Characterization of Highbush Blueberry (Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Identification of ABRM Proteins in Blueberry
2.3. Bioinformatic Analysis of Blueberry ABRM Genes and Their Encoded Proteins
2.4. Gene Expression Analysis
2.5. Gene Cloning, Vector Construction and Transient Overexpression Analysis
3. Results
3.1. The Identified Blueberry ABRMs
3.2. Physiobiochemical Properties and Sequence Characteristics of Blueberrry ABRMs
3.3. Conserved Motifs in Blueberry ABRM Proteins and Gene Structures of Their Corresponding Genes
3.4. Cis-Acting Elements in Promoters of Blueberry ABRM Genes
3.5. Protein and Protein Interaction Analysis of Blueberry ABRM Proteins
3.6. Expression Analysis of Blueberry ABRM Genes
3.7. Transient Overexpression Analysis of Three VcMYB Variable Transcripts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joseph, J.A.; Shukitt-Hale, B.; Denisova, N.A.; Bielinski, D.; Martin, A.; Mcewen, J.J.; Bickford, P.C. Reversals of age-related declines in neuronal signal transduction, cognitive, motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J. Neurosci. 1999, 19, 8114–8121. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.X.; Fujii, M.; Terahara, N.; Yoshimoto, M. Molecular mechanisms behind the chemopreventive effects of anthocyanidins. J. Biomed. Biotechnol. 2004, 5, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Miguel, M. Anthocyanins: Antioxidant and/or anti-inflammatory activities. J. Appl. Pharm. Sci. 2011, 1, 7–15. [Google Scholar]
- Mazza, G.; Kay, C.D.; Cottrell, T.; Holub, B.J. Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J. Agric. Food Chem. 2002, 50, 7731–7737. [Google Scholar] [CrossRef] [PubMed]
- Chun, O.K.; Kim, D.O.; Lee, C.Y. Superoxide radical scavenging activity of the major polyphenols in fresh plums. J. Agric. Food Chem. 2003, 51, 8067–8072. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Ma, Y.; Li, Y.; Zhang, H.; Wang, Y.; Wu, C.; Huang, W. Malvidin induces hepatic stellate cell apoptosis via the endoplasmic reticulum stress pathway and mitochondrial pathway. Food Sci. Nutr. 2020, 8, 5095–5106. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, D.; Hu, J.; Liu, G.; Chen, J.; Sun, L.; Jiang, Z.; Zhang, X.; Chen, Q.; Ji, B. Visible light-induced lipid peroxidation of unsaturated fatty acids in the retina and the inhibitory effects of blueberry polyphenols. J Agric. Food Chem. 2015, 63, 9295–9305. [Google Scholar] [CrossRef]
- Gapski, A.; Gomes, T.M.; Bredun, M.A.; Ferreira-Lima, N.E.; Ludka, F.K.; Bordignon-Luiz, M.T.; Burin, V.M. Digestion behavior and antidepressant-like effect promoted by acute administration of blueberry extract on mice. Food Res. Int. 2019, 125, 108618. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent research on the health benefits of blueberries and their anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Yang, S.; Wang, C.; Li, X.; Wu, C.; Liu, C.; Xue, Z.; Kou, X. Investigation on the biological activity of anthocyanins and polyphenols in blueberry. J. Food Sci. 2021, 86, 614–627. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Li, X.; Pei, J.; Zhang, Z.; Wu, L.; Liu, H.; Li, Y.; Li, H. Molecular cloning and expression of chalcone synthase gene in blueberry. J. Northeast For. Univ. 2012, 40, 60–65. (In Chinese) [Google Scholar]
