Garlic (Allium sativum L.) as an Ally in the Treatment of Inflammatory Bowel Diseases
Abstract
:1. Introduction
1.1. Garlic’s Bioactive Components
1.2. Beneficial Effects of Aged Garlic Extract
Anti-oxidant, Anti-Inflammatory/Immuno-Stimulating Properties of Aged Garlic Extract
2. Inflammatory Bowel Diseases: How Can Garlic Be Beneficial?
3. The Development of Alternative Models
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Thomson, M.; Ali, M. Garlic [Allium sativum]: A Review of Its Potential Use as an Anti-Cancer Agent. Curr. Cancer Drug Targets 2003, 3, 67–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivlin, R.S. Historical Perspective on the Use of Garlic. J. Nutr. 2001, 131, 951S–954S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farbman, K.S.; Barnett, E.D.; Bolduc, G.R.; Klein, J.O. Antibacterial Activity of Garlic and Onions: A Historical Perspective. Pediatr. Infect. Dis. J. 1993, 12, 613. [Google Scholar] [CrossRef]
- Block, E. The Chemistry of Garlic and Onions. Sci. Am. 1985, 252, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Miyata, G. The Nutraceutical Benefit, Part Iv: Garlic. Nutrition 2000, 16, 787–788. [Google Scholar] [CrossRef] [PubMed]
- Arreola, R.; Quintero-Fabián, S.; López-Roa, R.I.; Flores-Gutiérrez, E.O.; Reyes-Grajeda, J.P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds. J. Immunol. Res. 2015, 2015, 401630. [Google Scholar] [CrossRef] [Green Version]
- Ansary, J.; Forbes-Hernández, T.Y.; Gil, E.; Cianciosi, D.; Zhang, J.; Elexpuru-Zabaleta, M.; Simal-Gandara, J.; Giampieri, F.; Battino, M. Potential Health Benefit of Garlic Based on Human Intervention Studies: A Brief Overview. Antioxidants 2020, 9, 619. [Google Scholar] [CrossRef]
- Melguizo-Rodríguez, L.; García-Recio, E.; Ruiz, C.; De Luna-Bertos, E.; Illescas-Montes, R.; Costela-Ruiz, V.J. Biological Properties and Therapeutic Applications of Garlic and Its Components. Food Funct. 2022, 13, 2415–2426. [Google Scholar] [CrossRef]
- Trio, P.Z.; You, S.; He, X.; He, J.; Sakao, K.; Hou, D.-X. Chemopreventive Functions and Molecular Mechanisms of Garlic Organosulfur Compounds. Food Funct. 2014, 5, 833. [Google Scholar] [CrossRef]
- Borlinghaus, J.; Albrecht, F.; Gruhlke, M.; Nwachukwu, I.; Slusarenko, A. Allicin: Chemistry and Biological Properties. Molecules 2014, 19, 12591–12618. [Google Scholar] [CrossRef]
- Freeman, F.; Kodera, Y. Garlic Chemistry: Stability of S-(2-Propenyl)-2-Propene-1-Sulfinothioate (Allicin) in Blood, Solvents, and Simulated Physiological Fluids. J. Agric. Food Chem. 1995, 43, 2332–2338. [Google Scholar] [CrossRef]
- Kodera, Y.; Ushijima, M.; Amano, H.; Suzuki, J.; Matsutomo, T. Chemical and Biological Properties of S-1-Propenyl-ʟ-Cysteine in Aged Garlic Extract. Molecules 2017, 22, 570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amagase, H.; Petesch, B.L.; Matsuura, H.; Kasuga, S.; Itakura, Y. Intake of Garlic and Its Bioactive Components. J. Nutr. 2001, 131, 955S–962S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.K.; Maulik, S.K. Effect of Garlic on Cardiovascular Disorders: A Review. Nutr. J. 2002, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Magdy Beshbishy, A.; Wasef, L.G.; Elewa, Y.H.A.; Al-Sagan, A.A.; Abd El-Hack, M.E.; Taha, A.E.; Abd-Elhakim, Y.M.; Prasad Devkota, H. Chemical Constituents and Pharmacological Activities of Garlic (Allium Sativum L.): A Review. Nutrients 2020, 12, 872. [Google Scholar] [CrossRef] [Green Version]
