Pesticidal Toxicity of Phosphine and Its Interaction with Other Pest Control Treatments
Abstract
:1. Introduction
2. Phosphine Mechanisms of Action
2.1. Oxidative Stress
2.2. Metabolic Crisis
2.3. Neurotoxicity
3. Phosphine Resistance
4. Phosphine Interaction with Other Treatments
5. Summary
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, R.N. The stored-grain ecosystem. In Stored-grain Ecosystems; Javas, D.S., White, N.D.G., Muir, W.E., Eds.; Marcel Dekker: New York, NY, USA, 1995; pp. 1–32. [Google Scholar]
- Nayak, M.K.; Daglish, G.J.; Phillips, T.W.; Ebert, P.R. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annu. Rev. Entomol. 2020, 65, 333–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyer, S.; Zhang, H.; Lempérière, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Res. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, M.Q. Review A review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in stored-product insects. Pestic. Sci. 1997, 49, 213–228. [Google Scholar] [CrossRef]
- Thomas, W. Methyl bromide: Effective pest management tool and environmental threat. J. Nematol. 1996, 28, 586. [Google Scholar]
- Derrick, M.R.; Burgess, H.D.; Baker, M.T.; Binnie, N.E. Sulfuryl fluoride (Vikane): A review of its use as a fumigant. J. Am. Inst. Conserv. 1990, 29, 77–90. [Google Scholar] [CrossRef]
- Mühle, J.; Huang, J.; Weiss, R.F.; Prinn, R.G.; Miller, B.R.; Salameh, P.K.; Harth, C.M.; Fraser, P.J.; Porter, L.W.; Greally, B.R.; et al. Sulfuryl fluoride in the global atmosphere. J. Geophys. Res. Atmos. 2009, D5, 114. [Google Scholar] [CrossRef] [Green Version]
- Muthu, M.; Rajendran, S.; Krishnamurthy, T.S.; Narasimhan, K.S.; Rangaswamy, J.R.; Jayaram, M.; Majumder, S.K. Ethyl formate as a safe general fumigant. In Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 1984; pp. 369–393. [Google Scholar]
- Daft, J.L. Rapid determination of fumigant and industrial chemical residues in food. J. Assoc. Off. Anal. Chem. 1988, 71, 748–760. [Google Scholar] [CrossRef]
- Collins, P.J.; Emery, R.N.; Wallbank, B.E. Two decades of monitoring and managing phosphine resistance in Australia. Advances in stored product protection. In Proceedings of the 8th International Working Conference on Stored Product Protection, York, UK, 22–26 July 2002; CABI Publishing: York, UK, 2003; pp. 570–575. [Google Scholar]
- Champ, B.R.; Dyte, C.E. Report of the FAO Global Survey of Pesticide Susceptibility of Stored Grain Pests; FAO: Rome, Italy, 1976. [Google Scholar]
- Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2004, 40, 241–249. [Google Scholar] [CrossRef]
- Holloway, J.C.; Falk, M.G.; Emery, R.N.; Collins, P.J.; Nayak, M.K. Resistance to phosphine in Sitophilus oryzae in Australia: A national analysis of trends and frequencies over time and geographical spread. J. Stored Prod. Res. 2016, 69, 129–137. [Google Scholar] [CrossRef]
- Kocak, E.; Schlipalius, D.; Kaur, R.; Tuck, A.; Ebert, P.; Collins, P.; Yılmaz, A. Determining phosphine resistance in rust red flour beetle, Tribolium castaneum (Herbst.)(Coleoptera: Tenebrionidae) populations from Turkey. Turk. J. Entomol. 2015, 39, 129–136. [Google Scholar]
- Konemann, C.E.; Hubhachen, Z.; Opit, G.P.; Gautam, S.; Bajracharya, N.S. Phosphine resistance in Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) collected from grain storage facilities in Oklahoma, USA. J. Econ. Entomol. 2017, 110, 1377–1383. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.; Faroni, L.; Guedes, R.; Sousa, A.; Tótola, M. Phosphine resistance in Brazilian populations of Sitophilus zeamais motschulsky (Coleoptera: Curculionidae). J. Stored Prod. Res. 2009, 45, 71–74. [Google Scholar] [CrossRef]
