In Silico Analysis of SARS-CoV-2 Non-Structural Proteins Reveals an Interaction with the Host’s Heat Shock Proteins That May Contribute to Viral Replications and Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sequence Attainment and Analysis
The 3D Structural Modeling and Validation
2.2. Molecular Docking and Analysis
2.3. Protein–Protein Docking
2.4. MD Simulations
2.5. Pharmacophore Modeling
3. Results
3.1. Sequence Retrieval and Analysis
3.2. Three-Dimensional Homology Modeling and Validation
3.3. Molecular Docking (Protein–Protein Interactions)
3.4. Interaction between HSP40 and SARS-CoV-2 NSP2
3.5. Interaction between HSP70 and SARS-CoV-2 NSP2
3.6. Interaction between HSP90 and SARS-CoV-2 NSP2
3.7. Interaction between AdoMetDC and SARS-CoV-2 NSP2
3.8. Multiple Protein–Protein Docking
3.9. Molecular Dynamics Simulations
3.9.1. HSP 40, 70 and NSP2 Complex
3.9.2. HSP40/70/90 and NSP2 Complex
3.9.3. HSP 70 90 and NSP2 Complex
3.10. Pharmacophore Modeling
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease 2019 (COVID-19): Situation Report, 73. 2020. Available online: https://apps.who.int/iris/bitstream/handle/10665/331686/nCoVsitrep02Apr2020-eng.pdf (accessed on 22 November 2022).
- Zhao, L.; Jha, B.K.; Wu, A.; Elliott, R.; Ziebuhr, J.; Gorbalenya, A.E.; Silverman, R.H.; Weiss, S.R. Antagonism of the interferon induced OASRNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe 2012, 11, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Cornillez-Ty, C.T.; Liao, L.; Yates, J.R.; Kuhn, P.; Buchmeier, M.J. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol. 2009, 83, 10314–10318. [Google Scholar] [CrossRef] [PubMed]
- Botha, M.; Pesce, E.-R.; Blatch, G.L. The Hsp40 proteins of Plasmodium falciparum and another apicomplexan: Regulating chaperone power in the parasite and the host. Int. J. Biochem. Cell B 2007, 39, 1781–1803. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.K.; Sue, S.C.; Yu, T.H.; Hsieh, C.-M.; Tsai, C.-K.; Chiang, Y.-C.; Lee, S.-J.; Hsiao, H.-H.; Wu, W.-J.; Chang, W.-L.; et al. Modular organization of SARS coronavirus Coronavirus Introduction 18 nucleocapsid protein. J. Biomed. Sci. 2006, 13, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Makhoba, X.H.; Makumire, S. The capture of host cell’s resources: The role of heat shock proteins and polyamines in SARS-CoV-2 (COVID-19) pathway to viral infection. Biomol. Concepts 2022, 13, 20–229. [Google Scholar] [CrossRef] [PubMed]
- Nicolet, C.M.; Craig, E.A. Isolation and characterization of ST11 as tress induced gene from sachoromyates vicarage. Mol. Cell. Biol. 1989, 9, 3638–3646. [Google Scholar] [PubMed]
- Mattei, M.; Engel, K.; Buchner, J. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 1999, 268, 1517–1520. [Google Scholar]
- Xiong, H.; Stanley, B.A.; Tekwani, B.L.; Pegg, A.E. Processing of Mammalian and PlantS-Adenosylmethionine Decarboxylase Proenzymes. J. Biol. Chem. 1997, 272, 28342–28348. [Google Scholar] [CrossRef]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Schrödinger, L.L.C. The {PyMOL} Molecular Graphics System. Version 1.8. 2015. Available online: https://pymol.org/2/ (accessed on 3 June 2023).
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Kozakov, D.; Hall, D.R.; Xia, B.; Porter, K.A.; Padhorny, D.; Yueh, C.; Beglov, D.; Vajda, S. The ClusPro web server for protein-protein docking. Nat. Protoc. 2017, 12, 255–278. [Google Scholar] [CrossRef] [PubMed]
- Vajda, S.; Yueh, C.; Beglov, D.; Bohnuud, T.; Mottarella, S.E.; Xia, B.; Hall, D.R.; Kozakov, D. New additions to the ClusPro server motivated by CAPRI. Proteins: Struct. Funct. Bioinform. 2017, 85, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Saponaro, A.; Maione, V.; Bonvin, A.M.; Cantini, F. Understanding docking complexes of macromolecules using HADDOCK: The synergy between experimental data and computations. Bio-protocol 2020, 10, e3793. [Google Scholar] [CrossRef] [PubMed]
- Laskowski, R.A.; Swindells, M.B. LigPlot+: Multiple Ligand–Prote Interaction Diagrams for Drug Discovery; ACS Publications: Washington, DC, USA, 2011. [Google Scholar]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüuller, H.; MacKerell, A.D., Jr. CHARMM36: An improved force field for folded and intrinsically disordered proteins. Biophys. J. 2017, 112, 175a–176a. [Google Scholar] [CrossRef]
- DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr 2002, 40, 82–92. [Google Scholar]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Koes, D.R.; Camacho, C.J. Pharmer: Efficient and exact pharmacophore search. J. Chem. Inf. Model. 2011, 51, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef]
- Sakharkar, M.K.; Chow, V.T.; Kangueane, P. Distributions of exons and introns in the human genome. In Silico Biol. 2004, 4, 387–393. [Google Scholar]
