Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemistry
2.1.1. General Procedure for the Preparation of Phenyl Benzoates 3(a–b)
2.1.2. General Procedure for the Preparation of Substituted 4-Hydroxy Benzophenones 4(a–b)
2.1.3. General Procedure for the Preparation of Ethyl 2-(4-Benzoyl-2-Methylphenoxy) Acetates 5(a–b)
2.1.4. General Procedure for the Preparation of Substituted 2-(4-Benzoyl-2-Methylphenoxy) Acetohydrazides 6(a–b)
2.1.5. General Procedure for the Preparation of Substituted 2-(4-Benzoyl-2-Methylphenoxy)-N-Benzylideneacetohydrazide 8(a–n)
2.1.6. General Procedure for the Preparation of 2-(4-benzoyl-2-methyl-phenoxy)-N-(3-chloro-2-oxo-4-phenyl-azetidin-1-yl)-Acetamides 9(a–n)
2.2. Pharmacology
2.2.1. In Vitro Antibacterial and Antifungal Activity
Antimicrobial Testing
2.2.2. Antimicrobial and Antifungal Assays
2.3. Docking Simulation (Methodology)
3. Results and Discussion
3.1. Structure-Based Design
3.2. Chemistry
3.3. Biology
In Vitro Antibacterial and Antifungal Activity
3.4. Molecular Docking Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prashanth, T.; Ranganatha, V.L.; Ramu, R.; Mandal, S.P.; Mallikarjunaswamy, C.; Khanum, S.A. Synthesis, Characterization, Docking and Antimicrobial activity of 2-(4-benzoylphenoxy)-1-(2-((1-methyl-1H-indol-3-yl) methyl)-1H-benzo[d]imidazol-1-yl) ethanone derivatives. J. Iran. Chem. Soc. 2021, 18, 2741–2756. [Google Scholar] [CrossRef]
- Khanum, S.A.; Shashikanth, S.; Umesha, S.; Kavitha, R. Synthesis and Antimicrobial Study of Novel Heterocyclic Compounds from Hydroxy benzophenones. Eur. J. Med. Chem. 2005, 40, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Khanum, S.A.; Shashikanth, S.; Sudha, B.S. A Facile Synthesis and Antimicrobial Activity of 3-(2-Aroylaryloxy) methyl-5-Mercapto-4-Phenyl-4H-1,2,4-Triazole and 2-(2-Aroylaryloxy) methyl-5-N-Phenylamino-1,3,4-Thiadiazole Analogues. Sci. Asia 2003, 34, 383–392. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019; U.S. Department of Health and Human Services, CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- Francis, J.S.; Doherty, M.C.; Lopatin, U.; Johnston, C.P.; Sinha, G.; Ross, T.; Cai, M.; Hanse, N.N.; Per, T.; Ticehurst, J.R.; et al. Severe community-onset pneumonia in healthy adults caused by methicillin-resistant Staphylococcus aureus carrying the Panton-Valentine leukocidin genes. Clin. Infect. Dis. 2005, 40, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Kruszewska, D.; Sahl, H.G.; Bierbaum, G.; Pag, U.; Hynes, S.O.; Ljungh, A. Mersacidin eradicates methicillin-resistant Staphylococcus aureus MRSA in a mouse rhinitis model. Antimicrob. J. Chemother. 2004, 54, 648–653. [Google Scholar] [CrossRef]
- Heel, R.C.; Brogden, R.N.; Carmine, A.; Morley, P.A.; Speight, T.M.; Avery, G.S. Econazole: A review of its antifungal activity and therapeutic efficacy. Drugs 1982, 23, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and Emerging Azole Antifungal Agents. Clin. Microbiol. Rev. 1999, 12, 40–79. [Google Scholar] [CrossRef] [Green Version]
