Protein Lactylation Modification and Proteomics Features in Cirrhosis Patients after UC-MSC Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Study Design
2.2. UC-MSC Isolation, Culture and Identification
2.3. Liquid Chromatography−Tandem Mass Spectrometry
2.4. Database Research
2.5. Annotation Methods and Functional Enrichment
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics and Therapeutic Effect of UC-MSCs
3.2. Identification and Pattern Analysis of Lysine-Lactylated Sites
3.3. Localization and Functional Enrichment Analysis of Lactylated Proteins
3.4. Changes of Glucose Metabolism Related Enzymes Lactylation in Liver
3.5. Protein Co-Expression Modules Corresponding to Clinical Traits
3.6. Proteins Related to Liver Function
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, D.; Tang, Z.; Huang, H.; Zhou, G.; Cui, C.; Weng, Y.; Liu, W.; Kim, S.; Lee, S.; Perez-Neut, M.; et al. Metabolic regulation of gene expression by histone lactylation. Nature 2019, 574, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Xie, N.; Banerjee, S.; Ge, J.; Jiang, D.; Dey, T.; Matthews, Q.L.; Liu, R.-M.; Liu, G. Lung Myofibroblasts Promote Macrophage Profibrotic Activity through Lactate-induced Histone Lactylation. Am. J. Respir. Cell Mol. Biol. 2021, 64, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.K.; Liu, P.P.; Li, X.; Jiao, L.F.; Teng, Z.Q.; Liu, C.M. Dynamic profiling and functional interpretation of histone lysine crotonylation and lactylation during neural development. Development 2022, 149, dev200049. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, L.; Gu, Y.; Cang, W.; Sun, P.; Xiang, Y. Lactate-Lactylation Hands between Metabolic Reprogramming and Immunosuppression. Int. J. Mol. Sci. 2022, 23, 11943. [Google Scholar] [CrossRef]
- Xin, Q.; Wang, H.; Li, Q.; Liu, S.; Qu, K.; Liu, C.; Zhang, J. Lactylation: A Passing Fad or the Future of Posttranslational Modification. Inflammation 2022, 45, 1419–1429. [Google Scholar] [CrossRef]
- Cui, M.; Cheng, C.; Zhang, L. High-throughput proteomics: A methodological mini-review. Lab. Investig. 2022, 102, 1170–1181. [Google Scholar] [CrossRef]
- Chai, X.; Guo, J.; Dong, R.; Yang, X.; Deng, C.; Wei, C.; Xu, J.; Han, W.; Lu, J.; Gao, C.; et al. Quantitative acetylome analysis reveals histone modifications that may predict prognosis in hepatitis B-related hepatocellular carcinoma. Clin. Transl. Med. 2021, 11, e313. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, M.; Wang, D.; Yu, Y.; Chen, R.; Zhang, M.; Yu, H.; Huang, X.; Rao, M.; Wang, Y.; et al. Multi-Proteomic Analysis Reveals the Effect of Protein Lactylation on Matrix and Cholesterol Metabolism in Tendinopathy. J. Proteome Res. 2023, 22, 1712–1722. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, C.; Ma, J.; Peng, P.; Ren, X.; Cai, S.; Shen, X.; Wu, Y.; Zhang, S.; Wang, X.; et al. Lactylome analysis suggests lactylation-dependent mechanisms of metabolic adaptation in hepatocellular carcinoma. Nat. Metab. 2023, 5, 61–79. [Google Scholar] [CrossRef]
- Lian, N.; Jin, H.; Zhang, F.; Wu, L.; Shao, J.; Lu, Y.; Zheng, S. Curcumin inhibits aerobic glycolysis in hepatic stellate cells associated with activation of adenosine monophosphate-activated protein kinase. IUBMB Life 2016, 68, 589–596. [Google Scholar] [CrossRef]
- Chen, Y.; Choi, S.S.; Michelotti, G.A.; Chan, I.S.; Swiderska-Syn, M.; Karaca, G.F.; Xie, G.; Moylan, C.A.; Garibaldi, F.; Premont, R.; et al. Hedgehog controls hepatic stellate cell fate by regulating metabolism. Gastroenterology 2012, 143, 1319–1329.e1311. [Google Scholar] [CrossRef] [PubMed]
