]
- Nemchinov, L.G.; Shao, J.; Lee, M.N.; Postnikova, O.A.; Samac, D.A. Resistant and susceptible responses in alfalfa (Medicago sativa) to bacterial stem blight caused by Pseudomonas syringae pv. syringae. PLoS ONE 2017, 12, e0189781. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Chen, T.; Ma, L.; Zhao, Z.; Zhao, P.X.; Nan, Z.; Wang, Y. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS ONE 2013, 8, e83549. [Google Scholar] [CrossRef]
- O’Rourke, J.A.; Fu, F.; Bucciarelli, B.; Yang, S.S.; Samac, D.A.; Lamb, J.F.S.; Monteros, M.J.; Graham, M.A.; Gronwald, J.W.; Krom, N.; et al. The Medicago sativa gene index 1.2: A web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genom. 2015, 16, 502. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Zhou, Q.; Wu, Y.; Chai, X.; Liu, W.; Wang, Y.; Yang, Q.; Wang, Z.; Liu, Z. Full-length transcript sequencing and comparative transcriptomic analysis to evaluate the contribution of osmotic and ionic stress components towards salinity tolerance in the roots of cultivated alfalfa (Medicago sativa L.). BMC Plant Biol. 2019, 19, 32. [Google Scholar] [CrossRef] [Green Version]
- Medina, C.A.; Samac, D.A.; Yu, L.-X. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci. Rep. 2021, 11, 17203. [Google Scholar] [CrossRef]
- Jiang, X.; Yang, X.; Zhang, F.; Yang, T.; Yang, C.; He, F.; Gao, T.; Wang, C.; Yang, Q.; Wang, Z.; et al. Combining QTL mapping and RNA-Seq unravels candidate genes for alfalfa (Medicago sativa L.) leaf development. BMC Plant Biol. 2022, 22, 485. [Google Scholar] [CrossRef]
- Song, T.; Xu, H.; Sun, N.; Jiang, L.; Tian, P.; Yong, Y.; Yang, W.; Cai, H.; Cui, G. Metabolomic analysis of alfalfa (Medicago sativa L.) root-symbiotic rhizobia responses under alkali stress. Front. Plant Sci. 2017, 8, 1208. [Google Scholar] [CrossRef]
- Aranjuelo, I.; Molero, G.; Erice, G.; Avice, J.C.; Nogués, S. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.). J. Exp. Bot. 2011, 62, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Fan, W.; Ge, G.; Liu, Y.; Wang, W.; Liu, L.; Jia, Y. Proteomics integrated with metabolomics: Analysis of the internal causes of nutrient changes in alfalfa at different growth stages. BMC Plant Biol. 2018, 18, 78. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, S. Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to peg-induced osmotic stress. Front. Plant Sci. 2018, 9, 242. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Xing, Y.; Fu, X.; Ji, L.; Li, T.; Wang, J.; Chen, G.; Qi, Z.; Zhang, Q. Biochemical mechanisms of rhizospheric Bacillus subtilis-facilitated phytoextraction by alfalfa under cadmium stress—Microbial diversity and metabolomics analyses. Ecotoxicol. Environ. Saf. 2021, 212, 112016. [Google Scholar] [CrossRef]
- Chen, L.; Xia, F.; Wang, M.; Wang, W.; Mao, P. Metabolomic analyses of alfalfa (Medicago sativa L. cv. ‘Aohan’) reproductive organs under boron deficiency and surplus conditions. Ecotoxicol. Environ. Saf. 2020, 202, 111011. [Google Scholar] [CrossRef] [PubMed]
- Annicchiarico, P.; Nazzicari, N.; Brummer, E.C. Alfalfa genomic selection: Challenges, strategies, transnational cooperation. In Breeding in a World of Scarcity; Roldán-Ruiz, I., Baert, J., Reheul, D., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 145–149. ISBN 978-3-319-28930-4. [Google Scholar]