- Iberl, B.; Winkler, G.; Knobloch, K. Products of Allicin Transformation: Ajoenes and Dithiins, Characterization and Their Determination by HPLC*. Planta Med. 1990, 56, 202–211. [Google Scholar] [CrossRef]
- Nakagawa, S.; Masamoto, K.; Sumiyoshi, H.; Kunihiro, K.; Fuwa, T. Effect of Raw and Extracted-Aged Garlic Juice on Growth of Young Rats and Their Organs after Peroral Administration. J. Toxicol. Sci. 1980, 5, 91–112. [Google Scholar] [CrossRef]
- Das, T.; Roy Choudhury, A.; Sharma, A.; Talukder, G. Effects of Crude Garlic Extract on Mouse Chromosomes in Vivo. Food Chem. Toxicol. 1996, 34, 43–47. [Google Scholar] [CrossRef]
- Joseph, P.K.; Rao, K.R.; Sundaresh, C.S. Toxic Effects of Garlic Extract and Garlic Oil in Rats. Indian J. Exp. Biol. 1989, 27, 977–979. [Google Scholar]
- Colín-González, A.L.; Santana, R.A.; Silva-Islas, C.A.; Chánez-Cárdenas, M.E.; Santamaría, A.; Maldonado, P.D. The Antioxidant Mechanisms Underlying the Aged Garlic Extract- and S-Allylcysteine-Induced Protection. Oxidative Med. Cell. Longev. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Amano, H.; Kazamori, D.; Itoh, K.; Kodera, Y. Metabolism, Excretion, and Pharmacokinetics of S-Allyl-l-Cysteine in Rats and Dogs. Drug Metab. Dispos. 2015, 43, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Borghi, C.; Cicero, A.F.G. Nutraceuticals with a Clinically Detectable Blood Pressure-Lowering Effect: A Review of Available Randomized Clinical Trials and Their Meta-Analyses: Antihypertensive Nutraceuticals. Br. J. Clin. Pharm. 2017, 83, 163–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, M.; Khan, A.H.; Holbert, D.; Lin, R.I. A Double-Blind Crossover Study in Moderately Hypercholesterolemic Men That Compared the Effect of Aged Garlic Extract and Placebo Administration on Blood Lipids. Am. J. Clin. Nutr. 1996, 64, 866–870. [Google Scholar] [CrossRef] [Green Version]
- Takeda, T.; Hosokawa, M.; Takeshita, S.; Irino, M.; Higuchi, K.; Matsushita, T.; Tomita, Y.; Yasuhira, K.; Hamamoto, H.; Shimizu, K. A New Murine Model of Accelerated Senescence. Mech. Ageing Dev. 1981, 17, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Nicastro, H.L.; Ross, S.A.; Milner, J.A. Garlic and Onions: Their Cancer Prevention Properties. Cancer Prev. Res. 2015, 8, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Clinton, S.K.; Giovannucci, E.L.; Hursting, S.D. The World Cancer Research Fund/American Institute for Cancer Research Third Expert Report on Diet, Nutrition, Physical Activity, and Cancer: Impact and Future Directions. J. Nutr. 2020, 150, 663–671. [Google Scholar] [CrossRef]
- Ernst, E. Can Allium Vegetables Prevent Cancer? Phytomedicine 1997, 4, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Medina-Campos, O.N.; Barrera, D.; Segoviano-Murillo, S.; Rocha, D.; Maldonado, P.D.; Mendoza-Patiño, N.; Pedraza-Chaverri, J. S-Allylcysteine Scavenges Singlet Oxygen and Hypochlorous Acid and Protects LLC-PK1 Cells of Potassium Dichromate-Induced Toxicity. Food Chem. Toxicol. 2007, 45, 2030–2039. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Pinto, J.T.; Gundersen, G.G.; Weinstein, I.B. Effects of a Series of Organosulfur Compounds on Mitotic Arrest and Induction of Apoptosis in Colon Cancer Cells. Mol. Cancer Ther. 2005, 4, 1388–1398. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, P.D.; Barrera, D.; Rivero, I.; Mata, R.; Medina-Campos, O.N.; Hernández-Pando, R.; Pedraza-Chaverrí, J. Antioxidant S-Allylcysteine Prevents Gentamicin-Induced Oxidative Stress and Renal Damage. Free Radic. Biol. Med. 2003, 35, 317–324. [Google Scholar] [CrossRef]