- Nolte, W.; Hartmann, H.; Ramadori, G. Glucose metabolism and liver cirrhosis. Exp. Clin. Endocrinol. Diabetes 1995, 103, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.L.; Yang, S.S. Metabolic Signature of Hepatic Fibrosis: From Individual Pathways to Systems Biology. Cells 2019, 8, 1423. [Google Scholar] [CrossRef] [PubMed]
- Sarmast, N.; Ogola, G.O.; Kouznetsova, M.; Leise, M.D.; Bahirwani, R.; Maiwall, R.; Tapper, E.; Trotter, J.; Bajaj, J.S.; Thacker, L.R.; et al. Model for End-Stage Liver Disease-Lactate and Prediction of Inpatient Mortality in Patients with Chronic Liver Disease. Hepatology 2020, 72, 1747–1757. [Google Scholar] [CrossRef]
- Marcellin, P.; Kutala, B.K. Liver diseases: A major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int. 2018, 38 (Suppl. S1), 2–6. [Google Scholar] [CrossRef]
- Parola, M.; Pinzani, M. Liver fibrosis: Pathophysiology, pathogenetic targets and clinical issues. Mol. Asp. Med. 2019, 65, 37–55. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Shu, X.; Yang, X.; Sun, H.; Cao, H.; Cao, H.; Zhang, K.; Xu, Q.; Li, G.; Yang, Y. Enhanced therapeutic effects of umbilical cord mesenchymal stem cells after prolonged treatment for HBV-related liver failure and liver cirrhosis. Stem Cell Res. Ther. 2020, 11, 277. [Google Scholar] [CrossRef]
- Shi, M.; Li, Y.-Y.; Xu, R.-N.; Meng, F.-P.; Yu, S.-J.; Fu, J.-L.; Hu, J.-H.; Li, J.-X.; Wang, L.-F.; Jin, L.; et al. Mesenchymal stem cell therapy in decompensated liver cirrhosis: A long-term follow-up analysis of the randomized controlled clinical trial. Hepatol. Int. 2021, 15, 1431–1441. [Google Scholar] [CrossRef]
- Suk, K.T.; Yoon, J.H.; Kim, M.Y.; Kim, C.W.; Kim, J.K.; Park, H.; Hwang, S.G.; Kim, D.J.; Lee, B.S.; Lee, S.H.; et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology 2016, 64, 2185–2197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, X.J.; Fei, Y.Y.; Han, H.T.; Xu, J.; Cheng, L.; Li, X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol. Ther. 2022, 232, 108004. [Google Scholar] [CrossRef]
- Jeppesen, J.B.; Mortensen, C.; Bendtsen, F.; Møller, S. Lactate metabolism in chronic liver disease. Scand. J. Clin. Lab. Investig. 2013, 73, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Beeravolu, N.; McKee, C.; Alamri, A.; Mikhael, S.; Brown, C.; Perez-Cruet, M.; Chaudhry, G.R. Isolation and Characterization of Mesenchymal Stromal Cells from Human Umbilical Cord and Fetal Placenta. J. Vis. Exp. 2017, 122, e55224. [Google Scholar]
- Read, J.A.; Winter, V.J.; Eszes, C.M.; Sessions, R.B.; Brady, R.L. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 2001, 43, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.W.; Chen, Y.F.; Wu, H.H.; Lee, O.K. Historical Perspectives and Advances in Mesenchymal Stem Cell Research for the Treatment of Liver Diseases. Gastroenterology 2018, 154, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Wang, W.Y.; Jiang, W.H. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J. Stem Cells 2019, 11, 548–564. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ji, C.; Lu, L. Mesenchymal stem cell therapy for liver fibrosis/cirrhosis. Ann. Transl. Med. 2020, 8, 562. [Google Scholar] [CrossRef]
- Chang, C.; Yan, J.; Yao, Z.; Zhang, C.; Li, X.; Mao, H.Q. Effects of Mesenchymal Stem Cell-Derived Paracrine Signals and Their Delivery Strategies. Adv. Healthc. Mater. 2021, 10, e2001689. [Google Scholar] [CrossRef]
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef]
- Guo, C.H.; Sun, T.T.; Weng, X.D.; Zhang, J.C.; Chen, J.X.; Deng, G.J. The investigation of glucose metabolism and insulin secretion in subjects of chronic hepatitis B with cirrhosis. Int. J. Clin. Exp. Pathol. 2015, 8, 13381–13386. [Google Scholar]
