Ubiquitin Is Not a Blood Biomarker of an Early Cognitive Decline in the Polish Elderly
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Biochemical Assessment
2.3. Functional Assessment
2.4. Statistical Analyses
3. Results
3.1. Demographic and Functional Assessment
3.2. Plasma Concentrations of Ubiquitin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Furney, S.J.; Kronenberg, D.; Simmons, A.; Güntert, A.; Dobson, R.J.; Proitsi, P.; Wahlund, L.O.; Kloszewska, I.; Mecocci, P.; Soininen, H.; et al. Combinatorial Markers of Mild Cognitive Impairment Conversion to Alzheimer’s Disease—Cytokines and MRI Measures Together Predict Disease Progression. J. Alzheimer’s Dis. 2011, 26, 395–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulka, B. Overview of biological markers. In Biological Markers in Epidemiology; Hulka, B.S., Ja, G., Wilcosky, T.C., Griffith, J.D., Eds.; Oxford University Press: New York, NY, USA, 1990. [Google Scholar] [CrossRef]
- Mayeux, R. Biomarkers: Potential uses and limitations. NeuroRx 2004, 1, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Morris, P.J. Antecedent biomarkers in Alzheimer’s disease. Alzforum 2003, 11. [Google Scholar]
- Muenchhoff, J.; Poljak, A.; Thalamuthu, A.; Gupta, V.B.; Chatterjee, P.; Raftery, M.; Masters, C.L.; Morris, J.C.; Bateman, R.J.; Fagan, A.M.; et al. Changes in the plasma proteome at asymptomatic and symptomatic stages of autosomal dominant Alzheimer’s disease. Sci. Rep. 2016, 6, 29078. [Google Scholar] [CrossRef] [Green Version]
- Crehan, H.; Hardy, J.; Pocock, J. Microglia, Alzheimer’s Disease, and Complement. Int. J. Alzheimer’s Dis. 2012, 2012, 983640. [Google Scholar] [CrossRef] [Green Version]
- Blennow, K. Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. Neurorx 2004, 1, 213–225. [Google Scholar] [CrossRef]
- Goldstein, G.; Scheid, M.; Hammerling, U.; Schlesinger, D.H.; Niall, H.D.; Boyse, A.E. Isolation of a polypeptide that has lymphocyte-differentiating properties and is probably represented universally in living cells. Proc. Natl. Acad. Sci. USA 1975, 72, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Chen, C.; Pan, J.; Xu, J.; Zhou, Z.G.; Wang, C.Y. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int. J. Clin. Exp. Pathol. 2012, 5, 726–738. [Google Scholar]
- Kandimalla, R.J.; Anand, R.; Veeramanikandan, R.; Wani, W.Y.; Prabhakar, S.; Grover, V.K.; Bharadwaj, N.; Jain, K.; Gill, K.D. CSF ubiquitin as a specific biomarker in Alzheimer’s disease. Curr. Alzheimer Res. 2014, 11, 340–348. [Google Scholar] [CrossRef]
- Schwartz, A.L.; Ciechanover, A. Targeting Proteins for Destruction by the Ubiquitin System: Implications for Human Pathobiology. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 73–96. [Google Scholar] [CrossRef] [Green Version]
- Thrower, J.S.; Hoffman, L.; Rechsteiner, M.; Pickart, C.M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 2000, 19, 94–102. [Google Scholar] [CrossRef] [Green Version]
- Haglund, K.; Sigismund, S.; Polo, S.; Szymkiewicz, I.; Di Fiore, P.P.; Dikic, I. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 2003, 5, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Leigh, P.N.; Whitwell, H.; Garofalo, O.; Buller, J.L.; Swash, M.; Martin, J.; Gallo, J.-M.; Weller, R.O.; Anderton, B.H. Ubiquitin-immunoreactive intraneuronal inclusions in amyotrophic lateral sclerosis. Brain 1991, 114, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; et al. Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis. Science 2006, 314, 130–133. [Google Scholar] [CrossRef] [Green Version]
- Riederer, B.M.; Leuba, G.; Vernay, A.; Riederer, I.M. The role of the ubiquitin proteasome system in Alzheimer’s disease. Exp. Biol. Med. 2011, 236, 268–276. [Google Scholar] [CrossRef]
- Gong, B.; Radulovic, M.; Figueiredo-Pereira, M.E.; Cardozo, C. The Ubiquitin-Proteasome System: Potential Therapeutic Targets for Alzheimer’s Disease and Spinal Cord Injury. Front. Mol. Neurosci. 2016, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urushitani, M.; Kurisu, J.; Tsukita, K.; Takahashi, R. Proteasomal inhibition by misfolded mutant superoxide dismutase 1 induces selective motor neuron death in familial amyotrophic lateral sclerosis. J. Neurochem. 2002, 83, 1030–1042. [Google Scholar] [CrossRef]
