Molecular Mechanism of Gibberellins in Mesocotyl Elongation Response to Deep-Sowing Stress in Sweet Maize
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Culture Conditions
2.2. Cultivation of Seedlings with Different Sowing Depths in Nutrient Soil
2.3. Treatment with Different Concentrations of GA3
2.4. Treatment with GA3 and Gibberellin Inhibitor PP333
2.5. Measurement of Germination Rate, Mesocotyl Length and Root Surface Area
2.6. Paraffin Sectioning Method
2.7. Determination of Endogenous Hormone Content
2.8. RNA Extraction and Transcriptomic Data Analyses
2.9. qRT-PCR Analysis of DEGs in Mesocotyls
2.10. Plasmid Construction and Heterologous Transformation of ARABIDOPSIS Col-0
2.11. The Hypocotyl Observation and Determination in Transgenic Lines
2.12. Data Analysis
3. Results
3.1. Sowing Depth Affects the Sweet Maize Emergence Rate and the Length of Mesocotyl
3.2. Sowing Depth Affects GAs Content of the Sweet Maize Mesocotyl
3.3. IAA, JA, Ethylene Precursor and Cytokinin Contents in the Mesocotyl in Relation to Sowing Depth
3.4. GA3 Promotes the Elongation of Mesocotyl and Seedling Emergence Rate in a Deep-Sowing Environment
3.5. GA3 Inhibitor Treatment under Dark Conditions Significantly Inhibits Mesocotyl Elongation and Germination Rate
3.6. Transcriptomic Analysis of Sweet Maize Mesocotyl under Different Sowing Depths
3.7. GA-Related DEGs and qRT-PCR Analysis
3.8. ZmGA20ox1, ZmGA20ox4 and ZmGA20ox5, in Varying Degrees, Promote the Elongation of Hypocotyls in Arabidopsis thaliana
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, H.; Wu, Y.; Hu, B.; You, D.; Wang, Y. Physiological regulation of peg-seed primings on sweet corn germination and seedling growth under drought stress. J. Shanxi Agric. Univ. 2019, 39, 034. [Google Scholar]
- Zhao, G.; Fu, J.; Wang, G.; Ma, P.; Wu, L. Gibberellin-induced mesocotyl elongation in deep-sowing tolerant maize inbred line 3681-4. Plant Breed. 2010, 129, 87–91. [Google Scholar] [CrossRef]
- Kato, F.; Araki, M.; Miyazawa, Y.; Fujii, N.; Takeda, K.; Suge, H.; Takahashi, H. Factors responsible for deep-sowing tolerance in wheat seedlings: Varietal differences in cell proliferation and the co-ordinated synchronization of epidermal cell expansion and cortical cell division for the gibberellin-mediated elongation of first internodes. Ann. Bot. 2011, 108, 439–447. [Google Scholar] [PubMed] [Green Version]
- Kumar, V.; Ladha, J.K. Direct seeding of rice. Recent developments and future research needs. Adv. Agron. 2011, 111, 297–413. [Google Scholar]
- Chung, N.J. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields. Crop Pasture Sci. 2010, 61, 911–917. [Google Scholar] [CrossRef]
- Lee, H.; Sasaki, K.; Kang, J.; Sato, T.; Song, W.Y. Mesocotyl elongation is essential for seedling emergence under deep-seeding condition in rice. Rice 2017, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Wang, J. Effect of gibberellin and uniconazole on mesocotyl elongation of dark-grown maize under different seeding depths. Plant Prod. Sci. 2008, 11, 423–429. [Google Scholar] [CrossRef]
- Simon, A.; Yuri, S.; Hironobu, S.; Kenji, I. Genotypic variation in coleoptile or mesocotyl lengths of upland rice (Oryza sativa L.) and seedling emergence in deep sowing. Afr. J. Agric. Res. 2012, 7, 6239–6248. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Pan, M.; Zhao, Z.; Zhao, G.; Tian, B.; Wang, J.; Wang, G. Mapping QTL controlling maize deep-seeding tolerance-related traits and confirmation of a major QTL for mesocotyl length. Theor. Appl. Genet. 2012, 124, 223–232. [Google Scholar] [CrossRef]