- Zhang, C.; Guo, Q.; Liu, Y.; Liu, H.; Wang, F.; Jia, C. Molecular cloning and functional analysis of a flavanone 3-hydroxylase gene from blueberry. J. Hortic. Sci. Biotechnol. 2016, 92, 57–64. [Google Scholar] [CrossRef]
- Song, Y.; Dou, L.; Zhang, H.; Zhang, Z.; Li, Y. Cloning and expression of VcDFR gene from ‘Jersey’ blueberry. J. Fruit Sci. 2014, 31, 784–792. (In Chinese) [Google Scholar]
- Li, X.; Pei, J.; Zhang, Z.; Wu, L.; Liu, H.; Li, H.; Li, Y. Molecular cloning and expression analysis of VcANS gene in blueberry. J. Northwest AF Univ. (Nat. Sci. Ed.) 2012, 40, 201–209. (In Chinese) [Google Scholar]
- Zhao, M.; Li, J.; Zhu, L.; Chang, P.; Li, L.; Zhang, L. Identification and characterization of MYB-bHLH-WD40 regulatory complex members controlling anthocyanidin biosynthesis in blueberry fruits development. Genes 2019, 10, 496. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, B.; Shi, W.; Gong, Z.; Chen, L.; Hou, Z. Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries (Vaccinium corymbosum L.) by preharvest and postharvest UV irradiation. J. Agric. Food Chem. 2018, 66, 10931–10942. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.; Walworth, A.; Zong, X.; Danial, G.H.; Song, G.Q. VcRR2 regulates chilling-mediated flowering through expression of hormone genes in a transgenic blueberry mutant. Hortic. Res.-Engl. 2019, 6, 96. [Google Scholar] [CrossRef] [Green Version]
- Die, J.V.; Jones, R.W.; Ogden, E.L.; Ehlenfeldt, M.K.; Rowland, L.J. Characterization and analysis of anthocyanin-related genes in wild-type blueberry and the pink-fruited mutant cultivar ‘Pink Lemonade’: New insights into anthocyanin biosynthesis. Agronomy 2020, 10, 1296. [Google Scholar] [CrossRef]
- Günther, C.S.; Dare, A.P.; Mcghie, T.K.; Deng, C.; Lafferty, D.J.; Plunkett, B.J.; Grierson, E.R.P.; Turner, J.L.; Jaakola, L.; Albert, N.W.; et al. Spatiotemporal modulation of flavonoid metabolism in blueberries. Front. Plant Sci. 2020, 11, 545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, F.; Wang, B.; Wu, H.; Wu, J.; Liu, J.; Sun, Y.; Cheng, C.; Qiu, D. Identification, characterization and expression analysis of anthocyanin biosynthesis-related bHLH genes in blueberry (Vaccinium corymbosum L.). Int. J. Mol. Sci. 2021, 22, 13274. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, J.; Ghosal, D.; Wienand, U.; Peterson, P.A.; Saedler, H. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J. 1987, 6, 3553–3558. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.M.; Walbot, V.; Davis, R.W. Arabidopsis and Nicotiana anthocyanin production activated by maize regulator R and C1. Science 1992, 258, 1773–1775. [Google Scholar] [CrossRef] [PubMed]
- Dubos, C.; Stracke, R.; Grotewold, E.; Weisshaar, B.; Martin, C.; Lepiniec, L. MYB transcription factors in Arabidopsis. Trends Plant Sci. 2010, 15, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Lafferty, D.J.; Espley, R.V.; Deng, C.H.; Gunther, C.S.; Plunkett, B.; Turner, J.L.; Jaakola, L.; Karppinen, K.; Allan, A.C.; Albert, N.W. Hierarchical regulation of MYBPA1 by anthocyanin- and proanthocyanidin-related MYB proteins is conserved in Vaccinium species. J. Exp. Bot. 2021, 73, 1344–1356. [Google Scholar] [CrossRef]
- Nguyen, C.T.T.; Lim, S.; Lee, J.G.; Lee, E.J. VcBBX, VcMYB21, and VcR2R3MYB transcription factors are involved in UV-B-Induced anthocyanin biosynthesis in the peel of harvested blueberry fruit. J. Agric. Food Chem. 2017, 65, 2066–2073. [Google Scholar] [CrossRef]
