In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)
Abstract
:1. Introduction
2. Material and Methods
2.1. Physical Mapping of QTLs for Cmm Resistance
2.2. Functional Annotation of QTLs for Disease Resistance Genes
2.3. Physical Mapping of Experimentally Validated Cmm Resistance Genes
3. Results
3.1. Physical Mapping of QTLs for Cmm Resistance
3.2. Functional Annotation of QTLs for Disease Resistance Genes
3.3. Physical Mapping of Experimentally Validated Cmm Resistance Genes
4. Discussion
4.1. Physical Mapping of QTLs for Cmm Resistance
4.2. Functional Annotation of QTLs for Disease Resistance Genes
4.3. Physical Mapping of Experimentally Validated Cmm Resistance Genes
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbudak, M.A.; Yildiz, S.; Filiz, E. Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): Bioinformatics analyses and expression profiles in response to drought stress. Genomics 2020, 112, 4089–4099. [Google Scholar] [CrossRef]
- Balaji, V.; Mayrose, M.; Sherf, O.; Jacob-Hirsch, J.; Eichenlaub, R.; Iraki, N.; Sessa, G. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol. 2008, 146, 1797–1809. [Google Scholar] [CrossRef]
- Balaji, V.; Smart, C.D. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res. 2012, 21, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed]
- Cetin, B.; Vardar, A. An economic analysis of energy requirements and input costs for tomato production in Turkey. Renew. Energy 2008, 33, 428–433. [Google Scholar] [CrossRef]
- Coaker, G.L.; Francis, D.M. Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor. Appl. Genet. 2004, 108, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Coaker, G.L.; Willard, B.; Kinter, M.; Stockinger, E.J.; Francis, D.M. Proteomic analysis of resistance mediated by Rcm 2.0 and Rcm 5.1, two loci controlling resistance to bacterial canker of tomato. Mol. Plant Microbe Interact. 2004, 17, 1019–1028. [Google Scholar] [CrossRef]
- de León, L.; Siverio, F.; López, M.M.; Rodríguez, A. Clavibacter michiganesis subsp. michiganensis, a seedborne tomato pathogen: Healthy seeds are still the goal. Plant Dis. 2011, 95, 1328–1338. [Google Scholar] [CrossRef]
- Esparza-Araiza, M.J.; Bañuelos-Hernández, B.; Argüello-Astorga, G.R.; Lara-Ávila, J.P.; Goodwin, P.H.; Isordia-Jasso, M.I.; Alpuche-Solís, Á. Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay. Front. Plant Sci. 2015, 6, 1019. [Google Scholar] [CrossRef]
- Foolad, M.R.; Panthee, D.R. Marker-assisted selection in tomato breeding. Crit. Rev. Plant Sci. 2012, 31, 93–123. [Google Scholar] [CrossRef]
- Francis, D.M.; Kabelka, E.; Bell, J.; Franchino, B.; Clair, D. Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Dis. 2001, 85, 1171–1176. [Google Scholar] [CrossRef]
- Guo, B.; Sleper, D.A.; Lu, P.; Shannon, J.G.; Nguyen, H.T.; Arelli, P.R. QTLs Associated with Resistance to Soybean Cyst Nematode in Soybean Meta-Analysis of QTL Locations. Crop Sci. 2006, 46, 202. [Google Scholar] [CrossRef]
- Guo, H.; Ecker, J.R. The ethylene signaling pathway: New insights. Curr. Opin. Plant Biol. 2004, 7, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Kabas, A.; Boyaci, H.F.; Horuz, S.; Aysan, Y.; Ilbi, H. Investigation on identification of new resistant resources to bacterial canker and wilt disease. Fresenius Environ. Bull. 2018, 27, 8498. [Google Scholar]
- Kabelka, E.; Franchino, B.; Francis, D.M. Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 2002, 92, 504–510. [Google Scholar] [CrossRef]
- Kapustin, Y.; Souvorov, A.; Tatusova, T.; Lipman, D. Splign: Algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 2008, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Kissoudis, C.; Chowdhury, R.; van Heusden, S.; van de Wiel, C.; Finkers, R.; Visser, R.G.; van der Linden, G. Combined biotic and abiotic stress resistance in tomato. Euphytica 2015, 202, 317–332. [Google Scholar] [CrossRef]
- Kuznetsov, A.; Bollin, C.J. NCBI Genome Workbench: Desktop Software for Comparative Genomics, Visualization, and GenBank Data Submission. In Multiple Sequence Alignment, 2nd ed.; Katoh, K., Ed.; Humana: New York, NY, USA, 2021; pp. 261–295. [Google Scholar]
- Lanteigne, C.; Gadkar, V.J.; Wallon, T.; Novinscak, A.; Filion, M. Production of DAPG and HCN by Pseudomonas sp. LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 2012, 102, 967–973. [Google Scholar] [CrossRef]
- Lara-Ávila, J.P.; Isordia-Jasso, M.I.; Castillo-Collazo, R.; Simpson, J.; Alpuche-Solís, Á.G. Gene expression analysis during interaction of tomato and related wild species with Clavibacter michiganensis subsp. michiganensis. Mol. Biol. Rep. 2012, 30, 498–511. [Google Scholar] [CrossRef]
- Liu, Y.; Salsman, E.; Wang, R.; Galagedara, N.; Zhang, Q.; Fiedler, J.D.; Li, X. Meta-QTL analysis of tan spot resistance in wheat. Theor. Appl. Genet. 2020, 133, 2363–2375. [Google Scholar] [CrossRef] [PubMed]
- Sandbrink, J.M.; Van Ooijen, J.W.; Purimahua, C.C.; Vrielink, M.; Verkerk, R.; Zabel, P.; Lindhout, P. Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theor. Appl. Genet. 1995, 90, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Schuler, G.D. Sequence mapping by electronic PCR. Genome Res. 1997, 7, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S. Bacterial Canker Resistance in Tomato. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2014. Available online: https://library.wur.nl/WebQuery/wurpubs/456940 (accessed on 10 January 2020).
