Functional Roles of DYRK2 as a Tumor Regulator
Abstract
:1. Introduction
2. DYRK2 in Various Cancers
2.1. Colorectal Cancer
2.2. Liver Cancer
2.3. Gastric Cancer
2.4. Non-Solid Tumors
2.5. Cancer Stem Cells (CSCs)
2.6. Breast Cancer
2.7. Lung Cancer
2.8. Ovarian Cancer
2.9. Prostate Cancer
3. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Becker, W.; Weber, Y.; Wetzel, K.; Eirmbter, K.; Tejedor, F.J.; Joost, H.G. Sequence characteristics, subcellular localization, and substrate specificity of DYRK-related kinases, a novel family of dual specificity protein kinases. J. Biol. Chem. 1998, 273, 25893–25902. [Google Scholar] [CrossRef] [PubMed]
- Correa-Sáez, A.; Jiménez-Izquierdo, R.; Garrido-Rodríguez, M.; Morrugares, R.; Muñoz, E.; Calzado, M.A. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): Molecular basis, functions and role in diseases. Cell. Mol. Life Sci. 2020, 77, 4747–4763. [Google Scholar] [CrossRef] [PubMed]
- Lara-Chica, M.; Correa-Sáez, A.; Jiménez-Izquierdo, R.; Garrido-Rodríguez, M.; Ponce, F.J.; Moreno, R.; Morrison, K.; Di Vona, C.; Arató, K.; Jiménez-Jiménez, C.; et al. A novel CDC25A/DYRK2 regulatory switch modulates cell cycle and survival. Cell Death Differ. 2022, 29, 105–117. [Google Scholar] [CrossRef]
- Becker, W. Emerging role of DYRK family protein kinases as regulators of protein stability in cell cycle control. Cell Cycle 2012, 11, 3389–3394. [Google Scholar] [CrossRef] [PubMed]
- Taira, N.; Nihira, K.; Yamaguchi, T.; Miki, Y.; Yoshida, K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol. Cell 2007, 25, 725–738. [Google Scholar] [CrossRef]
- Nihira, N.T.; Yoshida, K. Engagement of DYRK2 in proper control for cell division. Cell Cycle 2015, 14, 802–807. [Google Scholar] [CrossRef]
- Morrugares, R.; Correa-Sáez, A.; Moreno, R.; Garrido-Rodríguez, M.; Muñoz, E.; de la Vega, L.; Calzado, M.A. Phosphorylation-dependent regulation of the NOTCH1 intracellular domain by dual-specificity tyrosine-regulated kinase 2. Cell. Mol. Life Sci. 2020, 77, 2621–2639. [Google Scholar] [CrossRef]
- Meulmeester, E.; Jochemsen, A.G. p53: A guide to apoptosis. Curr. Cancer Drug Targets 2008, 8, 87–97. [Google Scholar] [CrossRef]
- Miller, C.T.; Aggarwal, S.; Lin, T.K.; Dagenais, S.L.; Contreras, J.I.; Orringer, M.B.; Glover, T.W.; Beer, D.G.; Lin, L. Amplification and overexpression of the dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 2 (DYRK2) gene in esophageal and lung adenocarcinomas. Cancer Res. 2003, 63, 4136–4143. [Google Scholar]
- Tandon, V.; de la Vega, L.; Banerjee, S. Emerging roles of DYRK2 in cancer. J. Biol. Chem. 2021, 296, 100233. [Google Scholar] [CrossRef]
- Santos-Durán, G.N.; Barreiro-Iglesias, A. Roles of dual specificity tyrosine-phosphorylation-regulated kinase 2 in nervous system development and disease. Front. Neurosci. 2022, 16, 994256. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Lewis, A.H.; Chen, T.J.; Bridges, C.S.; Shen, Y.; Suppipat, K.; Puppi, M.; Tomolonis, J.A.; Pang, P.D.; Mistretta, T.A.; et al. A KLF4-DYRK2-mediated pathway regulating self-renewal in CML stem cells. Blood 2019, 134, 1960–1972. [Google Scholar] [CrossRef] [PubMed]