- Yu, J.; Chai, P.; Xie, M.; Ge, S.; Ruan, J.; Fan, X.; Jia, R. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021, 22, 85. [Google Scholar] [CrossRef] [PubMed]
- Lebeaupin, C.; Blanc, M.; Vallée, D.; Keller, H.; Bailly-Maitre, B. BAX inhibitor-1: Between stress and survival. FEBS J. 2020, 287, 1722–1736. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.A.; Woo, S.Y.; Seoh, J.Y.; Han, H.S.; Ryu, K.H. Mesenchymal stem cells restore CCl4-induced liver injury by an antioxidative process. Cell Biol. Int. 2012, 36, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
Variables | UC-MSCs Treatment (n = 11) |
---|---|
Sex (male/female) | 9/2 |
Age (years) | 41.2 ± 9.3 |
BMI (kg/m2) | 24.3 ± 3.5 |
Diabetes | 0 |
Hypertension | 0 |
Cyst | 6 |
Gallstone | 1 |
Pleural effusion | 2 |
Variables | Week 0 | Week 1 | Week 2 | Week 3 | Week 4 |
---|---|---|---|---|---|
ALT | 35.6 ± 21.4 | 30.3 ± 10.9 | 33.7 ± 12.6 | 35.6 ± 17.8 | 33.1 ± 10.7 |
AST | 68.3 ± 63.8 | 57.7 ± 20.0 | 64.5 ± 30.4 | 60.4 ± 23.6 | 54.5 ± 15.3 |
ALB | 31.3 ± 7.6 | 35.2 ± 5.0 | 35.3 ± 5.1 * | 37.0 ± 5.1 * | 34.8 ± 5.5 ** |
GGT | 51.9 ± 44.6 | 59.6 ± 38.5 | 53.0 ± 28.4 | 49.0 ± 23.5 | 43.5 ± 22.6 |
ALP | 108.0 ± 53.1 | 122.1 ± 67.5 | 124.9 ± 64.2 | 122.9 ± 69.0 | 115.0 ± 56.0 |
TBIL | 62.0 (35.4−81.9) | 51.9 (39.2−78.7) | 49.3 (38.7−89.2) | 54.3 (39.0−91.4) | 45.8 (31.1−66.5) |
IBIL | 39.2 ± 17.6 | 40.1 ± 16.0 | 46.2 ± 25.3 | 45.6 ± 20.8 | 39.2 ± 23.4 |
DBIL | 24.5 ± 20.6 | 23.8 ± 21.4 | 25.0 ± 26.7 | 23.9 ± 25.9 | 21.5 ± 27.4 |
CHE | 2.83 ± 0.98 | 3.19 ± 1.04 | 3.40 ± 1.06 ** | 3.44 ± 1.05 *** | 3.31 ± 1.10 *** |
TC | 2.44 ± 0.80 | 2.82 ± 0.95 | 3.00 ± 0.92 ** | 3.00 ± 0.91 *** | 2.86 ± 0.84 *** |
TP | 63.5 ± 7.0 ** | 69.9 ± 7.0 *** | 72.5 ± 4.9 *** | 74.5 ± 5.3 *** | 70.6 ± 5.8 *** |
HGB | 115.5 ± 27.1 | 120.8 ± 21.4 | 124.0 ± 21.3 | 126.3 ± 20.3 ** | 123.2 ± 23.3 ** |
INR | 1.67 ± 0.22 | 1.55 ± 0.28 | 1.59 ± 0.29 | 1.58 ± 0.28 | 1.57 ± 0.36 |
PTA | 48.8 ± 9.1 | 52.8 ± 9.9 | 50.7 ± 8.5 | 51.5 ± 8.7 | 52.7 ± 10.8 * |
Thickness of Spleen | 58.9 ± 13.1 | 62.5 ± 12.3 | 59.2 ± 13.1 | 62.0 ± 11.7 | 63.4 ± 13.5 * |
Splenic vein width | 10.18 ± 2.89 | 10.00 ± 2.86 | 11.00 ± 3.29 | 11.34 ± 3.27 | 11.00 ± 3.10 |
Portal vein width | 14.82 ± 2.48 | 14.09 ± 2.91 | 14.64 ± 3.14 | 14.55 ± 2.38 | 13.27 ± 1.68 ** |
Child−Pugh score | 10.7 ± 2.2 | 9.3 ± 1.7 | 9.1 ± 1.4 ** | 8.9 ± 1.3 ** | 9.1 ± 1.6 *** |
Meld score | 13.94 ± 4.03 | 14.10 ± 4.03 | 15.57 ± 4.32 | 15.27 ± 4.33 | 13.95 ± 4.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Li, Y.; Yao, J.; Song, X.; Wang, H.; Zhang, J.; Li, X. Protein Lactylation Modification and Proteomics Features in Cirrhosis Patients after UC-MSC Treatment. Curr. Issues Mol. Biol. 2023, 45, 8444-8460. https://doi.org/10.3390/cimb45100532
Xie Y, Li Y, Yao J, Song X, Wang H, Zhang J, Li X. Protein Lactylation Modification and Proteomics Features in Cirrhosis Patients after UC-MSC Treatment. Current Issues in Molecular Biology. 2023; 45(10):8444-8460. https://doi.org/10.3390/cimb45100532
Chicago/Turabian StyleXie, Ye, Ying Li, Jia Yao, Xiaojing Song, Haiping Wang, Jianjun Zhang, and Xun Li. 2023. "Protein Lactylation Modification and Proteomics Features in Cirrhosis Patients after UC-MSC Treatment" Current Issues in Molecular Biology 45, no. 10: 8444-8460. https://doi.org/10.3390/cimb45100532
APA StyleXie, Y., Li, Y., Yao, J., Song, X., Wang, H., Zhang, J., & Li, X. (2023). Protein Lactylation Modification and Proteomics Features in Cirrhosis Patients after UC-MSC Treatment. Current Issues in Molecular Biology, 45(10), 8444-8460. https://doi.org/10.3390/cimb45100532