Terpene-Containing Analogues of Glitazars as Potential Therapeutic Agents for Metabolic Syndrome
Abstract
:1. Introduction
- Type 2 diabetes mellitus. If lifestyle changes are not made and excess weight is not brought under control, insulin resistance can develop, which can cause high blood sugar levels, eventually leading to type 2 diabetes.
- High cholesterol and high blood pressure contribute to the formation of plaques in the arteries. These plaques narrow the arteries’ openings, which can lead to a heart attack or stroke.
2. Materials and Methods
2.1. Chemistry
- Synthesis of ethyl (S)-2-ethoxy-3-(4-(4-(4-(2-(monoterpene)aminoethoxy)phenethoxy)phenyl) propanoates, 6a,b.
- Ethyl (2S)-3-[4-(2-{4-[2-({[(1R,5S)-6,6-dimethylbicyclo [3.1.1]hept-2-en-2-yl]methyl} amino)ethoxy]phenyl}ethoxy)phenyl]-2-ethoxypropanoate, 6a.
- Ethyl (2S)-3-{4-[2-(4-{2-[(3,7-dimethyloct-6-en-1-yl)-amino]-ethoxy}-phenyl)-ethoxy] phenyl}-2-ethoxypropanoate, 6b.
- Synthesis of amides 8a–d.
- Ethyl (2S)-3-(4-{2-[4-(2-{[(1R,4aR,7S)-7-ethenyl-1,4a,7-trimethyl-1,2,3,4,4a,4b,5,6,7, 8,10,10a-dodecahydrophenanthren-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)-2-ethoxypropanoate, 8a.
- Ethyl (2S)-3-(4-{2-[4-(2-{[(1R,4aS,10aR)-1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,9, 10,10a-octahydrophenanthren-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)-2-ethoxypropanoate, 8b.
- Ethyl (2S)-3-(4-{2-[4-(2-{[(1R,4aR,10aR)-1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,4b,5, 6,10,10a-decahydrophenanthren-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)-2-ethoxypropanoate, 8c.
- Ethyl (2S)-3-(4-{2-[4-(2-{[(1R,4aR,5S)-5-[2-(furan-3-yl)ethyl]-1,4a-dimethyl-6-methyl idenedecahydronaphthalen-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)2ethoxypropanoate, 8d.
- Hydrolysis of compounds 6a,b,8a–d.
- {2-[4-(2-{4-[(2S)-2-carboxy-2-ethoxyethyl]phenoxy}ethyl)phenoxy]ethyl}({[(1R,5S)-6,6-dimethylbicyclo [3.1.1]hept-2-en-2-yl]methyl})azanium chloride, 7a.
- {2-[4-(2-{4-[(2S)-2-carboxy-2-ethoxyethyl]phenoxy}ethyl)phenoxy]ethyl}(3,7-dimethyloct-6-en-1-yl)azanium chloride, 7b.
- (2S)-3-(4-{2-[4-(2-{[(1R,4aR,7S)-7-ethenyl-1,4a,7-trimethyl-1,2,3,4,4a,4b,5,6,7,8,10, 10a-dodecahydrophenanthren-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)-2-ethoxy-propanoic acid, 9a.
- (2S)-3-(4-{2-[4-(2-{[(1R,4aS,10aR)-1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthren-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)-2-ethoxypropanoic acid, 9b.
- (2S)-3-(4-{2-[4-(2-{[(1R,4aR,10aR)-1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthren-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)-2-ethoxypropanoic acid, 9c.
- (2S)-3-(4-{2-[4-(2-{[(1R,4aR,5S)-5-[2-(furan-3-yl)ethyl]-1,4a-dimethyl-6-methylidene-decahydronaphthalen-1-yl]formamido}ethoxy)phenyl]ethoxy}phenyl)2-ethoxypropanoic acid, 9d.