- Xu, Y.; Crouch, J.H. Marker-assisted selection in plant breeding: From publications to practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef]
- Xu, Z.S.; Xia, L.Q.; Chen, M.; Cheng, X.G.; Zhang, R.Y.; Li, L.C.; Ma, Y.Z. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol. Biol. 2007, 65, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Van Heusden, A.W.; Koornneef, M.; Voorrips, R.E.; Brüggemann, W.; Pet, G.; van Vrielink-Ginkel, R.; Lindhout, P. Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor. Appl. Genet. 1999, 99, 1068–1074. [Google Scholar] [CrossRef]
- Vasconcellos, R.C.; Oraguzie, O.B.; Soler, A.; Arkwazee, H.; Myers, J.R.; Ferreira, J.J.; Miklas, P.N. Meta-QTL for resistance to white mold in common bean. PLoS ONE 2017, 12, e0171685. [Google Scholar] [CrossRef]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
Meta-QTLs | Chromosome | Resistance Origin | Start (bp) | End (bp) | Size (Mb) | Flanking Markers | Reference |
---|---|---|---|---|---|---|---|
mQTL 2.2 | 2 | Solanum arcanum | 42,997,178 | 49,197,691 | 6.2 | TG353-TG34 | Sandbrink et al. [9] |
Rcm 2 | 2 | S. habrochaites | 49,089,879 | 50,189,289 | 1.1. | TG537-TG91 | Coaker and Francis [7] |
Rcm 5.1 | 5 | S. habrochaites | 59,858,052 | 61,457,155 | 1.6 | CT202-TG358 | Coaker and Francis [7] |
mQTL7.1 | 7 | Solanum arcanum | 484,118 | 3,565,619 | 3.08 | TG342-TG61 | Van Heusden et al. [6] and Sandbrink et al. [9]. |
mQTL7.3 | 7 | Solanum arcanum and S. pimpinellifolium | 59,483,951 | 65,632,413 | 6.15 | TG174-TG20A | Sandbrink et al. [9] |
mQTL8.1 | 8 | Solanum arcanum | 53,832,322 | 58,596,385 | 4.76 | TG41-TG261 | Sandbrink et al. [9] |
mQTL9.1 | 9 | Solanum arcanum | 85,353 | 2816,764 | 2.73 | TG254-TG223A | Van Heusden et al. [6] and Sandbrink et al. [9]. |
Gene ID | Solyc Gene ID | Function | Map Position (bp) | Chromosome | QTL Position (Mb) | Distance to Closest QTL (Mb) | QTL | Reference |
---|---|---|---|---|---|---|---|---|
P23322.2 | Solyc02g065400.3.1 | Oxygen-evolving enhancer protein | 34,603,225 | T2 | 35.820075 | 1.22 | QTL2.1 | Lara-Ávila et al. [14] |
AI776170.1 | SGN-U580776 | Cys protease | 40,102,846 | T2 | 42.997178 | 2.89 | QTL2.2 | Balaji et al. [13] |
U89256.1 | LOC544042 (PTI5) | Pti5, ERF/AP2 transcription factor | 40,311,718 | T2 | 42.997178 | 2.69 | QTL2.2 | Balaji et al. [13] |
BF176599.1 | No match | Pro-rich protein | 40,867,346 | T2 | 42.997178 | 2.13 | QTL2.2 | Balaji et al. [13] |
Q05540 | Solyc02g082930.3 | PR-3 (CHIB_SOLLC Acidic 27 kDa endochitinase) | 44,550,387 | T2 | 42.997178 | 0 | QTL2.2 | Coaker et al. [12] |
CAB95731.1 | Solyc02g085730.3 | Allene oxide cyclase | 46,545,033 | T2 | 42.997178 | 0 | QTL2.2 | Coaker et al. [12] |
P05349 | Solyc02g085950.3 | Ribulose bisphosphate carboxylase small chain | 46,721,911 | T2 | 42.997178 | 0 | QTL2.2 | Coaker et al. [12] |
AAD33072.1 | Solyc02g080530.2 | Secretory peroxidase | 42,723,281 | T2 | 42.997178 | 0.27 | QTL2.2 | Lara-Ávila et al. (2012) |