- Lyman, C.A.; Walsh, T.J. Systemically Administered Antifungal Agents: A Review of Their Clinical Pharmacology and Therapeutic Applications. Drugs 1992, 44, 9–35. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. In vitro efficacy and fungicidal activity of voriconazole against Aspergillus and Fusarium species. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 573–575. [Google Scholar] [CrossRef]
- Fung-Tomc, J.C.; Huczko, E.; Minassian, B.; Bonner, D.P. In Vitro Activity of a New Oral Triazole, BMS-207147 (ER-30346). Antimicrob. Agents Chemother. 1998, 42, 313–318. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A. Comparison of In Vitro Activities of the New Triazole SCH56592 and the Echinocandins MK-0991 (L-743,872) and LY303366 against Opportunistic Filamentous and Dimorphic Fungi and Yeasts. J. Clin. Microbiol. 1998, 36, 2950–2956. [Google Scholar] [CrossRef] [Green Version]
- Khadri, M.J.N.; Begum, A.B.; Sunil, M.K.; Khanum, S.A. Synthesis, docking and biological evaluation of thiadiazole and oxadiazole derivatives as antimicrobial and antioxidant agents. Results Chem. 2020, 2, 100045. [Google Scholar]
- Holden, K.G. Chemistry and Biology of b-Lactam Antibiotics; Morin, R.B., Gorman, M., Eds.; Academic: London, UK, 1982; Volume 2, p. 114. [Google Scholar]
- Mata, E.G.; Fraga, M.A.; Delpiccolo, C.M.L. An Efficient, Stereoselective Solid-Phase Synthesis of β-Lactams Using Mukaiyama’s Salt for the Staudinger Reaction. J. Comb. Chem. 2003, 5, 208–210. [Google Scholar]
- Pawar, R.P.; Andurkar, N.M.; Vibhute, Y.B. Studies on synthesis and antibacterial activity of some new Schiff bases, 4-thiazolidinones and 2-azetidinones. J. Indian Chem. Soc. 1999, 76, 271. [Google Scholar] [CrossRef]
- Gootz, T.D. Discovery and development of new antimicrobial agents. Clin. Microbiol. Rev. 1990, 3, 13–31. [Google Scholar] [CrossRef]
- Maiti, S.N. Overcoming bacterial resistance: Role of β-lactamase inhibitors. Top. Heterocycl. Chem. 2006, 2, 207–246. [Google Scholar]
- Singh, G.S. Beta-lactams in the new millennium. Part-I: Monobactams and carbapenems. Mini-Rev. Med. Chem. 2004, 4, 69. [Google Scholar] [PubMed]
- Singh, G.S. Beta-lactams in the new millennium. Part-II: Cephems, oxacephems, penams and sulbactam. Mini-Rev. Med. Chem. 2004, 4, 93. [Google Scholar] [PubMed]
- Risi, C.D.; Pollini, G.P.; Veronese, A.C.; Bertolasi, V. A new simple route for the synthesis of (±)-2-azetidinones starting from β-Enaminoketoesters. Tetrahedron Lett. 1999, 4, 6995. [Google Scholar] [CrossRef]
- Georg, G.I. (Ed.) The Organic Chemistry of b-Lactams; VCH: New York, NY, USA, 1993. [Google Scholar]
- Abdulla, R.F.; Fuhr, K.H. Monocyclic antibiotic beta-lactams. J. Med. Chem. 1975, 18, 625–627. [Google Scholar] [CrossRef]
- Durckheimer, W.; Blumbach, J.; Lattrell, R.; Scheunemann, K.H. Recent developments in the field of b-lactam antibiotics. Angew. Chem. Int. Ed. Engl. 1985, 24, 180–202. [Google Scholar] [CrossRef]