2.2. Biology
2.2.1. Animals
2.2.2. The OGTT
2.2.3. The ITT
2.2.4. The AY Mice Experiment Design
2.2.5. Biochemical Assays
2.2.6. Histological Examination
2.2.7. Body Temperature Measurement
2.2.8. Statistical Analysis
3. Results
3.1. Chemistry
3.2. Biology
3.2.1. Body Weight and Feed Intake
3.2.2. OGTT at Weeks 2 and 4 of the Experiment
3.2.3. ITT at the End of the Experiment
3.2.4. Body Temperature
3.2.5. Evaluation of Biochemical Parameters of Blood and Tissue Mass
3.2.6. Histological Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Oladejo, A.O. Overview of the metabolic syndrome; an emerging pandemic of public health significance. Ann. Ib. Postgrad. Med. 2011, 9, 78–82. [Google Scholar]
- Hong, F.; Xu, P.; Zhai, Y. The Opportunities and Challenges of Peroxisome Proliferator-Activated Receptors Ligands in Clinical Drug Discovery and Development. Int. J. Mol. Sci. 2018, 19, 2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, T.; Czimmerer, Z.; Nagy, L. PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2011, 1812, 1007–1022. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R. The First Approved Agent in the Glitazar’s Class: Saroglitazar. Curr. Drug Targets 2014, 15, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Balakumar, P.; Mahadevan, N.; Sambathkumar, R. A Contemporary Overview of PPARα/γ Dual Agonists for the Management of Diabetic Dyslipidemia. Curr. Mol. Pharmacol. 2019, 12, 195–201. [Google Scholar] [CrossRef]
- Xi, Y.; Zhang, Y.; Zhu, S.; Luo, Y.; Xu, P.; Huang, Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Fomenko, V.; Blokhin, M.; Kuranov, S.; Khvostov, M.; Baev, D.; Borisova, M.S.; Luzina, O.; Tolstikova, T.G.; Salakhutdinov, N.F. Triterpenic Acid Amides as a Promising Agent for Treatment of Metabolic Syndrome. Sci. Pharm. 2021, 89, 4. [Google Scholar] [CrossRef]
- Larsson, M.; AstraZeneca. Process for The Preparation of 2-Ethoxy-3-[4-(2-(Methanesulphonyloxyphenyl)-Ethoxy) Phenyl] Propanoic Acid. World Patent WO2003082812A2, 8 January 2003. [Google Scholar]
- Tai, M.M. A Mathematical Model for the Determination of Total Area Under Glucose Tolerance and Other Metabolic Curves. Diabetes Care 1994, 17, 152–154. [Google Scholar] [CrossRef] [Green Version]
- Kuranov, S.; Marenina, M.; Ivankin, D.; Blokhin, M.; Borisov, S.; Khomenko, T.; Luzina, O.; Khvostov, M.; Volcho, K.; Tolstikova, T.; et al. The Study of Hypoglycemic Activity of 7-Terpenylcoumarins. Molecules 2022, 27, 8663. [Google Scholar] [CrossRef]
- Srinivasan, S.; Muruganathan, U. Antidiabetic efficacy of citronellol, a citrus monoterpene by ameliorating the hepatic key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats. Chem.-Biol. Interact. 2016, 250, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.-X.; Qiu, Y.; Guo, L.-J.; Song, P.; Xu, J.; Wan, G.-R.; Wang, S.-X.; Yin, Y.-L.; Li, P. Potential therapeutic effect of Citronellal on diabetic cardiomyopathy in experimental rats. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Li, X.; Gu, K.; Li, M.; Zhang, Y.; Zhang, Z.; Wang, S.; Li, Z. WSF-7 Inhibits Obesity-Mediated PPARγ Phosphorylation and Improves Insulin Sensitivity in 3T3-L1 Adipocytes. Biol. Pharm. Bull. 2020, 43, 526–532. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Gao, G.; Wang, H.; Li, E.; Yuan, Y.; Xu, J.; Zhanga, Z.; Wanga, P.; Fua, Y.; Zenga, H.; et al. Dehydroabietic acid alleviates high fat diet-induced insulin resistance and hepatic steatosis through dual activation of PPAR-γ and PPAR-α. Biomed. Pharmacother. 