- Numagami, Y.; Ohnishi, S.T. S-Allylcysteine Inhibits Free Radical Production, Lipid Peroxidation and Neuronal Damage in Rat Brain Ischemia. J. Nutr. 2001, 131, 1100S–1105S. [Google Scholar] [CrossRef] [PubMed]
- Nagae, S.; Ushijima, M.; Hatono, S.; Imai, J.; Kasuga, S.; Matsuura, H.; Itakura, Y.; Higashi, Y. Pharmacokinetics of the Garlic Compound S -Allylcysteine. Planta Med. 1994, 60, 214–217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Moriguchi, T.; Saito, H.; Nishiyama, N. Functional Relationship between Age-Related Immunodeficiency and Learning Deterioration: Relationship between Immune and Cognitive Functions. Eur. J. Neurosci. 1998, 10, 3869–3875. [Google Scholar] [CrossRef] [PubMed]
- Ide, N.; Lau, B.H.S. Aged Garlic Extract Attenuates Intracellular Oxidative Stress. Phytomedicine 1999, 6, 125–131. [Google Scholar] [CrossRef]
- Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in Biology and Disease. FASEB J. 1998, 12, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Kim, H.; Lee, J.; Kim, K. Anticancer Activity of S-Allylmercapto-L-Cysteine on Implanted Tumor of Human Gastric Cancer Cell. Biol. Pharm. Bull. 2011, 34, 677–681. [Google Scholar] [CrossRef] [Green Version]
- Shirin, H.; Pinto, J.T.; Kawabata, Y.; Soh, J.W.; Delohery, T.; Moss, S.F.; Murty, V.; Rivlin, R.S.; Holt, P.R.; Weinstein, I.B. Antiproliferative Effects of S-Allylmercaptocysteine on Colon Cancer Cells When Tested Alone or in Combination with Sulindac Sulfide. Cancer Res. 2001, 61, 725–731. [Google Scholar]
- Kim, K.-M.; Chun, S.-B.; Koo, M.-S.; Choi, W.-J.; Kim, T.-W.; Kwon, Y.-G.; Chung, H.-T.; Billiar, T.R.; Kim, Y.-M. Differential Regulation of NO Availability from Macrophages and Endothelial Cells by the Garlic Component S-Allyl Cysteine. Free Radic. Biol. Med. 2001, 30, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.; Correa-Rotter, R.; Sánchez-González, D.J.; Hernández-Pando, R.; Maldonado, P.D.; Martínez-Martínez, C.M.; Medina-Campos, O.N.; Tapia, E.; Aguilar, D.; Chirino, Y.I.; et al. Renoprotective and Antihypertensive Effects of S -Allylcysteine in 5/6 Nephrectomized Rats. Am. J. Physiol.—Ren. Physiol. 2007, 293, F1691–F1698. [Google Scholar] [CrossRef] [Green Version]
- Colín-González, A.L.; Ortiz-Plata, A.; Villeda-Hernández, J.; Barrera, D.; Molina-Jijón, E.; Pedraza-Chaverrí, J.; Maldonado, P.D. Aged Garlic Extract Attenuates Cerebral Damage and Cyclooxygenase-2 Induction after Ischemia and Reperfusion in Rats. Plant Foods Hum. Nutr. 2011, 66, 348–354. [Google Scholar] [CrossRef]
- Ng, S.C.; Shi, H.Y.; Hamidi, N.; Underwood, F.E.; Tang, W.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Wu, J.C.Y.; Chan, F.K.L.; et al. Worldwide Incidence and Prevalence of Inflammatory Bowel Disease in the 21st Century: A Systematic Review of Population-Based Studies. Lancet 2017, 390, 2769–2778. [Google Scholar] [CrossRef]