- Desta, I.T.; Porter, K.A.; Xia, B.; Kozakov, D.; Vajda, S. Performance, and Its Limits in Rigid Body Protein-Protein Docking. Structure 2020, 28, 1071–1081. [Google Scholar] [CrossRef]
- Pimentel, G.C.; McClellan, A.L. Hydrogen bonding. Annu. Rev. Phys. Chem. 1971, 22, 347–385. [Google Scholar] [CrossRef]
- Grabowski, S.J. (Ed.) Hydrogen Bonding: New Insights; Springer: Dordrecht, Germany, 2006; Volume 3. [Google Scholar]
- Paleos, C.M.; Tsiourvas, D. Thermotropic liquid crystals are formed by intermolecular hydrogen bonding interactions. Angew. Chem. Int. Ed. Engl. 1995, 34, 1696–1711. [Google Scholar] [CrossRef]
- Li, P.; Yin, Y.L.; Li, D.; Kim, S.W.; Wu, G. Amino acids and immune function. Br. J. Nutr. 2007, 98, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Pant, A.; Cao, S.; Yang, Z.; Shisler, J.L. (Eds.) Asparagine is a critical limiting metabolite for vaccinia virus protein synthesis during glutamine deprivation. J. Virol. 2019, 93, e01834-18. [Google Scholar] [CrossRef]
- Fan, C.-Y.; Lee, S.; Cyr, D.M. Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones 2003, 8, 309. [Google Scholar] [CrossRef] [PubMed]
- Mauro, C.; Frezza, C. The Metabolic Challenges of Immune Cells in Health and Disease; Frontiers Media SA: Lausanne, Switzerland, 2015; p. 17. ISBN 9782889196227. [Google Scholar]
- Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug design by pharmacophore and virtual screening approach. Pharmaceuticals 2022, 15, 646. [Google Scholar] [CrossRef] [PubMed]
- Yaman, M.; Almarhoon, Z.M.; Çakmak, Ş.; Kütük, H.; Meral, G.; Dege, N. Crystal structure of 2, 3-dimethoxy-N-(4-nitrophenyl) benzamide. Acta Crystallogr. Sect. E Crystallogr. Commun. 2018, 74, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Gilmore, J.L.; Xiao, H.Y.; Dhar, T.M.; Yang, M.G.; Xiao, Z.; Xie, J.; Lehman-McKeeman, L.D.; Gong, L.; Sun, H.; Lecureux, L.; et al. Identification and Preclinical Pharmacology of ((1R,3S)-1-Amino-3-((S)-6-(2-methoxyphenethyl)-5,6,7,8-tetrahydronaphthalen-2-yl)cyclopentyl)methanol (BMS-986166): A Differentiated Sphingosine-1-phosphate Receptor 1 (S1P1) Modulator Advanced into Clinical Trials. J. Med. Chem. 2009, 62, 2265–2285. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, V.; Dhankhar, P.; Dalal, V. Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA. J. Biomol. Struct. Dyn. 2023, 41, 4650–4666. [Google Scholar] [CrossRef]
- Karunanayake, C.; Page, R.C. Minireview Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Exp. Biol. Med. 2021, 246, 1419–1434. [Google Scholar] [CrossRef]
Protein Name | Acc. Number | Source | Localization | Chromosome | Locus | Exons | Introns | Assembly ID |
---|---|---|---|---|---|---|---|---|
Heat Shock Proteins | ||||||||
Heat shock protein 40 (HSP40) | O75953 | Human | cytosol | 9 | NC_000009.12 (34,989,745.34998900) | 5 | 4 | GRCh38.p14 (GCF_000001405.40) |
Heat shock protein 70 (HSP 70/HSPA4) | P34932 | Human | cytosol | 5 | NC_000005.10 (133,052,013.133106449) | 19 | 18 | GRCh38.p14 (GCF_000001405.40) |
Heat shock protein 90 (HSP 90) | P08238 | Human | cytosol | 6 | NC_000006.12 (44,246,194.44253883) | 12 | 11 | GRCh38.p14 (GCF_000001405.40) |
Polyamine | ||||||||
Adenosylmethionine decarboxylase 1 (AdoMetDC) | AAH00171.1 | Human | cytosol | 6 | NC_000006.12 (110,814,617.110895713) | 6 | 5 | GRCh38.p14 (GCF_000001405.40) |
Virus | ||||||||
SARS-CoV-2 replicase polyprotein | P0C6U8 | SARS-CoV-2 | Host cytosol | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamkela, M.; Sitobo, Z.; Makhoba, X.H. In Silico Analysis of SARS-CoV-2 Non-Structural Proteins Reveals an Interaction with the Host’s Heat Shock Proteins That May Contribute to Viral Replications and Development. Curr. Issues Mol. Biol. 2023, 45, 10225-10247. https://doi.org/10.3390/cimb45120638
Yamkela M, Sitobo Z, Makhoba XH. In Silico Analysis of SARS-CoV-2 Non-Structural Proteins Reveals an Interaction with the Host’s Heat Shock Proteins That May Contribute to Viral Replications and Development. Current Issues in Molecular Biology. 2023; 45(12):10225-10247. https://doi.org/10.3390/cimb45120638
Chicago/Turabian StyleYamkela, Mthembu, Zingisa Sitobo, and Xolani H. Makhoba. 2023. "In Silico Analysis of SARS-CoV-2 Non-Structural Proteins Reveals an Interaction with the Host’s Heat Shock Proteins That May Contribute to Viral Replications and Development" Current Issues in Molecular Biology 45, no. 12: 10225-10247. https://doi.org/10.3390/cimb45120638
APA StyleYamkela, M., Sitobo, Z., & Makhoba, X. H. (2023). In Silico Analysis of SARS-CoV-2 Non-Structural Proteins Reveals an Interaction with the Host’s Heat Shock Proteins That May Contribute to Viral Replications and Development. Current Issues in Molecular Biology, 45(12), 10225-10247. https://doi.org/10.3390/cimb45120638