2020, 127, 110155. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, N.; Kawada, T.; Goto, T.; Kim, C.-S.; Taimatsu, A.; Egawa, K.; Yamamoto, T.; Jisaka, M.; Nishimura, K.; Yokota, K.; et al. Abietic acid activates peroxisome proliferator-activated receptor-γ (PPARγ) in RAW264.7 macrophages and 3T3-L1 adipocytes to regulate gene expression involved in inflammation and lipid metabolism. FEBS Lett. 2003, 550, 190–194. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-S.; Cho, S.-M.; Lee, M.; Lee, E.-O.; Kim, S.-H.; Lee, H.-J. Ethanol extract of Pinus koraiensis leaves containing lambertianic acid exerts anti-obesity and hypolipidemic effects by activating adenosine monophosphate-activated protein kinase (AMPK). BMC Complement. Altern. Med. 2016, 16, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gromova, M.A.; Kharitonov, Y.V.; Pokrovskii, M.A.; Bagryanskaya, I.Y.; Pokrovskii, A.G.; Shul’ts, E.E. Synthetic Transformations of Higher Terpenoids. 37. Synthesis and Cytotoxicity of 4-(Oxazol-2-Yl)-18-Norisopimaranes. Chem. Nat. Compd. 2019, 55, 52–59. [Google Scholar] [CrossRef]
- Smith, E.; Williamson, E.; Zloh, M.; Gibbons, S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother. Res. 2005, 19, 538–542. [Google Scholar] [CrossRef]
- Ulubelen, A.; Öksüz, S.; Topcu, G.; Gören, A.C.; Bozok-johansson, C.; Çelik, C.; Kökdi, G.; Voelter, W. A New Antibacterial Diterpene from the Roots of Salvia caespitosa. Nat. Prod. Lett. 2001, 15, 307–314. [Google Scholar] [CrossRef]
- Massaro, F.C.; Brooks, P.R.; Wallace, H.M.; Russell, F.D. Cerumen of Australian stingless bees (Tetragonula carbonaria): Gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 2011, 98, 329–337. [Google Scholar] [CrossRef]
- Gelmini, F.; Beretta, G.; Anselmi, C.; Centini, M.; Magni, P.; Ruscica, M.; Cavalchini, A.; Maffei Facino, R. GC–MS profiling of the phytochemical constituents of the oleoresin from Copaifera langsdorffii Desf. and a preliminary in vivo evaluation of its antipsoriatic effect. Int. J. Pharm. 2013, 440, 170–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.-J.; Lu, Y.-J.; Zhao, Z.-D.; Xu, S.-C.; Bi, L.-W. Synthesis and Cytotoxic Activity of Amides from Isopimaric Acid. Chem. Nat. Compd. 2018, 54, 695–700. [Google Scholar] [CrossRef]
- Gromova, M.A.; Kharitonov, Y.V.; Borisov, S.A.; Baev, D.S.; Tolstikova, T.G.; Shul’ts, E.E. Synthetic Transformations of Higher Terpenoids. 39.∗ Synthesis and Analgesic Activity of Isopimaric Acid Derivatives. Chem. Nat. Compd. 2021, 57, 474–481. [Google Scholar] [CrossRef]
- Hjortness, M.K.; Riccardi, L.; Hongdusit, A.; Ruppe, A.; Zhao, M.; Kim, E.Y.; Zwart, P.H.; Sankaran, B.; Arthanarie, H.; Sousaf, M.C.; et al. Abietane-Type Diterpenoids Inhibit Protein Tyrosine Phosphatases by Stabilizing an Inactive Enzyme Conformation. Biochemistry 2018, 57, 5886–5896. [Google Scholar] [CrossRef]