- Rajan, T.S.; Mohankumar, S.; Chandrasekaran, S. Studies on spatial distribution of phosphine resistance in rice weevil, Sitophilus Oryzae (L.)(Curculionidae: Coleoptera) collected from Tamil Nadu. Indian J. Entomol. 2017, 79, 307–311. [Google Scholar] [CrossRef]
- Yan, X.P.; Li, W.W.; Liu, Z.W.; Qin, Z.G.; Wu, X.Q.; Song, Y.C.; Shen, Z.P. Investigation of phosphine-resistance in major stored grain insects in China. Grain Storage 2004, 32, 17–20. [Google Scholar]
- Emery, R.N.; Nayak, M.K.; Holloway, J.C. Lessons learned from phosphine resistance monitoring in Australia. Stewart Postharvest Rev. 2011, 7, 1–8. [Google Scholar]
- Jagadeesan, R.; Nayak, M.K. Phosphine resistance does not confer cross-resistance to sulfuryl fluoride in four major stored grain insect pests. Pest Manag. Sci. 2017, 73, 1391–1401. [Google Scholar] [CrossRef]
- Lee, H.K.; Jeong, G.; Kim, H.K.; Kim, B.-S.; Yang, J.-O.; Koo, H.-N.; Kim, G.-H. Fumigation activity against phosphine-resistant Tribolium castaneum (Coleoptera: Tenebrionidae) using carbonyl sulfide. Insects 2020, 11, 750. [Google Scholar] [CrossRef]
- Ware, G.W. The Pesticide Book; Thomson Publ: Fresno, CA, USA, 2000; p. 418. [Google Scholar]
- Jagadeesan, R.; Singarayan, V.T.; Chandra, K.; Ebert, P.R.; Nayak, M.K. Potential of co-fumigation with phosphine (PH3) and sulfuryl fluoride (SO2F2) for the management of strongly phosphine-resistant insect pests of stored grain. J. Econ. Entomol. 2018, 111, 2956–2965. [Google Scholar] [CrossRef]
- Nath, N.S.; Bhattacharya, I.; Tuck, A.G.; Schlipalius, D.I.; Ebert, P.R. Mechanisms of phosphine toxicity. J. Toxicol. 2011, 2011, 494168–494177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daglish, G.J.; Collins, P.J.; Pavic, H.; Kopittke, R.A. Effects of time and concentration on mortality of phosphine-resistant Sitophilus oryzae (L.) fumigated with phosphine. Pest Manag. Sci. Former. Pestic. Sci. 2002, 58, 1015–1021. [Google Scholar] [CrossRef]
- Bolter, C.J.; Chefurka, W. Extramitochondrial release of hydrogen peroxide from insect and mouse liver mitochondria using the respiratory inhibitors phosphine, myxothiazol, and antimycin and spectral analysis of inhibited cytochromes. Arch. Biochem. Biophys. 1990, 278, 65–72. [Google Scholar] [CrossRef]
- Alzahrani, S.M.; Ebert, P.R. Oxygen and arsenite synergize phosphine toxicity by distinct mechanisms. Toxicol. Sci. 2019, 167, 419–425. [Google Scholar] [CrossRef]
- Valmas, N.; Zuryn, S.; Ebert, P.R. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death. Toxicology 2008, 252, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Valmas, N.; Ebert, P.R. Comparative toxicity of fumigants and a phosphine synergist using a novel containment chamber for the safe generation of concentrated phosphine gas. PLoS ONE 2006, 1, e130. [Google Scholar] [CrossRef] [Green Version]
- Leelaja, B.C.; Rajini, P.S. Impact of phosphine exposure on development in Caenorhabditis elegans: Involvement of oxidative stress and the role of glutathione. Pestic. Biochem. Physiol. 2012, 104, 38–43. [Google Scholar] [CrossRef]
- Price, N.R. Some aspects of the inhibition of cytochrome c oxidase by phosphine in susceptible and resistant strains of Rhyzopertha dominicia. Insect Biochem. 1980, 10, 147–150. [Google Scholar] [CrossRef]
- Price, N.R. The effect of phosphine on respiration and mitochondrial oxidation in susceptible and resistant strains of Rhyzopertha dominica. Insect Biochem. 1980, 10, 65–71. [Google Scholar] [CrossRef]
- Chefurka, W.; Kashi, K.P.; Bond, E.J. The effect of phosphine on electron transport in mitochondria. Pestic. Biochem. Physiol. 1976, 6, 65–84. [Google Scholar] [CrossRef]
