Transcriptomic Analysis of Yunwu Tribute Tea Leaves under Cold Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Stress Treatment of Experimental Materials
2.2. RNA Extraction and Qualification
2.3. Construction of Illumina cDNA Library and Sequencing
2.4. Functional Annotation and Classification
2.5. Predictive Analysis of Encoding Protein Frames (CDS) and Transcription Factors
2.6. GO and KEGG Analysis of Differentially Expressed Genes
2.7. Validation of RNA-Seq Data by Quantitative Real-Time PCR
2.8. Statistical Analysis
3. Results
3.1. Analysis of RNA-Seq and Splicing Results
3.2. Functional Annotation and Classification of Unigenes
3.2.1. Functional Annotation
3.2.2. KOG Functional Classification
3.2.3. Species Annotated Classification
3.2.4. GO Function Classification
3.3. Prediction of Genes Encoding Transcription Factors
3.4. Protein Coding Sequence Prediction
3.5. Analysis of Metabolic Pathways of the Differentially Expressed Genes
3.5.1. Peroxisome Metabolic Pathway
3.5.2. Proline Metabolism Pathway
3.5.3. Tyrosine Metabolism Pathway
3.5.4. Plant Hormone Signal Transduction Pathway
3.6. DEG Validation by qRT-PCR Analysis
4. Discussion
4.1. Molecular Mechanism of Response to Cold Stress
4.1.1. Perception of Low-Temperature Signal
4.1.2. Transduction of Low-Temperature Signal
4.1.3. Low-Temperature Transcriptional Regulation
4.2. Application of RNA-Seq in Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, J.H.; Chen, Q.H.; Lin, C.H. A New variety of Camellia (Theaceae) in Guizhou-mist Hyson. Seed 2011, 30, 65–66. [Google Scholar]
- Colinet, H.A.; Renault, D.A.; Roussel, D.B. Cold acclimation allows Drosophila flies to maintain mitochondrial functioning under cold stress. Insect Biochem. Mol. Biol. 2017, 80, 52–60. [Google Scholar] [CrossRef]
- Liu, W.Y. Physiological and Biochemical Response of Berberis thunbergii var. atrop urp urea to Chlorine Salt Snowmelt Agent Stress. Genom. Appl. Biol. 2017, 7, 45–47. [Google Scholar]
- Wang, Y.; Li, Y.; Wang, J.H.; Xiang, Z.; Xi, P.Y.; Zhao, D.G. Physiological changes and differential gene expression of tea plants (Camellia sinensis (L.) Kuntze var. niaowangensis Q.H. Chen) under cold stress. DNA Cell Biol. 2021, 40, 1–15. [Google Scholar] [CrossRef]
- Langmead, B. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Dewey, C.N. RSEM, accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, C.; Zhu, J.K. Molecular genetic analysis of cold-regulated gene transcription. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2002, 357, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.X.; Zhang, Z.L.; Zhang, Z.J.; Huang, R.F. Cold signal perception, transduction and transcriptional regulation in plants. China Agric. Sci. Technol. Rev. 2009, 4, 5–11. [Google Scholar]
- Chinnusamy, V.; Schumaker, K.; Zhu, J.K. Molecular genetic perspectives on cross-talk and specificity in abiotic stress signaling in plants. J. Exp. Bot. 2004, 55, 225–236. [Google Scholar] [CrossRef]
- Baid, V. Low temperature and drought regulated gene expression in Bermudagrass. Turfgrass Environ. Res. Summ. 1994, 1, 32–33. [Google Scholar]
- Wang, X.X.; Li, S.D.; Dong, H.R.; Gao, Z.H.; Dai, S.S. Effects of low temperature on several isoenzymes in tomato seedling and flowering stage. Chin. Veg. 1997, 3, 1–3. [Google Scholar]
- Sun, Z.H.; Zhang, W.C.; Qu, S.X.; Ma, X.T. Study on the relationship between citrus cold resistance and fatty acid components of membrane lipids. Plant Sci. J. 1990, 8, 79–86. [Google Scholar]
- Murelli, C.; Rizza, F.; Albini, F.M.; Du lio, A.; Terzi, V.; Cattivelli, L. Metabolic changes associated with cold-acclimation in contrasting cultivars of barley. Physiol. Plant. 1995, 94, 87–93. [Google Scholar] [CrossRef]