- Qi, Y.; Takahashi, N.; Hileman, S.M.; Patel, H.R.; Berg, A.H.; Pajvani, U.B.; Scherer, P.E.; Ahima, R.S. Adiponectin acts in the brain to decrease body weight. Nat. Med. 2004, 10, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Eldor, R.; De Fronzo, R.A.; Abdul-Ghani, M. In Vivo Actions of Peroxisome Proliferator–Activated Receptors: Glycemic control, insulin sensitivity, and insulin secretion. Diabetes Care 2013, 36, S162–S174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, M.; Matsushita, M.; Yoneshiro, T.; Okamatsu-Ogura, Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front. Endocrinol. 2020, 11, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Janani, C.; Ranjitha Kumari, B.D. PPAR Gamma Gene—A Review. Diabetes Metab. Syndr. Clin. Res. Rev. 2015, 9, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Lovejoy, J.; Newby, F.; Gebhart, S.; DiGirolamo, M. Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin. Metabolism 1992, 41, 22–27. [Google Scholar] [CrossRef]
- Kalliora, C.; Drosatos, K. The Glitazars Paradox: Cardiotoxicity of the Metabolically Beneficial Dual PPARα and PPARγ Activation. J. Cardiovasc. Pharmacol. 2020, 76, 514–526. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(S) and contributor(S) and not of MDPI and/or the editor(S). MDPI and/or the editor(S) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
MF | 9a | AY | C57Bl/6 | |
---|---|---|---|---|
1 week | 29.9 | 23.5 | 23.7 | 23.2 |
2 weeks | 29.8 | 23.9 | 26.2 | 23.6 |
3 weeks | 25.9 | 24.5 | 25.3 | 23.4 |
4 weeks | 26.2 | 23.4 | 23.8 | 23.8 |
Body Mass, g | Liver Mass, g | Gonadal Fat Pad, g | Interscapular Fat Pad, g | Interscapular Brown Fat, g | |
---|---|---|---|---|---|
C57Bl/6 | 21.90 ± 0.30 * | 0.85 ± 0.013 * | 0.27 ± 0.02 * | - | 0.06 ± 0.003 * |
AY | 36.97 ± 2.41 | 1.09 ± 0.05 | 1.99 ± 0.26 | 1.10 ± 0.16 | 0.20 ± 0.009 |
9a | 27.86 ± 0.49 | 1.00 ± 0.05 | 1.14 ± 0.14 * | 0.38 ± 0.03 * | 0.10 ± 0.006 * |
MF | 32.45 ± 2.01 | 1.07 ± 0.06 | 1.93 ± 0.26 | 0.73 ± 0.12 | 0.13 ± 0.02 * |
Group | TC, mmol/L | TG, mmol/L | Lactate, mmol/L | ALT, U/L |
---|---|---|---|---|
C57Bl/6 | 4.11 ± 0.03 | 1.37 ± 0.02 * | 8.94 ± 0.29 | 13.39 ± 3.36 * |
AY | 4.03 ± 0.05 | 1.54 ± 0.03 | 8.63 ± 0.11 | 20.25 ± 3.10 |
9a | 3.99 ± 0.05 | 1.54 ± 0.04 | 7.33 ± 0.48 * | 9.89 ± 1.16 * |
MF | 4.48 ± 0.48 | 1.53 ± 0.09 | 7.93 ± 0.24 * | 15.71 ± 1.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blokhin, M.E.; Kuranov, S.O.; Khvostov, M.V.; Fomenko, V.V.; Luzina, O.A.; Zhukova, N.A.; Elhajjar, C.; Tolstikova, T.G.; Salakhutdinov, N.F. Terpene-Containing Analogues of Glitazars as Potential Therapeutic Agents for Metabolic Syndrome. Curr. Issues Mol. Biol. 2023, 45, 2230-2247. https://doi.org/10.3390/cimb45030144
Blokhin ME, Kuranov SO, Khvostov MV, Fomenko VV, Luzina OA, Zhukova NA, Elhajjar C, Tolstikova TG, Salakhutdinov NF. Terpene-Containing Analogues of Glitazars as Potential Therapeutic Agents for Metabolic Syndrome. Current Issues in Molecular Biology. 2023; 45(3):2230-2247. https://doi.org/10.3390/cimb45030144
Chicago/Turabian StyleBlokhin, Mikhail E., Sergey O. Kuranov, Mikhail V. Khvostov, Vladislav V. Fomenko, Olga A. Luzina, Natalia A. Zhukova, Cham Elhajjar, Tatiana G. Tolstikova, and Nariman F. Salakhutdinov. 2023. "Terpene-Containing Analogues of Glitazars as Potential Therapeutic Agents for Metabolic Syndrome" Current Issues in Molecular Biology 45, no. 3: 2230-2247. https://doi.org/10.3390/cimb45030144
APA StyleBlokhin, M. E., Kuranov, S. O., Khvostov, M. V., Fomenko, V. V., Luzina, O. A., Zhukova, N. A., Elhajjar, C., Tolstikova, T. G., & Salakhutdinov, N. F. (2023). Terpene-Containing Analogues of Glitazars as Potential Therapeutic Agents for Metabolic Syndrome. Current Issues in Molecular Biology, 45(3), 2230-2247. https://doi.org/10.3390/cimb45030144