- Liu, Z.S.; Yuan, Y.H.; Zhang, T.; Zhang, L.Y. Expression characteristics of the transcription factor VcMYB21 in blueberry fruit coloration and response to UV in seedling. Plant Physiol. J. 2017, 53, 115–125. (In Chinese) [Google Scholar]
- Plunkett, B.J.; Espley, R.V.; Dare, A.P.; Warren, B.A.W.; Grierson, E.R.P.; Cordiner, S.; Turner, J.L.; Allan, A.C.; Albert, N.W.; Davies, K.M.; et al. MYBA from blueberry (Vaccinium Section Cyanococcus) is a subgroup 6 type R2R3MYB transcription factor that activates anthocyanin production. Front. Plant Sci. 2018, 9, 1300. [Google Scholar] [CrossRef]
- Li, T.; Yamane, H.; Tao, R. Preharvest long-term exposure to UV-B radiation promotes fruit ripening and modifies stage-specific anthocyanin metabolism in highbush blueberry. Hortic. Res. 2021, 8, 67. [Google Scholar] [CrossRef]
- Wang, A.; Liang, K.; Yang, S.; Cao, Y.; Wang, L.; Zhang, M.; Zhou, J.; Zhang, L. Genome-wide analysis of MYB transcription factors of Vaccinium corymbosum and their positive responses to drought stress. BMC Genom. 2021, 22, 565. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Wu, W.; Li, W. Transcriptome analysis revealed the mechanism by which exogenous ABA increases anthocyanins in blueberry fruit during veraison. Front. Plant Sci. 2021, 12, 758215. [Google Scholar] [CrossRef] [PubMed]
- Gupta, V.; Estrada, A.D.; Blakley, I.; Reid, R.; Patel, K.; Meyer, M.D.; Andersen, S.U.; Brown, A.F.; Lila, M.A.; Loraine, A.E. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. Gigascience 2015, 4, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Wisecaver, J.H.; Yocca, A.E.; Alger, E.I.; Tang, H.; Xiong, Z.; Callow, P.; Ben-Zvi, G.; Brodt, A.; Baruch, K.; et al. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry. Gigascience 2019, 8, giz012. [Google Scholar]
- Rowland, L.J.; Alkharouf, N.; Darwish, O.; Ogden, E.L.; Polashock, J.J.; Bassil, N.V.; Main, D. Generation and analysis of blueberry transcriptome sequences from leaves, developing fruit, and flower buds from cold acclimation through deacclimation. BMC Plant Biol. 2012, 12, 46. [Google Scholar] [CrossRef] [Green Version]
- Stracke, R.; Werber, M.; Weisshaar, B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr. Opin. Plant Biol. 2001, 4, 447–456. [Google Scholar] [CrossRef]
- Gao, J.; Sun, X.; Zong, Y.; Yang, S.; Wang, L.; Liu, B. Functional MYB transcription factor gene HtMYB2 is associated with anthocyanin biosynthesis in Helianthus tuberosus L. BMC Plant Biol. 2020, 20, 247. [Google Scholar] [CrossRef]
- Yuan, Y.W.; Sagawa, J.M.; Frost, L.; Vela, J.P.; Bradshaw, H.D., Jr. Transcriptional control of floral anthocyanin pigmentation in monkeyflowers (Mimulus). New Phytol 2014, 204, 1013–1027. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Gu, C.; Wang, X.; Gao, S.; Li, C.; Zhao, C.; Li, C.; Ma, C.; Zhang, Q. Identification of the Eutrema salsugineum EsMYB90 gene important for anthocyanin biosynthesis. BMC Plant Biol. 2020, 20, 186. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Tong, L.; Wei, C.; Lu, K.; Li, S.; Kimani, S.; Wang, S.; Wang, L.; Gao, X. The conserved and particular roles of the R2R3-MYB regulator FhPAP1 from Freesia hybrida in flower anthocyanin biosynthesis. Plant Cell Physiol 2020, 61, 1365–1380. [Google Scholar] [CrossRef]
- Chen, K.; Du, L.; Liu, H.; Liu, Y. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC Plant Biol. 2019, 19, 390. [Google Scholar] [CrossRef] [Green Version]