- Nantz, M.P.; Rowe, C.A.; Muller, C.E.; Creasy, R.A.; Stanilka, J.M.; Percival, S.S. Supplementation with Aged Garlic Extract Improves Both NK and Γδ-T Cell Function and Reduces the Severity of Cold and Flu Symptoms: A Randomized, Double-Blind, Placebo-Controlled Nutrition Intervention. Clin. Nutr. 2012, 31, 337–344. [Google Scholar] [CrossRef]
- Chandrashekar, P.M.; Prashanth, K.V.H.; Venkatesh, Y.P. Isolation, Structural Elucidation and Immunomodulatory Activity of Fructans from Aged Garlic Extract. Phytochemistry 2011, 72, 255–264. [Google Scholar] [CrossRef]
- Kyo, E.; Uda, N.; Kasuga, S.; Itakura, Y. Immunomodulatory Effects of Aged Garlic Extract. J. Nutr. 2001, 131, 1075S–1079S. [Google Scholar] [CrossRef] [Green Version]
- Zare, A.; Farzaneh, P.; Pourpak, Z.; Zahedi, F.; Moin, M.; Shahabi, S.; Hassan, Z.M. Purified Aged Garlic Extract Modulates Allergic Airway Inflammation in BALB/c Mice. Iran. J. Allergy Asthma Immunol. 2008, 7, 133–141. [Google Scholar]
- Podolsky, D.K. Inflammatory Bowel Disease. N. Engl. J. Med. 2002, 347, 417–429. [Google Scholar] [CrossRef]
- Caioni, G.; Viscido, A.; d’Angelo, M.; Panella, G.; Castelli, V.; Merola, C.; Frieri, G.; Latella, G.; Cimini, A.; Benedetti, E. Inflammatory Bowel Disease: New Insights into the Interplay between Environmental Factors and PPARγ. IJMS 2021, 22, 985. [Google Scholar] [CrossRef]
- Hugot, J.-P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cézard, J.-P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; et al. Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn’s Disease. Nature 2001, 411, 599–603. [Google Scholar] [CrossRef]
- Hampe, J.; Franke, A.; Rosenstiel, P.; Till, A.; Teuber, M.; Huse, K.; Albrecht, M.; Mayr, G.; De La Vega, F.M.; Briggs, J.; et al. A Genome-Wide Association Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn Disease in ATG16L1. Nat. Genet. 2007, 39, 207–211. [Google Scholar] [CrossRef]
- Duerr, R.H.; Taylor, K.D.; Brant, S.R.; Rioux, J.D.; Silverberg, M.S.; Daly, M.J.; Steinhart, A.H.; Abraham, C.; Regueiro, M.; Griffiths, A.; et al. A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science 2006, 314, 1461–1463. [Google Scholar] [CrossRef] [Green Version]
- Inohara, N.; Ogura, Y.; Fontalba, A.; Gutierrez, O.; Pons, F.; Crespo, J.; Fukase, K.; Inamura, S.; Kusumoto, S.; Hashimoto, M.; et al. Host Recognition of Bacterial Muramyl Dipeptide Mediated through NOD2. J. Biol. Chem. 2003, 278, 5509–5512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.P.; Campbell, B.J.; Jewell, D.; Simmons, A. NOD2 Stimulation Induces Autophagy in Dendritic Cells Influencing Bacterial Handling and Antigen Presentation. Nat. Med. 2010, 16, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wang, S.; Li, J. Treatment of Inflammatory Bowel Disease: A Comprehensive Review. Front. Med. 2021, 8, 765474. [Google Scholar] [CrossRef] [PubMed]
- Hodge, G.; Hodge, S.; Han, P. Allium sativum (Garlic) Suppresses Leukocyte Inflammatory Cytokine Production in Vitro: Potential Therapeutic Use in the Treatment of Inflammatory Bowel Disease. Cytometry 2002, 48, 209–215. [Google Scholar] [CrossRef]
- Stidham, R.; Higgins, P. Colorectal Cancer in Inflammatory Bowel Disease. Clin. Colon Rectal Surg. 2018, 31, 168–178. [Google Scholar] [CrossRef]