- Park, C.S.; Lacorazza, H.D. DYRK2 controls a key regulatory network in chronic myeloid leukemia stem cells. Exp. Mol. Med. 2020, 52, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, Y.; Miao, X.; Zhu, X.; Miao, X.; He, Y.; Zhong, F.; Ding, L.; Liu, J.; Tang, J.; et al. Silencing of DYRK2 increases cell proliferation but reverses CAM-DR in non-Hodgkin’s lymphoma. Int. J. Biol. Macromol. 2015, 81, 809–817. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Hu, K.; Wu, W.; Li, Y.; Tian, H.; Chu, Z.; Koeffler, H.P.; Yin, D. Low expression of DYRK2 (dual specificity tyrosine phosphorylation regulated kinase 2) correlates with poor prognosis in colorectal cancer. PLoS ONE 2016, 11, e0159954. [Google Scholar] [CrossRef]
- Wu, C.; Sun, G.; Wang, F.; Chen, J.; Zhan, F.; Lian, X.; Wang, J.; Weng, F.; Li, B.; Tang, W.; et al. DYRK2 downregulation in colorectal cancer leads to epithelial-mesenchymal transition induction and chemoresistance. Sci. Rep. 2022, 12, 22496. [Google Scholar] [CrossRef]
- Kumamoto, T.; Yamada, K.; Yoshida, S.; Aoki, K.; Hirooka, S.; Eto, K.; Yanaga, K.; Yoshida, K. Impairment of DYRK2 by DNMT1-mediated transcription augments carcinogenesis in human colorectal cancer. Int. J. Oncol. 2020, 56, 1529–1539. [Google Scholar] [CrossRef]
- Taira, N.; Mimoto, R.; Kurata, M.; Yamaguchi, T.; Kitagawa, M.; Miki, Y.; Yoshida, K. DYRK2 priming phosphorylation of c-Jun and c-Myc modulates cell cycle progression in human cancer cells. J. Clin. Investig. 2012, 122, 859–872. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Wei, X.; Luan, L.; Zeng, X.; Wang, C.; Zhao, W. Decrease of miR-622 expression suppresses migration and invasion by targeting regulation of DYRK2 in colorectal cancer cells. Onco Targets Ther. 2017, 10, 1091–1100. [Google Scholar] [CrossRef]
- Ito, D.; Yogosawa, S.; Mimoto, R.; Hirooka, S.; Horiuchi, T.; Eto, K.; Yanaga, K.; Yoshida, K. Dual-specificity tyrosine-regulated kinase 2 is a suppressor and potential prognostic marker for liver metastasis of colorectal cancer. Cancer Sci. 2017, 108, 1565–1573. [Google Scholar] [CrossRef]
- Imaizumi, Y.; Yoshida, S.; Kanegae, Y.; Eto, K.; Yoshida, K. Enforced dual-specificity tyrosine-regulated kinase 2 expression by adenovirus-mediated gene transfer inhibits tumor growth and metastasis of colorectal cancer. Cancer Sci. 2022, 113, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama-Mashima, S.; Yogosawa, S.; Kanegae, Y.; Hirooka, S.; Yoshida, S.; Horiuchi, T.; Ohashi, T.; Yanaga, K.; Saruta, M.; Oikawa, T.; et al. Forced expression of DYRK2 exerts anti-tumor effects via apoptotic induction in liver cancer. Cancer Lett. 2019, 451, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, P.; Ni, W.; Fan, H.; Xu, J.; Chen, Y.; Huang, W.; Lu, S.; Liang, L.; Liu, J.; et al. Downregulated DYRK2 expression is associated with poor prognosis and Oxaliplatin resistance in hepatocellular carcinoma. Pathol. Res. Pract. 