- Jia, D.; Li, Z.; Dang, Q.; Shang, L.; Shen, J.; Leng, X.; Wang, Y.; Yuan, Y. Anthocyanin biosynthesis and methylation of the MdMYB10 promoter are associated with the red blushed-skin mutant in the red striped-skin “Changfu 2” apple. J. Agric. Food Chem. 2020, 68, 4292–4304. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thormas, H.; Frank, M.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Fuleki, T.; Francis, F. Quantitative methods for anthocyanins. J. Food Sci. 1968, 33, 266–274. [Google Scholar] [CrossRef]
- Zhuang, L.; Huang, G.; Li, X.; Xiao, J.; Guo, L. Effect of different LED lights on aliphatic glucosinolates metabolism and biochemical characteristics in broccoli sprouts. Food Res. Int. 2022, 154, 111015. [Google Scholar] [CrossRef]
- Stracke, R.; Jahns, O.; Keck, M.; Tohge, T.; Niehaus, K.; Fernie, A.R.; Weisshaar, B. Analysis of PRODUCTION OF FLAVONOL GLYCOSIDES-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol. 2010, 188, 985–1000. [Google Scholar] [CrossRef]
- Wang, L.; Tang, W.; Hu, Y.; Zhang, Y.; Sun, J.; Guo, X.; Lu, H.; Yang, Y.; Fang, C.; Niu, X.; et al. A MYB/bHLH complex regulates tissue-specific anthocyanin biosynthesis in the inner pericarp of red-centered kiwifruit Actinidia chinensis cv. Hongyang. Plant J. 2019, 99, 359–378. [Google Scholar] [CrossRef]
- An, J.P.; An, X.H.; Yao, J.F.; Wang, X.N.; You, C.X.; Wang, X.F.; Hao, Y.J. BTB protein MdBT2 inhibits anthocyanin and proanthocyanidin biosynthesis by triggering MdMYB9 degradation in apple. Tree Physiol 2018, 38, 1578–1587. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Wang, N.; Xu, H.; Qu, C.; Jiang, S.; Fang, H.; Su, M.; Zhang, Z.; Chen, X. MdMYBL2 helps regulate cytokinin-induced anthocyanin biosynthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana) callus. Funct. Plant Biol 2019, 6, 187–196. [Google Scholar] [CrossRef]
- Moglia, A.; Florio, F.E.; Iacopino, S.; Guerrieri, A.; Milani, A.M.; Comino, C.; Barchi, L.; Marengo, A.; Cagliero, C.; Rubiolo, P.; et al. Identification of a new R3 MYB type repressor and functional characterization of the members of the MBW transcriptional complex involved in anthocyanin biosynthesis in eggplant (S. melongena L.). PLoS ONE 2020, 15, e0232986. [Google Scholar]
- Xu, H.; Zou, Q.; Yang, G.; Jiang, S.; Fang, H.; Wang, Y.; Zhang, J.; Zhang, Z.; Wang, N.; Chen, X. MdMYB6 regulates anthocyanin formation in apple both through direct inhibition of the biosynthesis pathway and through substrate removal. Hortic. Res. 2020, 7, 72. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.Z.; Hu, K.D.; Zhao, D.L.; Tang, J.; Huang, Z.Q.; Jin, P.; Li, Y.H.; Han, Z.; Hu, L.Y.; Yao, G.F.; et al. MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biol. 2020, 20, 258. [Google Scholar] [CrossRef] [PubMed]
- Akhter, D.; Qin, R.; Nath, U.K.; Eshag, J.; Jin, X.; Shi, C. A rice gene, OsPL, encoding a MYB family transcription factor confers anthocyanin synthesis, heat stress response and hormonal signaling. Gene 2019, 699, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, W.; Jiang, H.; Mao, Z.; Wang, N.; Jiang, S.; Xu, H.; Yang, G.; Zhang, Z.; Chen, X. The R2R3-MYB transcription factor MdMYB24-like is involved in methyl jasmonate-induced anthocyanin biosynthesis in apple. Plant Physiol. Biochem. 2019, 139, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, T.; Liu, H.; Zhai, R.; Wen, Y.; Shi, Q.; Yang, C.; Wang, Z.; Ma, F.; Xu, L. REVEILLE transcription factors contribute to the nighttime accumulation of anthocyanins in ‘Red Zaosu’ (Pyrus bretschneideri Rehd.) pear fruit skin. Int. J. Mol. Sci. 2020, 21, 1634. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.F.; Fitzsimmons, K.; Khandelwal, A.; Kranz, R.G. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis. Mol Plant 2009, 2, 790–802. [Google Scholar] [CrossRef]