- Zhou, R.L.; Zhao, H.L. Adaptation of plasma membrane and fatty acid components of herbage root to freezing low temperature in alpine mountains. Chin. J. Plant Ecol. 2001, 25, 115–118. [Google Scholar]
- Sangwan, V.; Foulds, I.; Singh, J.; Dhindsa, R.S. Cold-activation of Brassica napus BN 115 promoter is mediated by structural changes in membranes and cytoskeleton, and requires Ca2+ influx. Plant J. 2001, 27, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Q.; Zhang, S.Z. Plant Resistance Physiology; China Agriculture Press: Beijing, China, 1994; pp. 33–40. [Google Scholar]
- Monroy, A.F.; Dhindsa, R.S. Low-temperature signal transduction, induction of cold acclimation-specific genes of alfalfa by calcium at 25 degrees. Plant Cell Online 1995, 7, 321–331. [Google Scholar]
- Tahtiharju, S.; Sangwan, V.; Monroy, A.F.; Dhindsa, R.S.; Borg, M. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta 1997, 203, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Jian, L.C.; Wang, H. The role of calcium (Ca2+) in plant cold tolerance. J. Cell Biol. 2002, 24, 166–171. [Google Scholar]
- Saijo, Y.; Hata, S.; Kyozuka, J.; Shimamoto, K.; Izui, K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 2000, 23, 319–327. [Google Scholar] [CrossRef]
- Chen, T.H.; Gusta, L.V. Abscisic acid-induced freezing resistance in cultured plant cells. Plant Physiol. 1983, 73, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Seki, M.; Ishida, J.; Narusaka, M.; Fujita, M.; Nanjo, T.; Umezawa, T.; Kamiya, A.; Nakajima, M.; Enju, A.; Sakurai, T. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genom. 2002, 2, 282–291. [Google Scholar] [CrossRef]
- Li, C.; Junttila, O.; Heino, P.; Palva, E.T. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application. Tree Physiol. 2003, 23, 481–487. [Google Scholar] [CrossRef] [Green Version]
- Heino, P.; Sandman, G.; Lang, V.; Nordin, K.; Palva, E. Abscisic acid deficiency prevents development of freezing tolerance in Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 1990, 79, 801–806. [Google Scholar] [CrossRef]
- Gilmour, S.J.; Thomashow, M.F. Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidop sisthaliana. Plant Mol. Biol. 1991, 17, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Llorente, F.; Oliveros, J.C.; Martinez-Zapater, J.M.; Salinas, J. A freezing- sensitive mutant of Arabidopsis, frs1, is a new aba3 allele. Planta 2000, 211, 648–655. [Google Scholar] [CrossRef]
- Zhu, J.; Dong, C.H.; Zhu, J.K. Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr. Opin. Plant Biol. 2007, 10, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Hannah, M.A.; Heyer, A.G.; Hincha, D.K. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet. 2005, 1, 26. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Henderson, D.A.; Zhu, J.K. The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell Online 2005, 17, 3155–3175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 2006, 57, 781–803. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamaguchi-Shinozaki, K.; Seki, M. Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 2003, 6, 410–417. [Google Scholar] [CrossRef]
- Huang, X.H.; Xu, F.; Cheng, H.; Li, L.L.; Cheng, S.Y. Advances in transcriptome sequencing in higher plants. J. Huanggang Norm. Univ. 2014, 34, 28–35. [Google Scholar]
- Zhang, J.; Tang, L.; Ran, Q.F.; Huang, D.J. Advances in plant transcriptome sequencing in response to cold stress. Mol. Plant Breed. 2020, 18, 1849–1866. [Google Scholar]
- Wang, X.C.; Zhao, Q.Y.; Ma, C.L.; Zhang, Z.H.; Cao, H.L.; Kong, Y.M.; Yue, C.; Hao, X.Y.; Chen, L.; Ma, J.Q.; et al. Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genom. 2013, 14, 415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, H.L.; Hao, X.Y.; Yue, C.; Ma, C.L.; Wang, X.C.; Yang, Y.J. cDNA cloning and Expression analysis of betaine aldehyde dehydrogenase CsBADH1 from Tea tree. J. Tea Sci. 2013, 8, 99–108. [Google Scholar]