- Dua, R.; Gill, K.D. Effect of aluminium phosphide exposure on kinetic properties of cytochrome oxidase and mitochondrial energy metabolism in rat brain. Biochim. Et Biophys. Acta (BBA) Gen. Subj. 2004, 1674, 4–11. [Google Scholar] [CrossRef]
- Kashi, K.P. Response of five species of stored-product insects to phosphine in oxygen-deficient atmospheres. Pestic. Sci. 1981, 12, 111–115. [Google Scholar] [CrossRef]
- Nakakita, H.; Saito, T.; Iyatomi, K. Effect of phosphine on the respiration of adult Sitophilus zeamais Motsch. (Coleoptera, Curculionidae). J. Stored Prod. Res. 1974, 10, 87–92. [Google Scholar] [CrossRef]
- Zuryn, S.; Kuang, J.; Ebert, P. Mitochondrial modulation of phosphine toxicity and resistance in Caenorhabditis elegans. Toxicol. Sci. 2008, 102, 179–186. [Google Scholar] [CrossRef] [Green Version]
- Anand, R.; Kumari, P.; Kaushal, A.; Bal, A.; Wani, W.Y.; Sunkaria, A.; Dua, R.; Singh, S.; Bhalla, A.; Gill, K.D. Effect of acute aluminum phosphide exposure on rats—A biochemical and histological correlation. Toxicol. Lett. 2012, 215, 62–69. [Google Scholar] [CrossRef]
- Duenas, A.; Pérez-Castrillon, J.L.; Cobos, M.A.; Herreros, V. Treatment of the cardiovascular manifestations of phosphine poisoning with trimetazidine, a new antiischemic drug. Am. J. Emerg. Med. 1999, 17, 219–220. [Google Scholar] [CrossRef]
- Schlipalius, D.I.; Valmas, N.; Tuck, A.G.; Jagadeesan, R.; Ma, L.; Kaur, R.; Goldinger, A.; Anderson, C.; Kuang, J.; Zuryn, S.; et al. A core metabolic enzyme mediates resistance to phosphine gas. Science 2012, 338, 807–810. [Google Scholar] [CrossRef]
- Adam-Vizi, V.; Tretter, L. The role of mitochondrial dehydrogenases in the generation of oxidative stress. Neurochem. Int. 2013, 62, 757–763. [Google Scholar] [CrossRef] [PubMed]
- Starkov, A.A. An update on the role of mitochondrial α-ketoglutarate dehydrogenase in oxidative stress. Mol. Cell. Neurosci. 2013, 55, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Dua, R.; Kumar, V.; Sunkaria, A.; Gill, K.D. Altered glucose homeostasis in response to aluminium phosphide induced cellular oxygen deficit in rat. Indian J. Exp. Biol. 2010, 48, 722–730. [Google Scholar]
- Dua, R.; Sunkaria, A.; Kumar, V.; Gill, K.D. Impaired mitochondrial energy metabolism and kinetic properties of cytochrome oxidase following acute aluminium phosphide exposure in rat liver. Food Chem. Toxicol. 2010, 48, 53–60. [Google Scholar] [CrossRef]
- Alnajim, I.; Aldosary, N.; Agarwal, M.; Liu, T.; Du, X.; Ren, Y. Role of Lipids in Phosphine Resistant Stored-Grain Insect Pests Tribolium castaneum and Rhyzopertha dominica. Insects 2022, 13, 798. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakkak, Z.S.; Al-Azzawi, M.J.; Al-Adhamy, B.W.; Khalil, S.A. Inhibitory action of phosphine on acetylcholinesterase of Ephestia cautella (Lepidoptera: Pyralidae). J. Stored Prod. Res. 1989, 25, 171–174. [Google Scholar] [CrossRef]
- Al-Azzawi, M.J.; Al-Hakkak, Z.S.; Al-Adhami, B.W. In vitro inhibitory effects of phosphine on human and mouse serum cholinesterase. Toxicol. Environ. Chem. 1990, 29, 53–56. [Google Scholar] [CrossRef]
- Mittra, S.; Peshin, S.S.; Lall, S.B. Cholinesterase inhibition by aluminium phosphide poisoning in rats and effects of atropine and pralidoxime chloride. Acta Pharmacol. Sin. 2001, 22, 37–39. [Google Scholar]
- Potter, W.T.; Garry, V.F.; Kelly, J.T.; Tarone, R.; Griffith, J.; Nelson, R.L. Radiometric assay of red cell and plasma cholinesterase in pesticide appliers from Minnesota. Toxicol. Appl. Pharmacol. 1993, 119, 150–155. [Google Scholar] [CrossRef]