- Kabashi, E.; Agar, J.N.; Taylor, D.M.; Minotti, S.; Durham, H.D. Focal dysfunction of the proteasome: A pathogenic factor in a mouse model of amyotrophic lateral sclerosis. J. Neurochem. 2004, 89, 1325–1335. [Google Scholar] [CrossRef]
- Ross, C.A.; Pickart, C.M. The ubiquitin–proteasome pathway in Parkinson’s disease and other neurodegenerative diseases. Trends Cell Biol. 2004, 14, 703–711. [Google Scholar] [CrossRef]
- Blennow, K.; de Leon, M.J.; Zetterberg, H. Alzheimer’s disease. Lancet 2006, 368, 387–403. [Google Scholar] [CrossRef]
- Mori, H.; Kondo, J.; Ihara, Y. Ubiquitin is a component of paired helical filaments in Alzheimer’s disease. Science 1987, 235, 1641–1644. [Google Scholar] [CrossRef]
- Perry, G.; Friedman, R.; Shaw, G.; Chau, V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc. Natl. Acad. Sci. USA 1987, 84, 3033–3036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morishima-Kawashima, M.; Hasegawa, M.; Takio, K.; Suzuki, M.; Titani, K.; Ihara, Y. Ubiquitin is conjugated with ami-no-terminally processed tau in paired helical filaments. Neuron 1993, 10, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Tabaton, M.; Cammarata, S.; Mancardi, G.; Manetto, V.; Autilio-Gambetti, L.; Perry, G.; Gambetti, P. Ultrastructural localization of beta-amyloid, tau, and ubiquitin epitopes in extracellular neurofibrillary tangles. Proc. Natl. Acad. Sci. USA 1991, 88, 2098–2102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, L.; Huang, H.-C.; Jiang, Z.-F. Relationship between amyloid-beta and the ubiquitin–proteasome system in Alzheimer’s disease. Neurol. Res. 2013, 36, 276–282. [Google Scholar] [CrossRef]
- Demuro, A.; Mina, E.; Kayed, R.; Milton, S.C.; Parker, I.; Glabe, C.G. Calcium Dysregulation and Membrane Disruption as a Ubiquitous Neurotoxic Mechanism of Soluble Amyloid Oligomers. J. Biol. Chem. 2005, 280, 17294–17300. [Google Scholar] [CrossRef] [Green Version]
- van Leeuwen, F.W.; Hol, E.M.; Fischer, D.F. Frameshift proteins in Alzheimer’s disease and in other conformational disorders: Time for the ubiquitin-proteasome system. J. Alzheimers Dis. 2006, 9, 319–325. [Google Scholar] [CrossRef]
- Tan, Z.; Sun, X.; Hou, F.-S.; Oh, H.-W.; Hilgenberg, L.G.W.; Hol, E.; Van Leeuwen, F.W.; Smith, A.M.; O’Dowd, D.K.; Schreiber, S.S. Mutant ubiquitin found in Alzheimer’s disease causes neuritic beading of mitochondria in association with neuronal degeneration. Cell Death Differ. 2007, 14, 1721–1732. [Google Scholar] [CrossRef] [Green Version]
- Van Tijn, P.; de Vrij, F.M.; Schuurman, K.G.; Dantuma, N.P.; Fischer, D.F.; van Leeuwen, F.W.; Hol, E.M. Dose-dependent inhibition of proteasome activity by a mutant ubiquitin associated with neurodegenerative disease. J. Cell Sci. 2007, 120, 1615–1623. [Google Scholar] [CrossRef] [Green Version]
- Oddo, S. The ubiquitin-proteasome system in Alzheimer’s disease. J. Cell. Mol. Med. 2008, 12, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Gil, M.G.; Morán, M.; Gómez-Ramos, P. Ubiquitinated granular structures and initial neurofibrillary changes in the human brain. J. Neurol. Sci. 2001, 192, 27–34. [Google Scholar] [CrossRef]
- Upadhya, S.C.; Hegde, A.N. Role of the ubiquitin proteasome system in Alzheimer’s disease. BMC Biochem. 2007, 8 (Suppl. 1), S12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedford, L.; Paine, S.; Rezvani, N.; Mee, M.; Lowe, J.; Mayer, R.J. The UPS and autophagy in chronic neurodegenerative disease: Six of one and half a dozen of the other-or not? Autophagy 2009, 5, 224–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.-J.; Yun, S.-M.; Lee, D.-H.; Jo, C.; Park, M.H.; Han, C.; Koh, Y.H. Plasma SUMO1 Protein is Elevated in Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 47, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-Mental State”. A Practical Method for Grading the Cognitive State of Patients for the Clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Yesavage, J.A.; Sheikh, J.I. 9/Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clin. Gerontol. 1986, 5, 165–173. [Google Scholar] [CrossRef]
- Katz, S.; Downs, T.D.; Cash, H.R.; Grotz, R.C. Progress in Development of the Index of ADL. Gerontologist 1970, 10, 20–30. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Ding, Q.; Dimayuga, E.; Keller, J.N. Proteasome regulation of oxidative stress in aging and age-related diseases of the CNS. Antioxid. Redox. Signal 2006, 8, 163–172. [Google Scholar] [CrossRef]