ABY21255.1 | No match | Ribulose-1,5-bisphosphate carboxylase/oxygenase small subunit | 46,721,678 | T2 | 42.997178 | 0 | QTL2.2 | Lara-Ávila et al. [14] |
AAA34192.1 | Solyc03g034220.3 | Ribulose-1,5-bisphosphate carboxylase, a small subunit | 46,730,615 | T2 | 42.997178 | 0 | QTL2.2 | Lara-Ávila et al. [14] |
ABB86276.1 | No match | Mitochondrial processing peptidase-like | 48,739,848 | T2 | 42.997178 | 0 | QTL2.2 | Lara-Ávila et al. [14] |
AW647641.1 | EST307119 | Peroxidase | 57,368,022 | T5 | 59.858052 | 2.49 | rcm5 | Balaji et al. [13] |
BG629612.1 | No match | Chitinase | 59,492,036 | T5 | 59.858052 | 0.37 | rcm5 | Balaji et al. [13] |
AAN23154.1 | Solyc05g053300.3 | Dihydrolipoamide dehydrogenase precursor | 62,819,021 | T5 | 61.457155 | 1.36 | rmc5 | Coaker et al. [12] |
ABB72805.1 | No match | Per1-like family protein | 22,480,227 | T6 | 22.112109 | 0.37 | QTL6.1 | Lara-Ávila et al. [14] |
AAB37246.1 | No match | Calmodulin-binding protein | 1,671,041 | T7 | 0 | QTL7.1 | Lara-Ávila et al. [14] | |
AY359965.1 | Solyc07g008620.1 | EIX receptor 1 | 3,546,391 | T7 | 3.565619 | 0.02 | QTL7.1 | Balaji et al. [13] |
P29795 | No match | Oxygen-evolving enhancer protein | 5,780,491 | T7 | 59.483951 | 1.68 | QTL7.3 | Coaker et al. [12] |
ACC68681.1 | No match | Vacuolar processing enzyme 2 | 52,199,457 | T8 | 53.832322 | 1.63 | QTL8.1 | Lara-Ávila et al. [14] |
Q76CU2.1 | No match | PDR1 Pleiotropic drug resistance protein | 54,718,024 | T8 | 0 | QTL8.1 | Lara-Ávila et al. [14] | |
EEF34729.1 | No match | Trehalose-6-phosphate synthase, putative | 58,701,556 | T8 | 58.596385 | 0.11 | QTL8.1 | Lara-Ávila et al. [14] |
ACC66148.3 | No match | Cell division cycle protein | 154,958 | T9 | 0 | QTL9.1 | Lara-Ávila et al. [14] | |
EEF32044.1 | No match | Signal recognition particle protein, putative | 3,438,392 | T9 | 2.816764 | 0.62 | QTL9.1 | Lara-Ávila et al. [14] |
AF272366.2 | Ve1 | Verticillium wilt disease R protein | 58,717 | T9 | 2.816764 | 0.79 | QTL 9.1 | Balaji et al. [13] |
Q05538.1 | Solyc10g055810.2 | Basic 30 kDa endochitinase | 56,492,366 | T10 | 57.572715 | 1.08 | QTL10.1 | Lara-Ávila et al. [14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik, I. In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.). Curr. Issues Mol. Biol. 2023, 45, 1387-1395. https://doi.org/10.3390/cimb45020090
Celik I. In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.). Current Issues in Molecular Biology. 2023; 45(2):1387-1395. https://doi.org/10.3390/cimb45020090
Chicago/Turabian StyleCelik, Ibrahim. 2023. "In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.)" Current Issues in Molecular Biology 45, no. 2: 1387-1395. https://doi.org/10.3390/cimb45020090
APA StyleCelik, I. (2023). In Silico Integrated Analysis of Genomic, Transcriptomic, and Proteomic Data Reveals QTL-Specific Genes for Bacterial Canker Resistance in Tomato (Solanum lycopersicum L.). Current Issues in Molecular Biology, 45(2), 1387-1395. https://doi.org/10.3390/cimb45020090