- Li, Y.; Cui, W.; Qi, X.; Lin, M.; Qiao, C.; Zhong, Y.; Hu, C.; Fang, J. MicroRNA858 negatively regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit (Actinidia arguta). Plant Sci. 2020, 296, 110476. [Google Scholar] [CrossRef]
- An, J.P.; Li, R.; Qu, F.J.; You, C.X.; Wang, X.F.; Hao, Y.J. R2R3-MYB transcription factor MdMYB23 is involved in the cold tolerance and proanthocyanidin accumulation in apple. Plant J. 2018, 96, 562–577. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ye, J.; Liu, C.; Xu, Q.; Long, L.; Deng, X. Citrus PH4-Noemi regulatory complex is involved in proanthocyanidin biosynthesis via a positive feedback loop. J. Exp. Bot. 2020, 71, 1306–1321. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, H.; Li, D.; Yu, B.; Hui, Q.; Yan, S.; Huang, Z.; Cui, X.; Cao, B. Identification of candidate HY5-dependent and -independent regulators of anthocyanin biosynthesis in tomato. Plant Cell Physiol. 2019, 60, 643–656. [Google Scholar] [CrossRef]
- Bai, H.; Song, Z.; Zhang, Y.; Li, Z.; Wang, Y.; Liu, X.; Ma, J.; Quan, J.; Wu, X.; Liu, M.; et al. The bHLH transcription factor PPLS1 regulates the color of pulvinus and leaf sheath in foxtail millet (Setaria italica). Appl. Genet. 2020, 133, 1911–1926. [Google Scholar] [CrossRef]
- Li, Y.; Liang, J.; Zeng, X.; Guo, H.; Luo, Y.; Kear, P.; Zhang, S.; Zhu, G. Genome-wide analysis of MYB gene family in potato provides insights into tissue-specific regulation of anthocyanin biosynthesis. Hortic. Plant J. 2021, 7, 129–141. [Google Scholar]
- Li, L.; He, Y.; Ge, H.; Liu, Y.; Chen, H. Functional characterization of SmMYB86, a negative regulator of anthocyanin biosynthesis in eggplant (Solanum melongena L.). Plant Sci. 2021, 302, 110696. [Google Scholar] [CrossRef]
- Zhang, W.; Ning, G.; Lv, H.; Liao, L.; Bao, M. Single MYB-type transcription factor AtCAPRICE: A new efficient tool to engineer the production of anthocyanin in tobacco. Biochem. Biophys. Res. Commun. 2009, 388, 742–747. [Google Scholar] [CrossRef]
- Jaradat, M.R.; Feurtado, J.A.; Huang, D.; Lu, Y.; Cutler, A.J. Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biol. 2013, 13, 192. [Google Scholar] [CrossRef] [Green Version]
- Nesi, N.; Jond, C.; Debeaujon, I.; Caboche, M.; Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 2001, 13, 2099–2114. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Sun, Y.; Cheng, B.; Xue, S.; Cheng, D.; Liu, L.; Meng, L.; Qiang, S. Variation in ICE1 methylation primarily determines phenotypic variation in freezing tolerance in Arabidopsis thaliana. Plant Cell Physiol. 2019, 60, 152–165. [Google Scholar] [CrossRef]
- Xie, Q.; Wang, P.; Liu, X.; Yuan, L.; Wang, L.; Zhang, C.; Li, Y.; Xing, H.; Zhi, L.; Yue, Z.; et al. LNK1 and LNK2 are transcriptional coactivators in the Arabidopsis circadian oscillator. Plant Cell 2014, 26, 2843–2857. [Google Scholar] [CrossRef]