- Kumar, A.; Rajput, C.S.; Bhati, S.K. Synthesis of 3-[4′-(p-chlorophenyl)-thiazol-2′-yl]-2-[(substituted azetidinone/thiazolidinone)-aminomethyl]-6-bromoquinazolin-4-ones as anti-inflammatory agent. Bioorg. Med. Chem. 2007, 15, 3089–3096. [Google Scholar] [CrossRef] [PubMed]
- Khanum, S.A.; Shashikanth, S.; Sudha, B.S. Microwave-Assisted Synthesis of 2-Amino and 2-Azetidinonyl 5-(2-Benzoyl-phenoxymethyl)-1,3,4-Oxadiazoles. Het. Atom. Chem. 2004, 15, 37. [Google Scholar] [CrossRef]
- Khanum, S.A.; Shashikanth, S.; Sathyanarayana, S.G.; Lokesh, S.; Deepak, S.A. Synthesis and antifungal activity of 2-azetidinonyl-5-(2-benzoylphenoxy)methyl-1,3,4-oxadiazoles against seed-borne pathogens of Eleusine coracana (L.) Gaertn. Pest. Manag. 2009, 65, 776–780. [Google Scholar]
- Banik, B.K.; Becker, F.F.; Banik, I. Synthesis of anticancer beta-lactams: Mechanism of action. Bioorg. Med. Chem. 2004, 12, 2523–2528. [Google Scholar] [CrossRef]
- Gerona-Navarro, G.; de Vega, M.J.P.; Garcia-Lopez, M.T.; Andrei, G.; Snoeck, R.; de Clercq, E.; Balzarini, J.; Gonzalez-Muniz, R. From 1-acyl-β-lactam human cytomegalovirus protease inhibitors to 1-benzyloxycarbonylazetidines with improved antiviral activity. A straightforward approach to convert covalent. J. Med. Chem. 2005, 48, 2612–2621. [Google Scholar] [CrossRef] [PubMed]
- Yoakim, C.; Ogilvie, W.W.; Cameron, D.R.; Chabot, C.; Guse, I.; Haché, B.; Naud, J.; O’Meara, J.A.; Plante, R.; Dé ziel, R. β-Lactam derivatives as inhibitors of human cytomegalovirus protease. J. Med. Chem. 1998, 41, 2882–2891. [Google Scholar] [CrossRef]
- Alcaide, B.; Almendros, P. Selective Bond Cleavage of the β-Lactam Nucleus: Application in Stereo controlled Synthesis. Synlett 2002, 2022, 381–393. [Google Scholar] [CrossRef]
- Castagnolo, D.; Armaroli, S.; Corelli, F.; Botta, M. Enantioselective synthesis of 1-aryl-2-propenylamines: A new approach to a stereoselective synthesis of the Taxol® side chain. Tetrahedron Asymmetry 2004, 15, 941–949. [Google Scholar] [CrossRef]
- Al-Ghorbani, M.; Thirusangu, P.; Gurupadaswamy, H.D.; Girish, V. Synthesis and antiproliferative activity of benzophenone tagged pyridine analogues towards activation of caspase activated DNase mediated nuclear fragmentation in Dalton’s lymphoma. Bioorg. Chem. 2016, 65, 73–81. [Google Scholar] [CrossRef]
- Neralagundi, H.G.S.; Begum, A.B.; Prabhakar, B.T.; Khanum, S.A. Design and synthesis of diamide-coupled benzophenones as potential anticancer agents. Eur. J. Med. Chem. 2016, 115, 342–351. [Google Scholar]
- Al-Ghorbani, M.; Thirusangu, P.; Gurupadaswamy, H.D.; Vigneshwaran, V. Synthesis of novel morpholine conjugated benzophenone analogues and evaluation of antagonistic role against neoplastic development. Bioorg. Chem. 2017, 71, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Gulnaz, A.R.; Mohammed, Y.H.E.; Khanum, S.A. Design, synthesis, and molecular docking of benzophenone conjugated with oxadiazole sulphur bridge pyrazole pharmacophores as anti-inflammatory and analgesic agents. Bioorg. Chem. 2017, 92, 103220. [Google Scholar]