2016, 212, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Kamioka, H.; Yogosawa, S.; Oikawa, T.; Aizawa, D.; Ueda, K.; Saeki, C.; Haruki, K.; Shimoda, M.; Ikegami, T.; Nishikawa, Y.; et al. Dyrk2 gene transfer suppresses hepatocarcinogenesis by promoting the degradation of Myc and Hras. JHEP Rep. 2023, 5, 100759. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, R.; Lu, B.; Wu, H.; Jiang, C.; Li, P.; Huang, J. Kinase DYRK2 acts as a regulator of autophagy and an indicator of favorable prognosis in gastric carcinoma. Colloids Surf. B Biointerfaces 2022, 209 Pt 1, 112182. [Google Scholar] [CrossRef]
- Rowland, B.D.; Bernards, R.; Peeper, D.S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat. Cell Biol. 2005, 7, 1074–1082. [Google Scholar] [CrossRef]
- Wei, D.; Kanai, M.; Huang, S.; Xie, K. Emerging role of KLF4 in human gastrointestinal cancer. Carcinogenesis 2006, 27, 23–31. [Google Scholar] [CrossRef]
- Zhao, W.; Hisamuddin, I.M.; Nandan, M.O.; Babbin, B.A.; Lamb, N.E.; Yang, V.W. Identification of Krüppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene 2004, 23, 395–402. [Google Scholar] [CrossRef]
- Jiang, J.; Chan, Y.S.; Loh, Y.H.; Cai, J.; Tong, G.Q.; Lim, C.A.; Robson, P.; Zhong, S.; Ng, H.H. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat. Cell Biol. 2008, 10, 353–360. [Google Scholar] [CrossRef]
- Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Takahashi, K.; Ichisaka, T.; Aoi, T.; Okita, K.; Mochiduki, Y.; Takizawa, N.; Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008, 26, 101–106. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Mimoto, R.; Imawari, Y.; Hirooka, S.; Takeyama, H.; Yoshida, K. Impairment of DYRK2 augments stem-like traits by promoting KLF4 expression in breast cancer. Oncogene 2017, 36, 1862–1872. [Google Scholar] [CrossRef]
- Tanaka, M.; Yamashita, S.I.; Yoshinaga, Y.; Enomoto, Y.; Nohara, Y.; Ono, S.; Nabeshima, K.; Iwasaki, A.; Sato, T. Combination of DYRK2 and TERT expression is a powerful predictive marker for early-stage breast cancer recurrence. Anticancer Res. 2022, 42, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Imawari, Y.; Mimoto, R.; Hirooka, S.; Morikawa, T.; Takeyama, H.; Yoshida, K. Downregulation of dual-specificity tyrosine-regulated kinase 2 promotes tumor cell proliferation and invasion by enhancing cyclin-dependent kinase 14 expression in breast cancer. Cancer Sci. 2018, 109, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Moreno, R.; Banerjee, S.; Jackson, A.W.; Quinn, J.; Baillie, G.; Dixon, J.E.; Dinkova-Kostova, A.T.; Edwards, J.; de la Vega, L. The stress-responsive kinase DYRK2 activates heat shock factor 1 promoting resistance to proteotoxic stress. Cell Death Differ. 2021, 28, 1563–1578. [Google Scholar] [CrossRef]
- Jung, H.Y.; Wang, X.; Jun, S.; Park, J.I. Dyrk2-associated EDD-DDB1-VprBP E3 ligase inhibits telomerase by TERT degradation. J. Biol. Chem. 2013, 288, 7252–7262. [Google Scholar] [CrossRef]
- Maddika, S.; Chen, J. Protein kinase DYRK2 is a scaffold that facilitates assembly of an E3 ligase. Nat. Cell Biol. 2009, 11, 409–419. [Google Scholar] [CrossRef]