- Yue, C.; Cao, H.L.; Zhou, Y.H.; Wang, L.; Hao, X.Y.; Wang, X.C.; Yang, Y.J. Cloning and expression analysis of glutathione reductase gene CsGRs from plant tea. Sci. Agric. Sin. 2014, 9, 3277–3289. [Google Scholar]
- Wu, Z.; Li, X.; Liu, Z.; Xu, Z.; Zhuang, J. De novo assembly and transcriptome characterization, novel insights into catechins biosynthesis in Camellia sinensis. BMC Plant Biol. 2014, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Wang, L.; Zhang, C.; Wu, L.; Li, H.; Zhang, F.; Cheng, H. Transcriptome analysis reveals key in affecting of flavonoid 3′-hydroxylase and flavonoid 3′,S′-hydroxylase genes the ratio dihydroxylated to trihydroxylated catechins in Camellia sinensis. PloS ONE 2015, 10, e 0137925. [Google Scholar] [CrossRef] [PubMed]
- Li, N.N.; Lu, J.L.; Zhen, X.Q.; Liang, Y.R. Studies on transcriptome in tea cultivars Fudingdabai and Xiaoxueya. Jiangsu J. Agric. Sci. 2012, 5, 234–238. [Google Scholar]
Gene Name | Nr Description | Primers |
---|---|---|
GPX | Glutathione oxidase | F-CTGAGTGGAGAAGTAGTG |
R-GTGATGGAATTAAGTGGAAT | ||
PPO | Polyphenol oxidase | F-CACAACCAACCTTCCCAACAAA |
R-TGCTTCTTGATTTCTTCGGTCTCT | ||
P5CS | Delta-1-pyrroline-5-carboxylate synthase | F-ATTGTTGATGATGTGTATGC |
R-GGTCTTCTGTGATAATGCTA | ||
NCED | 9-cis-epoxy carotenoid dioxygenase | F-GTAAGTCTCTGCTGTAAC |
R-CTGTCTCAATTCACTCTC | ||
G3O2 | Gibberellin 3β dioxygenase | F-CCTATGTTGACCACGAGAG |
R-CGACCCTACTCACCATTC | ||
ACTIN | ACTIN | F-GTATCGCAGACCGTATGAG |
R-TCCTCCAATCCAGACACT |
Sequences | CK1 | CK2 | CK3 | DW1 | DW2 | DW3 | Total |
---|---|---|---|---|---|---|---|
Total Raw Reads (M) | 45.87 | 45.87 | 44.23 | 44.23 | 45.87 | 45.87 | 90.65 |
Total Clean Reads (M) | 43.47 | 43.44 | 42.2 | 42.07 | 43.32 | 43.38 | 85.96 |
Total Clean Bases (Gb) | 6.52 | 6.52 | 6.33 | 6.31 | 6.5 | 6.51 | 12.9 |
Clean Reads Q20 (%) | 98.94 | 98.92 | 99.04 | 98.91 | 98.85 | 98.89 | 98.93 |
Total Mapping (%) | 81.19 | 79.41 | 82.77 | 80.3 | 75.56 | 79.01 | 79.7 |
Total Number of Unigenes (bp) | 78,914 | 82,358 | 74,522 | 81,326 | 103,803 | 91,064 | 185,973 |
Total Length of Unigenes (bp) | 71,564,717 | 76,190,685 | 76,249,552 | 78,873,183 | 82,632,309 | 82,235,642 | 184,537,732 |
Mean Length of Unigenes(bp) | 906 | 925 | 1023 | 969 | 796 | 903 | 992 |
N50 of Unigenes (bp) | 1555 | 1586 | 1678 | 1644 | 1418 | 1591 | 1894 |
Unigenes GC (%) | 41.34 | 41.14 | 41.48 | 41.5 | 40.88 | 41.09 | 40.36 |
Values | NR | NT | Swissprot | KEGG | KOG | Pfam | GO | Intersection | Overall |
---|---|---|---|---|---|---|---|---|---|
Number | 96,058 | 92,509 | 71,138 | 74,417 | 76,354 | 68,067 | 53,390 | 28,935 | 113,627 |
Percentage | 51.65% | 49.74% | 38.25% | 40.01% | 41.06% | 36.60% | 28.71% | 15.56% | 61.10% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wan, C.; Li, L.; Xiang, Z.; Wang, J.; Li, Y.; Zhao, D. Transcriptomic Analysis of Yunwu Tribute Tea Leaves under Cold Stress. Curr. Issues Mol. Biol. 2023, 45, 699-720. https://doi.org/10.3390/cimb45010047
Wang Y, Wan C, Li L, Xiang Z, Wang J, Li Y, Zhao D. Transcriptomic Analysis of Yunwu Tribute Tea Leaves under Cold Stress. Current Issues in Molecular Biology. 2023; 45(1):699-720. https://doi.org/10.3390/cimb45010047
Chicago/Turabian StyleWang, Ying, Cheng Wan, Leijia Li, Zhun Xiang, Jihong Wang, Yan Li, and Degang Zhao. 2023. "Transcriptomic Analysis of Yunwu Tribute Tea Leaves under Cold Stress" Current Issues in Molecular Biology 45, no. 1: 699-720. https://doi.org/10.3390/cimb45010047
APA StyleWang, Y., Wan, C., Li, L., Xiang, Z., Wang, J., Li, Y., & Zhao, D. (2023). Transcriptomic Analysis of Yunwu Tribute Tea Leaves under Cold Stress. Current Issues in Molecular Biology, 45(1), 699-720. https://doi.org/10.3390/cimb45010047