- Eissa Mohammed, Y.H.; Gurupadaswamy, H.D.; Khanum, S.A. Biological Evaluation of 2, 5-Di (4 Aryloylaryloxy Methyl)-1, 3, 4-Oxadiazoles Derivatives as Antimicrobial Agents. Med. Chem. 2017, 7, 837–843. [Google Scholar] [CrossRef]
- Latha Rani, N.; Prashanth, T.; Zabiulla Sridhar, M.A.; Khanum, S.A. Structural Study and Antibacterial Activity of a Benzophenone Derivative: [2-Bromo-4-(2-chloro-benzoyl)-phenoxy]-acetic acid ethyl ester. J. Appl. Chem. 2016, 5, 628–636. [Google Scholar]
- Azoro, C. Antibacterial activity of crude extract of Azadiracta indica on Salmonella typhi. World J. Biotechnol. 2002, 3, 347–357. [Google Scholar]
- Chung, K.T.; Thomasson, W.R.; Wu-Yuan, C.D. Growth inhibition of selected food-borne bacteria, particularly Listeria monocytogenes, by plant extracts. J. Appl. Bacteriol. 1990, 69, 498–503. [Google Scholar] [CrossRef]
- Janovska, D.; Kubikova, K.; Kokoska, L. Screening for antimicrobial activity of some medicinal plants species of traditional Chinese medicine. J. Food Sci. 2003, 21, 107–110. [Google Scholar] [CrossRef]
- Bishnu, J.; Sunil, L.; Anuja, S. Antibacterial Property of Different Medicinal Plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana, Kathmandu university journal of science engineering and technology. J. Sci. Eng. Technol. 2009, 5, 143–150. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 7th ed.; National Committee for Clinical Laboratory Standards; Approved Standard, CLSI Document M7-A7; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2006. [Google Scholar]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 2nd ed.; National Committee for Clinical Laboratory Standards; Proposed Standard, NCCLS Document M27-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2002. [Google Scholar]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Abad, N.; Sallam, H.H.; Al-Ostoot, F.H.; Khamees, H.A.; Al-horaibi, S.A.; Sridhar, M.A.; Khanum, S.A.; Madegowda, M.; El-hfi, M.; Maque, J.T.; et al. Synthesis, crystal structure, DFT calculations, Hirshfeld surface analysis, energy frameworks, molecular dynamics and docking studies of novel isoxazolequinoxaline derivative (IZQ) as anti-cancer drug. J. Mol. Struct. 2021, 1232, 130004. [Google Scholar] [CrossRef]
- Khamees, H.A.; Jyothi, M.; Khanum, S.A.; Madegowda, M. Synthesis, crystal structure, spectroscopic characterization, docking simulation and density functional studies of 1-(3,4-dimethoxyphenyl)-3-(4-flurophenyl)-propan-1-one. J. Mol. Struct. 2018, 1161, 199–217. [Google Scholar] [CrossRef]
- Carr, R.A.; Congreve, M.; Murray, C.W.; Rees, D.C. Fragment-based lead discovery: Leads by design. Drug Discov. Today 2005, 10, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Shultz, M.D. Improving the plausibility of success with inefficient metrics. ACS Med. Chem. Lett. 2014, 5, 2–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biovia, D.S. Discovery Studio Visualiser v19.10.18287, 2018 (San Diego, CA, USA). Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6770154/ (accessed on 20 September 2022).