- Guarina, A.; Barone, A.; Tornesello, A.; Marinoni, M.; Lassandro, G.; Giordano, P.; Motta, M.; Spinelli, M.; Fontanili, I.; Giona, F.; et al. Association of Immune Thrombocytopenia and Inflammatory Bowel Disease in Children. JCM 2021, 10, 1940. [Google Scholar] [CrossRef]
- Schiavoni, M.; Napolitano, M.; Giuffrida, G.; Coluccia, A.; Siragusa, S.; Calafiore, V.; Lassandro, G.; Giordano, P. Status of Recombinant Factor VIII Concentrate Treatment for Hemophilia A in Italy: Characteristics and Clinical Benefits. Front. Med. 2019, 6, 261. [Google Scholar] [CrossRef]
- Dosh, R.H.; Jordan-Mahy, N.; Sammon, C.; Le Maitre, C. Interleukin 1 Is a Key Driver of Inflammatory Bowel Disease-Demonstration in a Murine IL-1Ra Knockout Model. Oncotarget 2019, 10, 3559–3575. [Google Scholar] [CrossRef] [Green Version]
- Mitsuyama, K.; Toyonaga, A.; Sasaki, E.; Watanabe, K.; Tateishi, H.; Nishiyama, T.; Saiki, T.; Ikeda, H.; Tsuruta, O.; Tanikawa, K. IL-8 as an Important Chemoattractant for Neutrophils in Ulcerative Colitis and Crohn’s Disease. Clin. Exp. Immunol. 2008, 96, 432–436. [Google Scholar] [CrossRef]
- Ludwiczek, O.; Vannier, E.; Borggraefe, I.; Kaser, A.; Siegmund, B.; Dinarello, C.A.; Tilg, H. Imbalance between Interleukin-1 Agonists and Antagonists: Relationship to Severity of Inflammatory Bowel Disease. Clin. Exp. Immunol. 2004, 138, 323–329. [Google Scholar] [CrossRef]
- Liso, M.; Verna, G.; Cavalcanti, E.; De Santis, S.; Armentano, R.; Tafaro, A.; Lippolis, A.; Campiglia, P.; Gasbarrini, A.; Mastronardi, M.; et al. Interleukin 1β Blockade Reduces Intestinal Inflammation in a Murine Model of Tumor Necrosis Factor–Independent Ulcerative Colitis. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 151–171. [Google Scholar] [CrossRef] [PubMed]
- Rousta, A.; Mirahmadi, S.; Shahmohammadi, A.; Ramzi, S.; Baluchnejadmojarad, T.; Roghani, M. S-allyl Cysteine, an Active Ingredient of Garlic, Attenuates Acute Liver Dysfunction Induced by Lipopolysaccharide/D-galactosamine in Mouse: Underlying Mechanisms. J. Biochem. Mol. Toxicol. 2020, 34, e22518. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Lai, Y.; Kalyanam, N.; Ho, C.; Pan, M. S-Allylcysteine Inhibits PhIP/DSS-Induced Colon Carcinogenesis through Mitigating Inflammation, Targeting Keap1, and Modulating Microbiota Composition in Mice. Mol. Nutr. Food Res. 2020, 64, 2000576. [Google Scholar] [CrossRef]
- Balaha, M.; Kandeel, S.; Elwan, W. Garlic Oil Inhibits Dextran Sodium Sulfate-Induced Ulcerative Colitis in Rats. Life Sci. 2016, 146, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Tanrikulu, Y. Effects of garlic oil (Allium sativum) on acetic acid-induced colitis in rats: Garlic oil and experimental colitis. Turk. J. Trauma Emerg. Surg. 2019, 26, 503–508. [Google Scholar] [CrossRef]
- Fasolino, I.; Izzo, A.A.; Clavel, T.; Romano, B.; Haller, D.; Borrelli, F. Orally Administered Allyl Sulfides from Garlic Ameliorate Murine Colitis. Mol. Nutr. Food Res. 2015, 59, 434–442. [Google Scholar] [CrossRef]
- Shao, X.; Sun, C.; Tang, X.; Zhang, X.; Han, D.; Liang, S.; Qu, R.; Hui, X.; Shan, Y.; Hu, L.; et al. Anti-Inflammatory and Intestinal Microbiota Modulation Properties of Jinxiang Garlic (Allium Sativum L.) Polysaccharides toward Dextran Sodium Sulfate-Induced Colitis. J. Agric. Food Chem. 2020, 68, 12295–12309. [Google Scholar] [CrossRef]