- Xing, H.; Wang, P.; Cui, X.; Zhang, C.; Wang, L.; Liu, X.; Yuan, L.; Li, Y.; Xie, Q.; Xu, X. LNK1 and LNK2 recruitment to the evening element require morning expressed circadian related MYB-like transcription factors. Plant Signal Behav. 2015, 10, e1010888. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Zhang, K.; Sun, Z.; Yan, M.; Chen, C.; Zhang, X.; Tang, Y.; Wu, Y. LNK1 and LNK2 corepressors interact with the MYB3 transcription factor in phenylpropanoid biosynthesis. Plant Physiol. 2017, 174, 1348–1358. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, J.; Hu, K.D.; Wei, S.W.; Sun, H.Y.; Hu, L.Y.; Han, Z.; Yao, G.F.; Zhang, H. PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Hortic Res. 2020, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, Q.; Duan, B.; Ma, J.; Fen, Y.; Sun, S.; Long, Q.; Lv, J.; Wan, D. Coexpression of PalbHLH1 and PalMYB90 genes from Populus alba enhances pathogen resistance in poplar by increasing the flavonoid content. Front. Plant Sci. 2020, 10, 1772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Wang, C.; Zhang, W.; Liu, S.; Wang, W.; Yu, X.; Song, T.; Yu, M.; Yu, W.; Qu, S. The R2R3-type MYB transcription factor MdMYB90-like is responsible for the enhanced skin color of an apple bud sport mutant. Hortic. Res. 2021, 8, 156. [Google Scholar] [CrossRef] [PubMed]
- Schwinn, K.E.; Ngo, H.; Kenel, F.; Brummell, D.A.; Albert, N.W.; McCallum, J.A.; Pither-Joyce, M.; Crowhurst, R.N.; Eady, C.; Davies, K.M. The onion (Allium cepa L.) R2R3-MYB gene MYB1 regulates anthocyanin biosynthesis. Front. Plant Sci. 2016, 7, 1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, M.; Takahata, Y.; Kurata, R.; Nakayama, H.; Yoshinaga, M. Structural and functional characterization of IbMYB1 genes in recent Japanese purple-fleshed sweetpotato cultivars. Mol. Breed. 2012, 29, 565–574. [Google Scholar] [CrossRef]
- An, X.H.; Tian, Y.; Chen, K.Q.; Liu, X.J.; Liu, D.D.; Xie, X.B.; Cheng, C.G.; Cong, P.H.; Hao, Y.J. MdMYB9 and MdMYB11 are involved in the regulation of the JA-induced biosynthesis of anthocyanin and proanthocyanidin in apples. Plant Cell Physiol. 2015, 56, 650–662. [Google Scholar] [CrossRef] [Green Version]
- Wasternack, C.; Strnad, M. Jasmonates are signals in the biosynthesis of secondary metabolites—Pathways, transcription factors and applied aspects—A brief review. N Biotechnol 2019, 48, 1–11. [Google Scholar] [CrossRef]
- An, J.P.; Xu, R.R.; Liu, X.; Zhang, J.C.; Wang, X.F.; You, C.X.; Hao, Y.J. Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1-TRB1-MYB9 complex. Plant J 2021, 106, 1414–1430. [Google Scholar] [CrossRef]
- Guan, L.; Dai, Z.; Wu, B.H.; Wu, J.; Merlin, I.; Hilbert, G.; Renaud, C.; Gomès, E.; Edwards, E.; Li, S.H.; et al. Anthocyanin biosynthesis is differentially regulated by light in the skin and flesh of white-fleshed and teinturier grape berries. Planta 2016, 243, 23–41. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, X.; Gao, X.; Wu, W.; Zhou, B. Light induced regulation pathway of anthocyanin biosynthesis in plants. Int. J. Mol. Sci. 2021, 22, 11116. [Google Scholar] [CrossRef]
- Li, T.; Jia, K.P.; Lian, H.L.; Yang, X.; Li, L.; Yang, H.Q. Jasmonic acid enhancement of anthocyanin accumulation is dependent on phytochrome A signaling pathway under far-red light in Arabidopsis. Biochem. Biophys. Res. Commun. 2014, 454, 78–83. [Google Scholar] [CrossRef]