- The PyMOL Molecular Graphics System, 2015; Version 2.0; Schrodinger, LLC: New York, NY, USA, 2015.
- Mehta, P.D.; Sengar, N.P.; Pathak, A.K. 2-Azetidinone—A new profile of various pharmacological activities. Eur. J. Med. Chem. 2010, 45, 5541–5560. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. β-Lactams and β-Lactamase Inhibitors: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Al-Ghorbani, M.; Lakshmi Ranganatha, V.; Prashanth, T.; Begum, B.; Khanum, S.A. In vitro antibacterial and antifungal evaluation of some benzophenone analogues. Der Pharma Chem. 2013, 5, 269–273. [Google Scholar]
- Prashanth, T.; Naveen, P.; Al-Ghorbani, M.; Asha, M.S.; Khanum, S.A. Synthesis and Inhibition of Microbial Growth by Benzophenone Analogues—A Simplistic Approach. Asian J. Biomed. Pharm. Sci. 2014, 4, 55–60. [Google Scholar]
- Lakshmi Ranganatha, V.; Khanum, N.F.; Khanum, S.A. Synthesis, and evaluation of in vitro anti-microbial properties of novel benzophenone tagged indole analogues via 1, 3, 4-oxadiazole linkage. Int. J. Med. Pharm. Sci. 2013, 3, 97–106. [Google Scholar]
- Bushra Begum, A.; Khanum, N.F.; Lakshmi Ranganatha, V.; Prashanth, T.; Al-Ghorbani, M.; Khanum, S.A. Evaluation of Benzophenone-N-ethyl Morpholine Ethers as Antibacterial and Antifungal activities. J. Chem. 2014, 2014, 941074. [Google Scholar] [CrossRef] [Green Version]
- Meunier, B. Hybrid molecules with a dual mode of action: Dream or reality? Acc. Chem. Res. 2008, 41, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Bérubé, G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov. 2016, 11, 281–305. [Google Scholar] [CrossRef]
- Kumar, P.; Kaushik, A.; Lloyd, E.P.; Li, S.G.; Mattoo, R.; Ammerman, N.C.; Bell DT Perryman, A.L.; Zandi, T.A.; Ekins, S.; Ginell, S.L.; et al. Non-classical transpeptidases yield insight into new antibacterials. Nat. Chem. Biol. 2017, 13, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Strushkevich, N.; Usanov, S.A.; Park, H.W. Structural basis of human CYP51 inhibition by antifungal azoles. J. Mol. Biol. 2010, 397, 1067–1078. [Google Scholar]
Compounds | Diameter of Zone of Inhibition (mm) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gram-Positive Bacteria | Gram-Negative Bacteria | |||||||||||||||
B. subtilis | S. aureus | K. pneumoniae | P. aeruginosa | |||||||||||||
12.5 μg/well | 25 μg/well | 50 μg/well | 100 μg/well | 12.5 μg/well | 25 μg/well | 50 μg/well | 100 μg/well | 12.5 μg/well | 25 μg/well | 50 μg/well | 100 μg/well | 12.5 μg/well | 25 μg/well | 50 μg/well | 100 μg/well | |
9a | 23 ± 2 | 23 ± 1 | 27 ± 3 | 29 ± 2 | 17 ± 1 | 18 ± 2 | 20 ± 1 | 23 ± 3 | 30 ± 1 | 31 ± 2 | 33 ± 3 | 36 ± 1 | 26 ± 2 | 29 ± 3 | 32 ± 1 | 33 ± 2 |
9b | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9c | - | 7 ± 3 | 9 ± 2 | 11 ± 3 | - | - | - | - | 12 ± 2 | 13 ± 1 | 15 ± 3 | 18 ± 1 | 9 ± 2 | 11 ± 2 | 14 ± 2 | 18 ± 2 |
9d | - | - | 7 ± 1 | 9 ± 3 | - | - | - | - | 10 ± 2 | 11 ± 2 | 13 ± 2 | 16 ± 1 | 10 ± 2 | 12 ± 2 | 14 ± 2 | 17 ± 2 |