- Collins, P.J.; Daglish, G.J.; Bengston, M.; Lambkin, T.M.; Pavic, H. Genetics of resistance to phosphine in Rhyzopertha dominica (Coleoptera: Bostrichidae). J. Econ. Entomol. 2002, 95, 862–869. [Google Scholar] [CrossRef]
- Schlipalius, D.I.; Cheng, Q.; Reilly, P.E.; Collins, P.J.; Ebert, P.R. Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics 2002, 161, 773–782. [Google Scholar] [CrossRef]
- Chen, Z.; Schlipalius, D.; Opit, G.; Subramanyam, B.; Phillips, T.W. Diagnostic molecular markers for phosphine resistance in US populations of Tribolium castaneum and Rhyzopertha dominica. PLoS ONE 2015, 10, e0121343. [Google Scholar]
- Jagadeesan, R.; Collins, P.J.; Daglish, G.J.; Ebert, P.R.; Schlipalius, D.I. Phosphine resistance in the rust red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae): Inheritance, gene interactions and fitness costs. PLoS ONE 2012, 7, e31582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagadeesan, R.; Collins, P.J.; Nayak, M.K.; Schlipalius, D.I.; Ebert, P.R. Genetic characterization of field-evolved resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Laemophloeidae: Coleoptera). Pestic. Biochem. Physiol. 2016, 127, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppert, B.; Guedes, R.N.; Aikins, M.J.; Perkin, L.; Chen, Z.; Phillips, T.W.; Zhu, K.Y.; Opit, G.P.; Hoon, K.; Sun, Y.; et al. Genes related to mitochondrial functions are differentially expressed in phosphine-resistant and-susceptible Tribolium castaneum. BMC Genom. 2015, 16, 968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Q.; Valmas, N.; Reilly, P.E.; Collins, P.J.; Kopittke, R.; Ebert, P.R. Caenorhabditis elegans mutants resistant to phosphine toxicity show increased longevity and cross-resistance to the synergistic action of oxygen. Toxicol. Sci. 2003, 73, 60–65. [Google Scholar] [CrossRef]
- Cha’on, U.; Valmas, N.; Collins, P.J.; Reilly, P.E.; Hammock, B.D.; Ebert, P.R. Disruption of iron homeostasis increases phosphine toxicity in Caenorhabditis elegans. Toxicol. Sci. 2007, 96, 194–201. [Google Scholar] [CrossRef]
- Price, N.R. Active exclusion of phosphine as a mechanism of resistance in Rhyzopertha dominica (F.)(Coleoptera: Bostrychidae). J. Stored Prod. Res. 1984, 20, 163–168. [Google Scholar] [CrossRef]
- Nakakita, H.; Kuroda, J. Differences in Phosphine Uptake between Susceptible and Resistant Strains of Insects. J. Pestic. Sci. 1986, 11, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.Q.; Price, N.R. Biochemistry of phosphine uptake in susceptible and resistant strains of two species of stored product beetles. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1989, 94, 425–429. [Google Scholar] [CrossRef]
- Pratt, S.J. A new measure of uptake: Desorption of unreacted phosphine from susceptible and resistant strains of Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). J. Stored Prod. Res. 2003, 39, 507–520. [Google Scholar] [CrossRef]
- Winks, R.G. The toxicity of phosphine to adults of Tribolium castaneum (Herbst): Phosphine-induced narcosis. J. Stored Prod. Res. 1985, 21, 25–29. [Google Scholar] [CrossRef]
- Winks, R.G. Some Aspects of the Response of Tribolium castaneum (Herbst) to Phosphine. Ph.D. Thesis, University of London, London, UK, 1974; p. 214. [Google Scholar]
- Winks, R.G.; Waterford, C.J. The relationship between concentration and time in the toxicity of phosphine to adults of a resistant strain of Tribolium castaneum (Herbst). J. Stored Prod. Res. 1986, 22, 85–92. [Google Scholar] [CrossRef]
- Cotton, R.T. The relation of respiratory metabolism of insects to their susceptibility to fumigants. J. Econ. Entomol. 1932, 25, 1088–1103. [Google Scholar] [CrossRef]