- Öhrfelt, A.; Johansson, P.; Wallin, A.; Andreasson, U.; Zetterberg, H.; Blennow, K.; Svensson, J. Increased Cerebrospinal Fluid Levels of Ubiquitin Carboxyl-Terminal Hydrolase L1 in Patients with Alzheimer’s Disease. Dement. Geriatr. Cogn. Disord. Extra 2016, 6, 283–294. [Google Scholar] [CrossRef]
- Wang, G.P.; Khatoon, S.; Iqbal, K.; Grundke-Iqbal, I. Brain ubiquitin is markedly elevated in Alzheimer disease. Brain Res. 1991, 566, 146–151. [Google Scholar] [CrossRef]
- Kandimalla, R.J.; Prabhakar, S.; Binukumar, B.K.; Wani, W.Y.; Sharma, D.R.; Grover, V.; Bhardwaj, N.; Jain, K.; Gill, K.D. Cerebrospinal fluid profile of amyloid β42 (Aβ42), hTau and ubiquitin in North Indian Alzheimer’s disease patients. Neurosci. Lett. 2011, 487, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, C.; Mlekusch, R.; Kuschnig, A.; Marksteiner, J.; Humpel, C. Ubiquitin enzymes, ubiquitin and proteasome activity in blood mononuclear cells of MCI, Alzheimer and Parkinson patients. Curr. Alzheimer Res. 2010, 7, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Koran, M.E.I.; Wagener, M.; Hohman, T.J. Alzheimer’s Neuroimaging Initiative. Sex differences in the association between AD biomarkers and cognitive decline. Brain Imaging Behav. 2017, 11, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Kim, M.J.; Kim, S.; Kang, H.S.; Lim, S.W.; Myung, W.; Lee, Y.; Hong, C.H.; Choi, S.H.; Na, D.L.; et al. Gender differences in risk factors for transition from mild cognitive impairment to Alzheimer’s disease: A CREDOS study. Compr. Psychiatry 2015, 62, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Haakonsen, D.L.; Rape, M. Ubiquitin levels: The next target against gynecological cancers? J. Clin. Investig. 2017, 127, 4228–4230. [Google Scholar] [CrossRef] [Green Version]
- Mourtzoukou, D.; Drikos, I.; Goutas, N.; Vlachodimitropoulos, D. Review of the Ubiquitin Role in DNA Repair and Tumorigenesis, with Emphasis in Breast Cancer Treatment; Current Data and Future Options. In Ubiquitination Governing DNA Repair—Implications in Health and Disease; Boutou, E., Stürzbecher, H.-W., Eds.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Huang, X.; Dixit, V.M. Drugging the undruggables: Exploring the ubiquitin system for drug development. Cell Res. 2016, 26, 484–498. [Google Scholar] [CrossRef]
Age Group | Norm | MCI | Mild Dementia | Total | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
W | M | T | W | M | T | W | M | T | W | M | T | |
65–74 | 13 | 13 | 26 | 17 | 14 | 31 | 7 | 13 | 20 | 37 | 40 | 77 |
75–84 | 12 | 15 | 27 | 11 | 15 | 26 | 12 | 14 | 26 | 35 | 44 | 79 |
85+ | 8 | 10 | 18 | 15 | 13 | 28 | 14 | 14 | 28 | 37 | 37 | 74 |
Total | 33 | 38 | 71 | 43 | 42 | 85 | 33 | 41 | 74 | 109 | 121 | 230 |
Cognitive Functioning Level | ANOVA K-W p Level | |||
---|---|---|---|---|
Norm | MCI | Mild Dementia | ||
UBIQUITIN | 17.4 [16.4–18.7] | 17.6 [16.8–19] | 17.2 [16.4–18.1] | 0.254 |
Gender | U M-W p Level | ||
---|---|---|---|
Women | Men | ||
UBIQUITIN | 17.56 [16.8–19.0] | 17.18 [16.2–18.4] | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McFarlane, O.; Kozakiewicz, M.; Wojciechowska, M.; Kędziora-Kornatowska, K. Ubiquitin Is Not a Blood Biomarker of an Early Cognitive Decline in the Polish Elderly. Curr. Issues Mol. Biol. 2023, 45, 2452-2460. https://doi.org/10.3390/cimb45030160
McFarlane O, Kozakiewicz M, Wojciechowska M, Kędziora-Kornatowska K. Ubiquitin Is Not a Blood Biomarker of an Early Cognitive Decline in the Polish Elderly. Current Issues in Molecular Biology. 2023; 45(3):2452-2460. https://doi.org/10.3390/cimb45030160
Chicago/Turabian StyleMcFarlane, Oliwia, Mariusz Kozakiewicz, Milena Wojciechowska, and Kornelia Kędziora-Kornatowska. 2023. "Ubiquitin Is Not a Blood Biomarker of an Early Cognitive Decline in the Polish Elderly" Current Issues in Molecular Biology 45, no. 3: 2452-2460. https://doi.org/10.3390/cimb45030160
APA StyleMcFarlane, O., Kozakiewicz, M., Wojciechowska, M., & Kędziora-Kornatowska, K. (2023). Ubiquitin Is Not a Blood Biomarker of an Early Cognitive Decline in the Polish Elderly. Current Issues in Molecular Biology, 45(3), 2452-2460. https://doi.org/10.3390/cimb45030160