- Zhou, F.; Cheng, Q.; Jin, R.; Du, L.; Li, X.; Chen, X.; Liu, B.; Yuan, J.; Kong, F. Effects of kernel size and sowing depth on maize root growth in the middle Sichuan hilly area. Chin. J. Eco-Agric. 2019, 27, 1799–1811. [Google Scholar]
- Pan, B.; Zhong, T.; Zhao, G. Promoting deep-sowing germinability of corn (Zea mays) by seed soaking with gibberellic acid. Arch. Agron. Soil Sci. 2016, 63, 1314–1323. [Google Scholar] [CrossRef]
- Troyer, A.F. The location of genes governing long first internode of corn. Genetics 1997, 145, 1149–1154. [Google Scholar] [CrossRef] [PubMed]
- Niu, L.; Hao, R.; Wu, X.; Wang, W. Maize mesocotyl: Role in response to stress and deep-sowing tolerance. Plant Breed. 2019, 139, 466–473. [Google Scholar] [CrossRef]
- Zhan, J.; Lu, X.; Liu, H.; Zhao, Q.; Ye, G. Mesocotyl elongation, an essential trait for dry-seeded rice (Oryza sativa L.): A review of physiological and genetic basis. Planta 2020, 251, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhou, Y.; Huang, G.; Zhu, N.; Li, Z. Coronatine inhibits mesocotyl elongation by promoting ethylene production in etiolated maize seedlings. Plant Growth Regul. 2020, 90, 51–61. [Google Scholar] [CrossRef]
- Feng, F.; Mei, H.; Fan, P.; Li, Y.; Xu, X.; Wei, H.; Yan, M.; Luo, L. Dynamic transcriptome and phytohormone profiling along the time of light exposure in the mesocotyl of rice seedling. Sci. Rep. 2017, 7, 11961. [Google Scholar] [CrossRef] [PubMed]
- Wager, A.; Browse, J. Social network: JAZ protein interactions expand our knowledge of jasmonate signaling. Front. Plant Sci. 2012, 3, 41. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Q.; Ma, B.; Lu, X.; Huang, Y.H.; He, S.J.; Yang, C.; Yin, C.C.; Zhao, H.; Zhou, Y.; Zhang, W.K. Ethylene-Inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. Plant Cell 2017, 29, 1053–1072. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.M.; Lin, W.H.; Zhu, S.; Zhu, J.Y.; Sun, Y.; Fan, X.Y.; Cheng, M.; Hao, Y.; Oh, E.; Tian, M. Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in arabidopsis. Dev. Cell 2010, 19, 872–883. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.W.; Wang, J.H. Effect of auxin on mesocotyl elongation of dark-grown maize under different seeding depths. Russ. J. Plant Physiol. 2010, 57, 79–86. [Google Scholar] [CrossRef]
- Borucka, J.; Fellner, M. Auxin binding proteins ABP1 and ABP4 are involved in the light- and auxin-induced down-regulation of phytochrome gene PHYB in maize (Zea mays L.) mesocotyl. Plant Growth Regul. 2012, 68, 503–509. [Google Scholar] [CrossRef]
- Nandini, M.; Silflow, C.D. Elevated levels of tubulin transcripts accompany the GA3-induced elongation of oat internode segments. Plant Cell Physiol. 1993, 34, 973–983. [Google Scholar]
- Sauret-Güeto, S.; Calder, G.; Harberd, N. Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse orientation of microtubules on the outer tangential wall of epidermal cells. Funct. Plant Biol. 2012, 69, 628–639. [Google Scholar] [CrossRef] [PubMed]
- Hyun, S.; Kang, J.W.; Chung, N.J.; Choi, K.S.; Ahn, S.N. Identification of molecular markers for mesocotyl elongation in weedy rice. Korean J. Breed. Sci. 2012, 44, 144–150. [Google Scholar]
- López-Cristoffanini, C.; Serrat, X.; Jáuregui, O.; Nogués, S.; López-Carbonell, M. Phytohormone profiling method for rice: Effects of GA20ox mutation on the gibberellin content of japonica rice varieties. Front. Plant Sci. 2019, 10, 733. [Google Scholar] [CrossRef]
- Wu, J.; Chen, R.F.; Huang, X.; Qiu, L.H.; Li, Y. Studies on the gene of key component GA20-oxidase for gibberellin biosynthesis in plant. Biotechnol. Bull. 2016, 32, 1–12. [Google Scholar]