9e | 22 ± 3 | 24 ± 1 | 27 ± 2 | 31 ± 1 | 16 ± 2 | 18 ± 3 | 20 ± 1 | 23 ± 2 | 31 ± 3 | 33 ± 1 | 35 ± 2 | 38 ± 1 | 28 ± 2 | 30 ± 1 | 33 ± 2 | 34 ± 3 |
9f | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9g | 21 ± 2 | 21 ± 1 | 25 ± 2 | 28 ± 3 | 13 ± 1 | 15 ± 3 | 19 ± 2 | 21 ± 3 | 29 ± 1 | 28 ± 3 | 31 ± 2 | 35 ± 1 | 25 ± 3 | 28 ± 2 | 30 ± 1 | 33 ± 1 |
9h | 17 ± 1 | 19 ± 2 | 21 ± 1 | 24 ± 3 | 11 ± 2 | 13 ± 1 | 15 ± 2 | 17 ± 1 | 24 ± 2 | 26 ± 1 | 28 ± 1 | 31 ± 2 | 19 ± 1 | 23 ± 2 | 25 ± 2 | 29 ± 3 |
9i | 9 ± 1 | 10 ± 3 | 11 ± 2 | 13 ± 1 | - | - | - | 8 ± 2 | 14 ± 1 | 18 ± 3 | 20 ± 1 | 21 ± 2 | 10 ± 2 | 12 ± 2 | 15 ± 1 | 19 ± 3 |
9j | 15 ± 1 | 16 ± 2 | 18 ± 3 | 20 ± 1 | 9 ± 3 | 10 ± 2 | 12 ± 1 | 14 ± 2 | 21 ± 2 | 23 ± 1 | 25 ± 2 | 28 ± 1 | 16 ± 1 | 20 ± 2 | 22 ± 3 | 25 ± 2 |
9k | 10 ± 2 | 13 ± 3 | 15 ± 1 | 17 ± 1 | 8 ± 3 | 9 ± 1 | 11 ± 2 | 12 ± 1 | 17 ± 1 | 19 ± 3 | 22 ± 1 | 24 ± 2 | 14 ± 2 | 16 ± 2 | 19 ± 1 | 23 ± 3 |
9l | 16 ± 2 | 18 ± 3 | 20 ± 1 | 24 ± 2 | 10 ± 2 | 11 ± 1 | 13 ± 3 | 15 ± 1 | 22 ± 2 | 24 ± 2 | 26 ± 1 | 29 ± 2 | 18 ± 2 | 21 ± 1 | 24 ± 2 | 27 ± 3 |
9m | 9 ± 1 | 11 ± 2 | 13 ± 3 | 15 ± 2 | - | 7 ± 1 | 8 ± 3 | 10 ± 1 | 16 ± 2 | 17 ± 1 | 19 ± 3 | 21 ± 2 | 11 ± 2 | 14 ± 1 | 16 ± 3 | 21 ± 1 |
9n | 11 ± 2 | 13 ± 1 | 15 ± 2 | 18 ± 1 | 10 ± 1 | 11 ± 2 | 12 ± 1 | 13 ± 2 | 20 ± 3 | 21 ± 2 | 23 ± 1 | 26 ± 1 | 15 ± 1 | 19 ± 2 | 20 ± 2 | 24 ± 1 |
Chloramphenicol | 33 ± 2 | 34 ± 2 | 36 ± 3 | 40 ± 1 | 30 ± 1 | 32 ± 3 | 35 ± 2 | 37 ± 3 | 38 ± 1 | 40 ± 2 | 42 ± 1 | 44 ± 1 | 25 ± 2 | 27 ± 3 | 29 ± 1 | 32 ± 2 |
Amoxicillin | 30 ± 2 | 36 ± 1 | 28 ± 2 | 30 ± 2 | 32 ± 2 | 34 ± 1 | 32 ± 1 | 32 ± 2 | 35 ± 1 | 42 ± 1 | 40 ± 2 | 45 ± 1 | 28 ± 1 | 29 ± 2 | 28 ± 2 | 36 ± 1 |
Control (DMSO) | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Compounds | Diameter of Zone of Inhibition (mm) | |||||||
---|---|---|---|---|---|---|---|---|
A. niger | P. chrysogenum | |||||||
12.5 μg/well | 25 μg/well | 50 μg/well | 100 μg/well | 12.5 μg/well | 25 μg/well | 50 μg/well | 100 μg/well | |
9a | 25 ± 2 | 27 ± 2 | 29 ± 1 | 32 ± 3 | 18 ± 1 | 19 ± 2 | 20 ± 2 | 23 ± 3 |
9b | - | - | - | - | - | - | - | - |
9c | 11 ± 2 | 12 ± 2 | 14 ± 2 | 17 ± 2 | - | - | 8 ± 2 | 10 ± 2 |
9d | 18 ± 3 | 20 ± 1 | 22 ± 1 | 25 ± 3 | 12 ± 2 | 14 ± 2 | 15 ± 1 | 17 ± 2 |
9e | 32 ± 1 | 34 ± 3 | 36 ± 2 | 39 ± 2 | 23 ± 1 | 25 ± 3 | 27 ± 1 | 31 ± 2 |
9f | - | 11 ± 2 | 8 ± 2 | 10 ± 2 | - | - | - | - |
9g | 31 ± 2 | 33 ± 1 | 35 ± 1 | 38 ± 3 | 22 ± 2 | 23 ± 1 | 25 ± 2 | 29 ± 3 |
9h | 22 ± 1 | 24 ± 1 | 27 ± 2 | 30 ± 1 | 13 ± 2 | 15 ± 3 | 17 ± 1 | 20 ± 2 |
9i | 10 ± 2 | 11 ± 2 | 12 ± 2 | 15 ± 1 | - | - | - | - |
9j | 27 ± 1 | 29 ± 3 | 31 ± 2 | 34 ± 2 | 17 ± 1 | 19 ± 3 | 21 ± 1 | 24 ± 2 |
9k | 18 ± 2 | 19 ± 2 | 21 ± 3 | 24 ± 1 | 11 ± 2 | 12 ± 2 | 14 ± 2 | 16 ± 2 |
9l | 26 ± 1 | 29 ± 2 | 32 ± 1 | 35 ± 2 | 20 ± 2 | 22 ± 1 | 24 ± 3 | 26 ± 2 |
9m | 21 ± 1 | 22 ± 1 | 24 ± 3 | 27 ± 1 | 12 ± 2 | 14 ± 3 | 16 ± 1 | 19 ± 2 |
9n | 15 ± 2 | 17 ± 1 | 19 ± 3 | 22 ± 2 | 9 ± 2 | 10 ± 2 | 12 ± 2 | 14 ± 3 |
Ketoconazole | 30 ± 1 | 32 ± 3 | 34 ± 2 | 37 ± 3 | 35 ± 3 | 36 ± 1 | 37 ± 2 | 38 ± 3 |