- Chandel, A.K.; Khot, L.R.; Yu, L.-X. Alfalfa (Medicago sativa L.) crop vigor and yield characterization using high-resolution aerial multispectral and thermal infrared imaging technique. Comput. Electron. Agric. 2021, 182, 105999. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using UAV-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Yang, W.; Feng, H.; Zhang, X.; Zhang, J.; Doonan, J.H.; Batchelor, W.D.; Xiong, L.; Yan, J. Crop phenomics and high-throughput phenotyping: Past decades, current challenges, and future perspectives. Mol. Plant 2020, 13, 187–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cazenave, A.; Shah, K.; Trammell, T.; Komp, M.; Hoffman, J.; Motes, C.M.; Monteros, M.J. High-throughput approaches for phenotyping alfalfa germplasm under abiotic stress in the field. Plant Phenome J. 2019, 2, 1–13. [Google Scholar] [CrossRef]
- Biswas, A.; Andrade, M.H.M.L.; Acharya, J.P.; de Souza, C.L.; Lopez, Y.; de Assis, G.; Shirbhate, S.; Singh, A.; Munoz, P.; Rios, E.F. Phenomics-assisted selection for herbage accumulation in alfalfa (Medicago sativa L.). Front. Plant Sci. 2021, 12, 756768. [Google Scholar] [CrossRef]
- Tang, Z.; Parajuli, A.; Chen, C.J.; Hu, Y.; Revolinski, S.; Medina, C.A.; Lin, S.; Zhang, Z.; Yu, L.-X. Validation of UAV-based alfalfa biomass predictability using photogrammetry with fully automatic plot segmentation. Sci. Rep. 2021, 11, 3336. [Google Scholar] [CrossRef]
- Hu, X.; Yang, L.; Zhang, Z.; Wang, Y. Differentiation of alfalfa and sweet clover seeds via multispectral imaging. Seed Sci. Technol. 2020, 48, 83–99. [Google Scholar] [CrossRef]
- Bucciarelli, B.; Xu, Z.; Ao, S.; Cao, Y.; Monteros, M.J.; Topp, C.N.; Samac, D.A. Phenotyping seedlings for selection of root system architecture in alfalfa (Medicago sativa L.). Plant Methods 2021, 17, 125. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Sun, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Multitask Learning of Alfalfa Nutritive Value From UAV-Based Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Santantonio, N. Evaluating Approaches to High-Throughput Phenotyping and Genotyping for Genomic Selection in Alfalfa; U.S. Alfalfa Farmer Research Initiative: Manhattan, KS, USA, 2021; pp. 1–21. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, P.; Singh, J.; Kaur, G.; Adunola, P.M.; Biswas, A.; Bazzer, S.; Kaur, H.; Kaur, I.; Kaur, H.; Sandhu, K.S.; et al. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Curr. Issues Mol. Biol. 2022, 44, 5440-5473. https://doi.org/10.3390/cimb44110369
Kumar P, Singh J, Kaur G, Adunola PM, Biswas A, Bazzer S, Kaur H, Kaur I, Kaur H, Sandhu KS, et al. OMICS in Fodder Crops: Applications, Challenges, and Prospects. Current Issues in Molecular Biology. 2022; 44(11):5440-5473. https://doi.org/10.3390/cimb44110369
Chicago/Turabian StyleKumar, Pawan, Jagmohan Singh, Gurleen Kaur, Paul Motunrayo Adunola, Anju Biswas, Sumandeep Bazzer, Harpreet Kaur, Ishveen Kaur, Harpreet Kaur, Karansher Singh Sandhu, and et al. 2022. "OMICS in Fodder Crops: Applications, Challenges, and Prospects" Current Issues in Molecular Biology 44, no. 11: 5440-5473. https://doi.org/10.3390/cimb44110369
APA StyleKumar, P., Singh, J., Kaur, G., Adunola, P. M., Biswas, A., Bazzer, S., Kaur, H., Kaur, I., Kaur, H., Sandhu, K. S., Vemula, S., Kaur, B., Singh, V., & Tseng, T. M. (2022). OMICS in Fodder Crops: Applications, Challenges, and Prospects. Current Issues in Molecular Biology, 44(11), 5440-5473. https://doi.org/10.3390/cimb44110369