- Greenman, C.; Stephens, P.; Smith, R.; Dalgliesh, G.L.; Hunter, C.; Bignell, G.; Davies, H.; Teague, J.; Butler, A.; Stevens, C.; et al. Patterns of somatic mutation in human cancer genomes. Nature 2007, 446, 153–158. [Google Scholar] [CrossRef]
- Stephens, P.; Edkins, S.; Davies, H.; Greenman, C.; Cox, C.; Hunter, C.; Bignell, G.; Teague, J.; Smith, R.; Stevens, C.; et al. A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat. Genet. 2005, 37, 590–592. [Google Scholar] [CrossRef]
- Bonifaci, N.; Górski, B.; Masojć, B.; Wokołorczyk, D.; Jakubowska, A.; Dębniak, T.; Berenguer, A.; Serra Musach, J.; Brunet, J.; Dopazo, J.; et al. Exploring the link between germline and somatic genetic alterations in breast carcinogenesis. PLoS ONE 2010, 5, e14078. [Google Scholar] [CrossRef] [PubMed]
- Mimoto, R.; Taira, N.; Takahashi, H.; Yamaguchi, T.; Okabe, M.; Uchida, K.; Miki, Y.; Yoshida, K. DYRK2 controls the epithelial-mesenchymal transition in breast cancer by degrading Snail. Cancer Lett. 2013, 339, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Mimoto, R.; Nihira, N.T.; Hirooka, S.; Takeyama, H.; Yoshida, K. Diminished DYRK2 sensitizes hormone receptor-positive breast cancer to everolimus by the escape from degrading mTOR. Cancer Lett. 2017, 384, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Tandon, V.; Moreno, R.; Allmeroth, K.; Quinn, J.; Wiley, S.E.; Nicely, L.G.; Denzel, M.S.; Edwards, J.; de la Vega, L.; Banerjee, S. Dual inhibition of HSF1 and DYRK2 impedes cancer progression. Biosci. Rep. 2023, 43, BSR20222102. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, X.; Wang, Z.; Banerjee, S.; Yang, J.; Huang, L.; Dixon, J.E. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat. Cell Biol. 2016, 18, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Ji, C.; Mayfield, J.E.; Goel, A.; Xiao, J.; Dixon, J.E.; Guo, X. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc. Natl. Acad. Sci. USA 2018, 115, 8155–8160. [Google Scholar] [CrossRef]
- Banerjee, S.; Wei, T.; Wang, J.; Lee, J.J.; Gutierrez, H.L.; Chapman, O.; Wiley, S.E.; Mayfield, J.E.; Tandon, V.; Juarez, E.F.; et al. Inhibition of dual-specificity tyrosine phosphorylation-regulated kinase 2 perturbs 26S proteasome-addicted neoplastic progression. Proc. Natl. Acad. Sci. USA 2019, 116, 24881–24891. [Google Scholar] [CrossRef]
- Moreno, P.; Lara-Chica, M.; Soler-Torronteras, R.; Caro, T.; Medina, M.; Álvarez, A.; Salvatierra, Á.; Muñoz, E.; Calzado, M.A. The expression of the ubiquitin ligase SIAH2 (seven in absentia homolog 2) is increased in human lung cancer. PLoS ONE 2015, 10, e0143376. [Google Scholar] [CrossRef]
- Yamashita, S.; Chujo, M.; Tokuishi, K.; Anami, K.; Miyawaki, M.; Yamamoto, S.; Kawahara, K. Expression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 2 (DYRK2) can be a favorable prognostic marker in pulmonary adenocarcinoma. J. Thorac. Cardiovasc. Surg. 2009, 138, 1303–1308. [Google Scholar] [CrossRef]