Control (DMSO) | - | - | - | - | - | - | - | - |
Compounds | Minimum Inhibitory Concentration, MIC, MBC and MFC g/well | ||||||
---|---|---|---|---|---|---|---|
B. subtilis | S. aureus | K. pneumoniae | P. aeruginosa | A. niger | P. chrysogenum | ||
9a | MIC | 25 | 50 | 12.5 | 6.25 | 12.5 | 50 |
MBC | 100 | 200 | 50 | 12.5 | - | - | |
MFC | - | - | - | - | 50 | 200 | |
9e | MIC | 25 | 50 | 12.5 | 6.25 | 12.5 | 50 |
MBC | 100 | 200 | 50 | 12.5 | - | - | |
MFC | - | - | - | - | 50 | 200 | |
9g | MIC | 50 | 100 | 25 | 25 | 6.25 | 25 |
MBC | 200 | >200 | 100 | 100 | - | - | |
MFC | - | - | - | - | 12.5 | 100 | |
Chloramphenicol | MIC | 6.25 | 6.25 | 12.5 | 6.25 | - | - |
Amoxicillin | MIC | 12.5 | 12.5 | 6.25 | 6.25 | ||
Ketoconazole | MIC | 6.25 | 12.5 |
Conf No. | Ligand | Protein | B.E (kcal/mole) | L. E | I.C,µM T = 298.15 K | vdW-Hb-Des-Energy kcal/mol | Hb of Residues and Ligands with Bond Length (Å) | Pi Interactions (Å) | * RMSD | |
---|---|---|---|---|---|---|---|---|---|---|
pi–pi | pi-Cation | |||||||||
1 | 9a | 5E1G | −8.99 | −0.27 | 2.14 | −10.99 | THR320OH:O(1.84) CYS354NH:O(1.95) HIS336NH:O (2.42) | HIS352–Cg2 (3.92) | HIS352–Cg1 (3.00) HIS352–Cg2 (2.68) | 0.172 |
9e | −9.86 | −0.27 | 59.52 | −1198 | THR320 OH:O (1.69) HIS352NH:O (1.80) HIS352NH:O (2.60) HIS336NH:O (2.14) ANS356 NH:O (2.30) | TRP340–Cg1 (3.59) | 0.201 | |||
3LD6 | −11.57 | −0.32 | 3.31 | −12.07 | LYS156NH:O (1.67) TYR131OH:O (1.80) TYR145O:HN (1.98) ARG382NH:O (2.47) | TRP239–Cg3 (3.91) TRP239–Cg3 (3.96) | HIS236–Cg3 (2.84) | 0.182 | ||
9g | −10.31 | −0.31 | 27.82 | −12.42 | TYR145O:HN (2.04) | TYR131–Cg2 (3.92) | 0.216 | |||
2 | 9a | 5E1G | −8.67 | −0.26 | 444.19 | −10.69 | THR320OH:O (2.10) | TRP340–Cg1 (2.50) | 1.046 | |
9e | −9.81 | −0.27 | 64.39 | −11.84 | THR320OH:O (2.09) HIS352NH:O (1.82) HIS352NH:O (2.17) | TYR318–Cg2 (4.00) | TRP340–Cg1 (2.23) | 1.311 | ||
3LD6 | −11.31 | −0.31 | 5.16 | −12.26 | LYS156NH:O (2.24) HIS447NH:O (2.23) TYR145OH:O (1.91) | 1.692 | ||||
9g | −10.06 | −0.30 | 42.13 | −12.18 | HIS489NH:O (1.83) | 25.669 | ||||
3 | 9a | 5E1G | −8.52 | −0.26 | 566.15 | −10.58 | 10.364 | |||
9e | −9.57 | −0.27 | 96.45 | −11.91 | THR320OH:O (1.69) HIS352NH:O (1.76) | TYR318–Cg2 (3.84) | TRP340–Cg1 (2.41) | 2.504 | ||
3LD6 | −11.27 | −0.31 | 5.52 | −12.04 | LYS156NH:O (1.90) HIS447NH:O (2.07) TYR145OH:O (2.02) | 0.703 | ||||
9g | −9.42 | −0.29 | 124.28 | −11.41 | LYS156NH:O (2.05) | 0.958 | ||||
4 | 9a | 5E1G | −8.51 | −0.26 | 580.09 | −10.57 | ASN356NH:O (2.14) | CYS354–Cg2 (3.00) | 8.259 | |
9e | −8.07 | −0.22 | 1.21 | −10.69 | ASN356NH:O (1.78) | THR320–Cg1 (2.72) | 0.951 | |||
3LD6 | −10.90 | −0.30 | 10.19 | −12.35 | PHE234–Cg3 (4.00) | LYS156–Cg1 (2.83) | 4.989 | |||
9g | −9.38 | −0.30 | 62.65 | −11.89 | 1.392 | |||||
5 | 9a | 5E1G | −8.05 | −0.24 | 1.26 | −10.09 | TRP340–Cg1 (2.88) HIS352–Cg1 (2.96) | 3.343 | ||
9e | −7.19 | −0.20 | 5.39 | −9.73 | 13.219 | |||||
3LD6 | −10.59 | −0.29 | 17.39 | −12.08 | LYS156–Cg1 (2.95) | 3.821 | ||||