- Dubos, C.; Le, G.J.; Baudry, A.; Huep, G.; Lanet, E.; Debeaujon, I.; Routaboul, J.M.; Alboresi, A.; Weisshaar, B.; Lepiniec, L. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. Plant J. 2008, 55, 940–953. [Google Scholar] [CrossRef]
- Li, D.D.; Luo, Z.S.; Mou, W.S.; Wang, Y.S.; Ying, T.J.; Mao, L.C. ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biol. Technol. 2014, 90, 56–62. [Google Scholar] [CrossRef]
- Gupta, K.; Wani, S.H.; Razzaq, A.; Skalicky, M.; Samantara, K.; Gupta, S.; Pandita, D.; Goel, S.; Grewal, S.; Hejnak, V.; et al. Abscisic acid: Role in fruit development and ripening. Front. Plant Sci. 2022, 13, 817500. [Google Scholar] [CrossRef]
- Karppinen, K.; Lafferty, D.J.; Albert, N.W.; Mikkola, N.; McGhie, T.; Allan, A.C.; Afzal, B.M.; Häggman, H.; Espley, R.V.; Jaakola, L. MYBA and MYBPA transcription factors co-regulate anthocyanin biosynthesis in blue-coloured berries. New Phytol. 2021, 232, 1350–1367. [Google Scholar] [CrossRef]
Target Gene | Primer Name | Primer Sequence | Target Length (bp) | Annealing Temperature (°C) | Applications |
---|---|---|---|---|---|
VcMYB | VcMYB-F | ATGGACATAGTTCCATTGGGAGTGA | 798 | 59 | Gene cloning |
VcMYB-R | TAAAATATCCCAAAGGTCCACATTGTC | ||||
VcMYB-InF | ACGGGGGACTCTAGAGGATCCATGGACATAGTTCCATTGGGAGTGA | 786/704/568 | 60 | Vector construction | |
VcMYB-InR | GCTCACCATCGCTGCACTAGTTAAAATATCCCAAAGGTCCACATTGTC | ||||
VcMYB-qF | TCCATTGGGAGTGAGAAAGG | 115 | 60 | qRT-PCR | |
VcMYB-qR | CAATCCTGCCCTGTAAGGAA | ||||
VcMYB6 | VcMYB6-qF | CTCTCCTCAGGTGGAGCATC | 164 | 60 | qRT-PCR |
VcMYB6-qR | TTCCTCTTGAGCGTGGAGTT | ||||
VcMYB2 | VcMYBL2-qF | TCAAAATCCACGTCCCTCTC | 92 | 60 | qRT-PCR |
VcMYBL2-qR | CATTCTCCGCTAGCTTGGTC | ||||
VcMYB23 | VcMYB23-qF | TGTTGGGAAACAGATGGTCA | 89 | 60 | qRT-PCR |
VcMYB23-qR | TTTCAAGTGGGTGTGCCATA | ||||
GAPDH | GAPDH-qF | ACTACCATCCACTCTATCACCG | 116 | 59 | qRT-PCR |
GAPHD-qR | AACACCTTACCAACAGCCTTG |
Protein Name | Gene ID | Homologous Protein Name | Homologous Gene ID | Similarity (%) | References |
---|---|---|---|---|---|
VcMYB | VaccDscaff1486-snap-gene-0.3 | VcMYBA | MH105054 | 93.40 | [32] |
AtMYB114 | At1G66380 | 74.36 | [36] | ||
HtMYB2 | MN887536 | 62.25 | [37] | ||
PELAN | KJ011144 | 59.87 | [38] | ||
EsMYB90 | XP_006391393 | 59.35 | [39] | ||
AtMYB90(PAP2) | At1G66390 | 58.97 | [36] | ||
AtMYB75(PAP1) | At1G56650 | 58.71 | [36] | ||
FhPAP1 | MT210093 | 56.86 | [40] | ||
MaAN2 | KY781168 | 56.86 | [41] | ||
AtMYB113 | At1G66370 | 56.77 | [36] | ||
MdMYB10 | EU51829.2 | 54.36 | [42] | ||
VcMYB12 | VaccDscaff43-snap-gene-6.43 | AtMYB12 | At2G47460 | 66.86 | [46] |
AtMYB11 | At3G62610 | 52.17 | [46] | ||
AtMYB111 | At5G49330 | 50.19 | [46] | ||
VcMYB123 | VaccDscaff34-augustus-gene-10.31 | AcMYB123 | MH643776 | 72.33 | [47] |
MdMYB9 | MDP0000210851 | 71.43 | [48] | ||
VcMYBL2 | VaccDscaff28-augustus-gene-197.19 | MdMYBL2 | NP_001281006.1 | 65.29 | [49] |
SmelMYBL1 | MN855525 | 51.61 | [50] | ||
VcMYB6 | VaccDscaff31-processed-gene-75.6 | MdMYB6 | DQ074461 | 55.26 | [51] |
IbMYB44 | itf03g30290.t1 | 51.46 | [52] | ||
VcPL | VaccDscaff13-augustus-gene-110.26 | OsPL | LOC_Os05g48010.1 | 75.19 | [53] |
VcMYB24L | VaccDscaff30-augustus-gene-338.25 | MdMYB24L | XM_008343218.2 | 75.00 | [54] |
VcRVE8 | VaccDscaff34-augustus-gene-308.23 | PbRVE8 | XP_009342285.1 | 68.22 | [55] |
VcCPC | VaccDscaff41-snap-gene-184.30 | AtCPC | At2G46410 | 67.06 | [56] |
VcMYBC1 | VaccDscaff32-augustus-gene-55.27 | AaMYBC1 | MN249175 | 57.41 | [57] |