- Koike, C.; Okudela, K.; Matsumura, M.; Mitsui, H.; Suzuki, T.; Arai, H.; Kataoka, T.; Ishikawa, Y.; Umeda, S.; Tateishi, Y.; et al. Frequent DYRK2 gene amplification in micropapillary element of lung adenocarcinoma—An implication in progression in EGFR-mutated lung adenocarcinoma. Histol. Histopathol. 2021, 36, 305–315. [Google Scholar]
- Yamaguchi, N.; Mimoto, R.; Yanaihara, N.; Imawari, Y.; Hirooka, S.; Okamoto, A.; Yoshida, K. DYRK2 regulates epithelial-mesenchymal-transition and chemosensitivity through Snail degradation in ovarian serous adenocarcinoma. Tumour Biol. 2015, 36, 5913–5923. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.J.; Park, S.M.; Park, S.H.; Kim, I.K.; Han, H.; Kim, H.J.; Kim, S.H.; Hong, K.S.; Kim, H.; Kim, M.; et al. p38 stabilizes Snail by suppressing DYRK2-mediated phosphorylation that is required for GSK3β-βTrCP-induced Snail degradation. Cancer Res. 2019, 79, 4135–4148. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, K.; Huang, N.J.; Cocce, K.; Zhang, L.; Kornbluth, S. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene 2017, 36, 1698–1706. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Li, Z.; Kuang, W.; Wang, X.; Ji, M.; Chen, W.; Ding, J.; Li, J.; Min, W.; Sun, C.; et al. Targeting dual-specificity tyrosine phosphorylation-regulated kinase 2 with a highly selective inhibitor for the treatment of prostate cancer. Nat. Commun. 2022, 13, 2903. [Google Scholar] [CrossRef]
- Yogosawa, S.; Ohkido, M.; Horii, T.; Okazaki, Y.; Nakayama, J.; Yoshida, S.; Toyokuni, S.; Hatada, I.; Morimoto, M.; Yoshida, K. Mice lacking DYRK2 exhibit congenital malformations with lung hypoplasia and altered Foxf1 expression gradient. Commun. Biol. 2021, 4, 1204. [Google Scholar] [CrossRef]
The Role of DYRK2 | Patients’ Tissues | Cell Lines | Xenograft Mouse Model | Genetically Modified Mouse | |
---|---|---|---|---|---|
Colorectal cancer | Tumor suppressor | ✓ | ✓ | ✓ | - |
Liver cancer | Tumor suppressor | ✓ | ✓ | ✓ | ✓ |
Gastric cancer | Tumor suppressor | ✓ | ✓ | ✓ | - |
Non-solid tumor (leukemia) | Tumor suppressor | - | ✓ | - | - |
Cancer stem cells | Tumor suppressor | - | ✓ | ✓ | - |
Breast cancer | Tumor suppressor | ✓ | ✓ | ✓ | - |
Oncogene | ✓ | ✓ | ✓ | - | |
Lung cancer | Tumor suppressor | ✓ | - | - | - |
Oncogene | ✓ | - | - | - | |
Ovarian cancer | Tumor suppressor | ✓ | ✓ | ✓ | - |
Oncogene | ✓ | ✓ | - | - | |
Prostate cancer | Tumor suppressor | ✓ | - | - | - |
Oncogene | ✓ | ✓ | ✓ | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mochimaru, Y.; Yoshida, K. Functional Roles of DYRK2 as a Tumor Regulator. Curr. Issues Mol. Biol. 2023, 45, 8539-8551. https://doi.org/10.3390/cimb45100538
Mochimaru Y, Yoshida K. Functional Roles of DYRK2 as a Tumor Regulator. Current Issues in Molecular Biology. 2023; 45(10):8539-8551. https://doi.org/10.3390/cimb45100538
Chicago/Turabian StyleMochimaru, Yuta, and Kiyotsugu Yoshida. 2023. "Functional Roles of DYRK2 as a Tumor Regulator" Current Issues in Molecular Biology 45, no. 10: 8539-8551. https://doi.org/10.3390/cimb45100538
APA StyleMochimaru, Y., & Yoshida, K. (2023). Functional Roles of DYRK2 as a Tumor Regulator. Current Issues in Molecular Biology, 45(10), 8539-8551. https://doi.org/10.3390/cimb45100538