9g | −9.32 | −0.28 | 148.35 | −11.32 | ILE379NH:O (2.11) | TRP239–Cg3 (4.00) | ||||
6 | 9a | 5E1G | −8.03 | −0.24 | 1.30 | −10.05 | THR320OH:O (2.23) | 0.649 | ||
9e | −6.71 | −0.19 | 11.99 | −9.23 | THR320OH:O (1.93) | TYR318–Cg2 (3.73) | 0.826 | |||
3LD6 | −9.35 | −0.26 | 140.29 | −10.47 | TYR145OH:O (1.56) | 0.816 | ||||
9g | −9.30 | −0.28 | 151.46 | −11.41 | 5.911 | |||||
7 | 9a | 5E1G | −7.74 | −0.23 | 256.69 | −9.76 | THR320OH:O (2.97) | TRP340–Cg1 (2.36) | 0.638 | |
9e | −5.67 | −0.16 | 69.43 | −8.19 | TYR318OH:O (1.90) | HIS352–Cg1 (2.74) HIS352–Cg2 (2.83) TRP340–Cg2 (2.93) | 0.417 | |||
3LD6 | −9.00 | −0.25 | 254.09 | −11.06 | 8.952 | |||||
9g | −8.87 | −0.27 | 316.81 | −10.95 | ILE450NH:O (2.01) | 19.951 | ||||
8 | 9a | 5E1G | −6.87 | −0.21 | 9.2 | −8.96 | THR320OH:O (2.17) | 0.924 | ||
9e | −5.43 | −0.15 | 104.17 | −7.92 | 15.240 | |||||
3LD6 | −9.05 | −0.25 | 231.56 | −10.86 | LYS156NH:O (2.16) | 2.964 | ||||
9g | −8.76 | −0.27 | 379.07 | −10.82 | LEU310–Cg3 (2.86) | 3.585 | ||||
9 | 9a | 5E1G | −6.00 | −0.18 | 39.80 | −7.97 | HIS352NH:O (1.67) ASN356NH:O (1.67) HIS352NH:O (1.88) | TRP340–Cg2 (4.00) | TYR318–Cg1 (2.95) | 0.258 |
9e | −5.15 | −0.14 | 168.76 | −7.18 | TPR340NH:O (1.63) ASN356NH:O (1.52) | HIS352–Cg1 (2.57) HIS352–Cg1 (2.59) | 11.381 | |||
3LD6 | −7.90 | −0.22 | 1.61 | −10.16 | 14.948 | |||||
9g | −8.73 | −0.26 | 396.42 | −10.81 | 0.671 | |||||
10 | 9a | 5E1G | −5.86 | −0.18 | 50.95 | −7.95 | HIS352NH:O (1.19) ASN356NH:O (1.66) | 4.503 | ||
9e | −4.20 | −0.12 | 832.99 | −6.74 | THR320OH:O (1.59) | 7.214 | ||||
3LD6 | −6.61 | −0.18 | 14.28 | −7.40 | LYS160NH:O (2.23) LYS436NH:O (1.97) ARG448NH:O (1.96) | GLY445–Cg1 (2.41) | 34.125 | |||
9g | −7.66 | −0.23 | 2.43 | −9.78 | ILE450–Cg4 (2.92) | 0.794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venkataravanappa, L.R.; Jyothi, M.; Khamees, H.A.; Silina, E.; Stupin, V.; Achar, R.R.; Al-Ghorbani, M.; Khanum, S.A. Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach. Curr. Issues Mol. Biol. 2023, 45, 92-109. https://doi.org/10.3390/cimb45010007
Venkataravanappa LR, Jyothi M, Khamees HA, Silina E, Stupin V, Achar RR, Al-Ghorbani M, Khanum SA. Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach. Current Issues in Molecular Biology. 2023; 45(1):92-109. https://doi.org/10.3390/cimb45010007
Chicago/Turabian StyleVenkataravanappa, Lakshmi Ranganatha, Mahima Jyothi, Hussien Ahmed Khamees, Ekaterina Silina, Victor Stupin, Raghu Ram Achar, Mohammed Al-Ghorbani, and Shaukath Ara Khanum. 2023. "Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach" Current Issues in Molecular Biology 45, no. 1: 92-109. https://doi.org/10.3390/cimb45010007
APA StyleVenkataravanappa, L. R., Jyothi, M., Khamees, H. A., Silina, E., Stupin, V., Achar, R. R., Al-Ghorbani, M., & Khanum, S. A. (2023). Design, Synthesis, Characterization, and Analysis of Antimicrobial Property of Novel Benzophenone Fused Azetidinone Derivatives through In Vitro and In Silico Approach. Current Issues in Molecular Biology, 45(1), 92-109. https://doi.org/10.3390/cimb45010007