- Niu, Y.; Qian, Z.; Zhang, X.; Ai, Q.; Song, S. Research progress on the role and regulation mechanism of gibberellin signal in response to abiotic stress. Biotechnol. Bull. 2015, 31, 31–37. [Google Scholar]
- Nelissen, H.; Sun, X.H.; Rymen, B.; Jikumaru, Y.; Inzé, D. The reduction in maize leaf growth under mild drought affects the transition between cell division and cell expansion and cannot be restored by elevated gibberellic acid levels. Plant Biotechnol. J. 2018, 16, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Voorend, W.; Nelissen, H.; Vanholme, R.; Vliegher, A.D.; Breusegem, F.V.; Boerjan, W.; Roldán-Ruiz, I.; Muylle, H.; Inzé, D. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize. Plant Biotechnol. J. 2016, 14, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Ashikari, M.; Sasaki, A.; Ueguchi-Tanaka, M.; Itoh, H.; Nishimura, A.; Datta, S.; Ishiyama, K.; Saito, T.; Kobayashi, M.; Khush, G.S. Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice ‘green revolution’. Breed. Sci. 2002, 52, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Priyanka, W.S.; Aktar, H.M.; Kumar, M.S.; Azman, B.H.; Puad, A.M.; Suhaimi, B.N.; Aini, A.N. Overexpression of Arabidopsis thaliana gibberellic acid 20 oxidase (AtGA20ox) gene enhance the vegetative growth and fiber quality in kenaf (Hibiscus cannabinus L.) plants. Breed. Sci. 2015, 65, 177–191. [Google Scholar]
- Leng, B.; Dong, X.; Lu, C.; Li, K.; Xu, Y.; Wang, B. The lb23 mutant of recretohalophyte Limonium bicolor (Bag.) Kuntze with 20-, 24-, 28- and 32-cell salt glands shows elevated salt secretion. Flora 2019, 259, 151441. [Google Scholar] [CrossRef]
- Yang, R.; Chu, Z.; Zhang, H.; Ying, L.; Guo, Y.D. The mechanism underlying fast germination of tomato cultivar LA2711. Plant Sci. 2015, 238, 241–250. [Google Scholar] [CrossRef]
- Li, Y.; Shan, X.; Jiang, Z.; Zhao, L.; Jin, F. Genome-wide identification and expression analysis of the GA2ox gene family in maize (Zea mays L.) under various abiotic stress conditions. Plant Physiol. Bioch. 2021, 166, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Leng, B.; Wang, X.; Yuan, F.; Zhang, H.; Lu, C.; Chen, M.; Wang, B. Heterologous expression of the Limonium bicolor MYB transcription factor LbTRY in Arabidopsis thaliana increases salt sensitivity by modifying root hair development and osmotic homeostasis. Plant Sci. 2021, 302, 110704. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Zhao, Y.; Zhang, J.; Li, Z. Auxin and GA signaling play important roles in the maize response to phosphate deficiency. Plant Sci. 2019, 283, 177–188. [Google Scholar] [CrossRef]
- Elwira, S.; Bassel, G.W.; Derek, B.J. Germination of Arabidopsis thaliana seeds is not completed as a result of elongation of the radicle but of the adjacent transition zone and lower hypocotyl. J. Exp. Bot. 2009, 12, 3587. [Google Scholar]
- Zhao, X.; Zhong, Y.; Zhou, W. Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism. Genomics 2021, 113, 3565–3581. [Google Scholar] [CrossRef]
- Watanabe, H.; Hase, S.; Saigusa, M. Effects of the combined application of ethephon and gibberellin on growth of rice (Oryza sativa L.) seedlings. Plant Prod. Sci. 2007, 10, 468–472. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, H.J.; Zhao, B.; Sun, Q.Q.; Guo, Y.D. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J. Pineal Res. 2013, 56, 39–50. [Google Scholar] [CrossRef]