- Sharma, D.; Sangar, M.; Park, J.-L.; Kang, S.-G.; Ham, K.-S. Roasted Garlic Protects against Leaky Gut Syndrome in Dextran Sodium Sulfate-Induced Colitis Mice. Food Sci. Biotechnol 2022, 31, 1335–1342. [Google Scholar] [CrossRef]
- Biriken, D.; Yazihan, N. Modulation of Proliferation, Apoptosis and Inflammation of Caco-2 Epithelial Cells and THP-1 Macrophage-like Monocytes in LPS Stimulated Co-Culture Model. BLL 2021, 122, 138–144. [Google Scholar] [CrossRef]
- Pimenta, J.; Ribeiro, R.; Almeida, R.; Costa, P.F.; da Silva, M.A.; Pereira, B. Organ-on-Chip Approaches for Intestinal 3D In Vitro Modeling. Cell. Mol. Gastroenterol. Hepatol. 2022, 13, 351–367. [Google Scholar] [CrossRef]
- Dotti, I.; Salas, A. Potential Use of Human Stem Cell-Derived Intestinal Organoids to Study Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2018, 24, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Prinelli, A.; Silva-Almeida, C.; Parks, S.; Pasotti, A.; Telopoulou, A.; Dunlop, S.; Sutherland, E.; Lynch, M.; Ewart, M.-A.; Wilde, C.J.; et al. In-Plate Cryopreservation of 2D and 3D Cell Models: Innovative Tools for Biomedical Research and Preclinical Drug Discovery. SLAS Discov. 2021, 26, 32–43. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.N.; Ingber, D.E. Microfluidic Organs-on-Chips. Nat. Biotechnol. 2014, 32, 760–772. [Google Scholar] [CrossRef] [PubMed]
Properties | Examples |
---|---|
Antimicrobial | Bacillus cereus, Staphylococcu aureus, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis., Aspergillus versicolor, Penicillum citrinum, Penicillium expansum. |
Antifungal | Candida tropicalis, Blastoschizomyes capitatus, Trichoderma harzianum, Candidia albicans, Botrytis cinerea. |
Hematological and Cardiovascular effects | Anti-thrombotic effects, anticoagulant, antiplatelet, reduction of triglycerides, LDL, and increased HDL. |
Antioxidant | Increased expression of antioxidant enzymes (SOD, catalase and GSH), Scavenge radicals |
Anti-cancer | Anti-inflammatory, anti-angiogenic apoptosis induction: Bcl-2↓, Bax↑, P53↑, activation of JNK1. |
Anti-inflammatory | Inhibition of NF-κB, reducing the inflammatory response mediated by TNF-α ↓, IL-1↓, IL-6↓, MCP-1↓ and IL-12↓. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zugaro, S.; Benedetti, E.; Caioni, G. Garlic (Allium sativum L.) as an Ally in the Treatment of Inflammatory Bowel Diseases. Curr. Issues Mol. Biol. 2023, 45, 685-698. https://doi.org/10.3390/cimb45010046
Zugaro S, Benedetti E, Caioni G. Garlic (Allium sativum L.) as an Ally in the Treatment of Inflammatory Bowel Diseases. Current Issues in Molecular Biology. 2023; 45(1):685-698. https://doi.org/10.3390/cimb45010046
Chicago/Turabian StyleZugaro, Silvana, Elisabetta Benedetti, and Giulia Caioni. 2023. "Garlic (Allium sativum L.) as an Ally in the Treatment of Inflammatory Bowel Diseases" Current Issues in Molecular Biology 45, no. 1: 685-698. https://doi.org/10.3390/cimb45010046
APA StyleZugaro, S., Benedetti, E., & Caioni, G. (2023). Garlic (Allium sativum L.) as an Ally in the Treatment of Inflammatory Bowel Diseases. Current Issues in Molecular Biology, 45(1), 685-698. https://doi.org/10.3390/cimb45010046