VcMYB23 | VaccDscaff46-processed-gene-168.9 | MdMYB23 | MDP0000230141 | 55.15 | [58] |
VcMYB340 | VaccDscaff16-snap-gene-84.41 | IbMYB340 | itf12g05820.t1 | 55.02 | [52] |
VcPH4 | VaccDscaff39-augustus-gene-189.28 | CsPH4 | Cs9g03070 | 54.14 | [59] |
VcMYBATV | VaccDscaff1069-augustus-gene-0.8 | SlMYBATV | Solyc07g052490.4.1 | 53.57 | [60] |
VcMYB85 | VaccDscaff36-augustus-gene-8.19 | SiMYB85 | Seita.4G086300 | 50.72 | [61] |
Gene Name (ID) | CDS Length/bp | Protein Size/aa | MW/Da | PI | Instability Index | GRAVY | Subcellular Localization |
---|---|---|---|---|---|---|---|
VcMYB (VaccDscaff1486-snap-gene-0.3) | 822 | 273 | 31,294.22 | 6.01 | 41.78 | −0.749 | Nucleus |
VcMYB12 (VaccDscaff43-snap-gene-6.43) | 1083 | 360 | 39,534.64 | 6.68 | 54.28 | −0.603 | Nucleus |
VcMYB123 (VaccDscaff34-augustus-gene-10.31) | 828 | 275 | 31,260.2 | 7.55 | 52.05 | −0.705 | Nucleus |
VcMYBL2 (VaccDscaff28-augustus-gene-197.19) | 702 | 233 | 26,419.91 | 8.40 | 51.94 | −0.779 | Nucleus |
VcMYB6 (VaccDscaff31-processed-gene-75.6) | 1080 | 359 | 39,018.97 | 6.26 | 61.47 | −0.498 | Nucleus |
VcPL (VaccDscaff13-augustus-gene-110.26) | 903 | 300 | 33,807.74 | 5.90 | 55.58 | −0.702 | Nucleus |
VcMYB24L (VaccDscaff30-augustus-gene-338.25) | 573 | 190 | 21,953.61 | 6.16 | 54.33 | −0.854 | Nucleus |
VcRVE8 (VaccDscaff34-augustus-gene-308.23) | 942 | 313 | 33,898.29 | 7.78 | 46.57 | −0.462 | Chloroplast; Nucleus |
VcCPC (VaccDscaff41-snap-gene-184.30) | 297 | 98 | 11,752.33 | 9.72 | 79.67 | −1.014 | Nucleus |
VcMYBC1 (VaccDscaff32-augustus-gene-55.27) | 798 | 265 | 30,057.3 | 8.57 | 58.02 | −0.68 | Nucleus |
VcMYB23 (VaccDscaff46-processed-gene-168.9) | 738 | 245 | 27,819.19 | 6.41 | 36.10 | −0.668 | Nucleus |
VcMYB340 (VaccDscaff16-snap-gene-84.41) | 744 | 247 | 28,372.85 | 7.66 | 54.91 | −0.855 | Nucleus |
VcPH4 (VaccDscaff39-augustus-gene-189.28) | 1086 | 361 | 40,095.85 | 8.72 | 48.94 | −0.719 | Nucleus |
VcMYBATV (VaccDscaff1069-augustus-gene-0.8) | 222 | 73 | 8407.08 | 4.31 | 61.99 | −0.922 | Nucleus |
VcMYB85 (VaccDscaff36-augustus-gene-8.19) | 912 | 303 | 33,738.76 | 8.37 | 60.02 | −0.775 | Nucleus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Huang, D.; Wang, B.; Yang, X.; Wu, H.; Qu, P.; Yan, L.; Li, T.; Cheng, C.; Qiu, D. Characterization of Highbush Blueberry (Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene. Curr. Issues Mol. Biol. 2023, 45, 379-399. https://doi.org/10.3390/cimb45010027
Zhang Y, Huang D, Wang B, Yang X, Wu H, Qu P, Yan L, Li T, Cheng C, Qiu D. Characterization of Highbush Blueberry (Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene. Current Issues in Molecular Biology. 2023; 45(1):379-399. https://doi.org/10.3390/cimb45010027
Chicago/Turabian StyleZhang, Yongyan, Dingquan Huang, Bin Wang, Xuelian Yang, Huan Wu, Pengyan Qu, Li Yan, Tao Li, Chunzhen Cheng, and Dongliang Qiu. 2023. "Characterization of Highbush Blueberry (Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene" Current Issues in Molecular Biology 45, no. 1: 379-399. https://doi.org/10.3390/cimb45010027
APA StyleZhang, Y., Huang, D., Wang, B., Yang, X., Wu, H., Qu, P., Yan, L., Li, T., Cheng, C., & Qiu, D. (2023). Characterization of Highbush Blueberry (Vaccinium corymbosum L.) Anthocyanin Biosynthesis Related MYBs and Functional Analysis of VcMYB Gene. Current Issues in Molecular Biology, 45(1), 379-399. https://doi.org/10.3390/cimb45010027