- Li, L.; Wang, C.; Liang, Q.; Ma, D.; Chen, W. Microtubules dynamics regulates mesocotyl elongation in rice. Appl. Mech. Mater. 2014, 513, 4277–4280. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, C.; Ma, D.; Li, L.; Cui, Z. Cortical microtubule disorganized related to an endogenous gibberellin increase plays an important role in rice mesocotyl elongation. Plant Biotechnol. 2016, 33, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Sekmen Cetinel, A.H.; Yalcinkaya, T.; Akyol, T.Y.; Gokce, A.; Turkan, I. Pretreatment of seeds with hydrogen peroxide improves deep-sowing tolerance of wheat seedlings. Plant Physiol. Bioch. 2021, 167, 321–336. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Yamauchi, T.; Yang, J.; Jikumaru, Y.; Tsuchida Mayama, T.; Ichikawa, H.; Takamure, I.; Nagamura, Y. Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant Cell Physiol. 2014, 55, 30–41. [Google Scholar] [CrossRef] [Green Version]
- Zhai, K.; Zhao, G.; Jiang, H.; Sun, C.; Ren, J. Overexpression of maize ZmMYB59 gene plays a negative regulatory role in seed germination in Nicotiana tabacum and Oryza sativa. Front. Plant Sci. 2020, 11, 564665. [Google Scholar] [CrossRef]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 2008, 59, 225–251. [Google Scholar] [CrossRef]
- Pearce, S.; Huttly, A.K.; Prosser, I.M.; Li, Y.D.; Phillips, A.L. Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. Plant Biol. 2015, 15, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Dan, Z.; Gao, F.; Chen, P.; Li, S. Rice GROWTH-REGULATING FACTOR7 modulates plant architecture through regulating GA and IAA metabolism. Plant Physiol. 2020, 184, 00302. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Yang, R.; Wang, F.; Jing, F.U.; Yang, W.; Bai, T.; Wang, S.; Yin, H. Effects of gibberellin priming on seedling emergence and transcripts involved in mesocotyl elongation in rice under deep direct-seeding conditions. J. Zhejiang Univ. 2021, 22, 20. [Google Scholar] [CrossRef]
- Qin, X.; Liu, J.H.; Zhao, W.; Chen, X.; Peng, Y. Gibberellin 20-oxidase gene OsGA20ox3 regulates plant stature and disease development in rice. Mol. Plant 2013, 26, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.J.; Herman, D.; Blomme, J.; Chae, E.; Kojima, M.; Coppens, F.; Storme, V.; Daele, T.V.; Dhondt, S.; Sakakibara, H. Natural variation of molecular and morphological gibberellin responses. Plant Physiol. 2016, 173, 703–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Sun, J.; Ali, S.; Gao, L.; Ni, X.; Li, X.; Wu, Y.; Jiang, J. Identification and expression analysis of Sorghum bicolor gibberellin oxidase genes with varied gibberellin levels involved in regulation of stem biomass. Ind. Crops Prod. 2020, 145, 111951. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, B.; Li, M.; Mu, C.; Yan, Z.; Yao, G.; Kong, X.; Ma, C.; Zhang, F.; Liu, X. Molecular Mechanism of Gibberellins in Mesocotyl Elongation Response to Deep-Sowing Stress in Sweet Maize. Curr. Issues Mol. Biol. 2023, 45, 197-211. https://doi.org/10.3390/cimb45010015
Leng B, Li M, Mu C, Yan Z, Yao G, Kong X, Ma C, Zhang F, Liu X. Molecular Mechanism of Gibberellins in Mesocotyl Elongation Response to Deep-Sowing Stress in Sweet Maize. Current Issues in Molecular Biology. 2023; 45(1):197-211. https://doi.org/10.3390/cimb45010015
Chicago/Turabian StyleLeng, Bingying, Ming Li, Chunhua Mu, Zhenwei Yan, Guoqi Yao, Xiangpei Kong, Changle Ma, Fajun Zhang, and Xia Liu. 2023. "Molecular Mechanism of Gibberellins in Mesocotyl Elongation Response to Deep-Sowing Stress in Sweet Maize" Current Issues in Molecular Biology 45, no. 1: 197-211. https://doi.org/10.3390/cimb45010015
APA StyleLeng, B., Li, M., Mu, C., Yan, Z., Yao, G., Kong, X., Ma, C., Zhang, F., & Liu, X. (2023). Molecular Mechanism of Gibberellins in Mesocotyl Elongation Response to Deep-Sowing Stress in Sweet Maize. Current Issues in Molecular Biology, 45(1), 197-211. https://doi.org/10.3390/cimb45010015