- Bond, E.J. The Action Of Fumigants On Insects: IV. The Effects of Oxygen on the Toxicity of Fumigants to Insects. Can. J. Biochem. Physiol. 1963, 41, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Bond, E.J.; Monro, H.A.U. The role of oxygen in the toxicity of fumigants to insects. J. Stored Prod. Res. 1967, 3, 295–310. [Google Scholar] [CrossRef]
- Kashi, K.P. Toxicity of phosphine to five species of stored-product insects in atmospheres of air and nitrogen. Pestic. Sci. 1981, 12, 116–122. [Google Scholar] [CrossRef]
- Bond, E.J.; Monro, H.A.U.; Buckland, C.T. The influence of oxygen on the toxicity of fumigants to Sitophilus granarius (L.). J. Stored Prod. Res. 1967, 3, 289–294. [Google Scholar] [CrossRef]
- Liu, Y.-B. Oxygen enhances phosphine toxicity for postharvest pest control. J. Econ. Entomol. 2011, 104, 1455–1461. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-B. Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce. J. Econ. Entomol. 2012, 105, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Bergquist, E.R.; Fischer, R.J.; Sugden, K.D.; Martin, B.D. Inhibition by methylated organoarsenicals of the respiratory 2-oxo-acid dehydrogenases. J. Organomet. Chem. 2009, 694, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Hughes, M.F. Arsenic toxicity and potential mechanisms of action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Yoshimura, Y.; Endo, Y.; Shimoda, Y.; Yamanaka, K.; Endo, G. Acute Arsine Poisoning Confirmed by Speciation Analysis of Arsenic Compounds in the Plasma and Urine by HPLC-ICP-MS. J. Occup. Health 2011, 53, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, M.Q.; Price, N.R. Comparative toxicity of arsine and stibine to susceptible and phosphine-resistant strains of Rhyzopertha dominica (F.)(Coleoptera: Bostrychidae). Comp. Biochem. Physiol. Part C Comp. Pharmacol. 1991, 99, 41–45. [Google Scholar] [CrossRef]
- Cossins, A. Temperature Biology of Animals; Chapman and Hall: London, UK, 1987. [Google Scholar]
- Keister, M.; Buck, J. Respiration: Some Exogenous and Endogenous Effects on Rate of Respiration. In The Physiology of Insecta; Academic Press: New York, NY, USA, 1974; pp. 469–509. [Google Scholar]
- Chaudhry, M.Q.; Bell, H.A.; Savvidou, N.; MacNicoll, A.D. Effect of low temperatures on the rate of respiration and uptake of phosphine in different life stages of the cigarette beetle Lasioderma serricorne (F.). J. Stored Prod. Res. 2004, 40, 125–134. [Google Scholar] [CrossRef]
- Nayak, M.K.; Collins, P.J. Influence of concentration, temperature and humidity on the toxicity of phosphine to the strongly phosphine-resistant psocid Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae). Pest Manag. Sci. Former. Pestic. Sci. 2008, 64, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Constantin, M.; Jagadeesan, R.; Chandra, K.; Ebert, P.; Nayak, M.K. Synergism between phosphine (PH3) and carbon dioxide (CO2): Implications for managing PH3 resistance in rusty grain beetle (Laemophloeidae: Coleoptera). J. Econ. Entomol. 2020, 113, 1999–2006. [Google Scholar] [CrossRef]
- Mueller, D.K. A new method of using low levels of phosphine in combination with heat and carbon dioxide. Fumigants Pheromones 1994, 33, 14. [Google Scholar]
- Subramanyam, B.; Hagstrum, D.W. Alternatives to Pesticides in Stored-Product IPM; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Mbata, G.N.; Phillips, T.W. Effects of temperature and exposure time on mortality of stored-product insects exposed to low pressure. J. Econ. Entomol. 2001, 94, 1302–1307. [Google Scholar] [CrossRef]
- Alzahrani, S.M.; Ebert, P.R. Stress pre-conditioning with temperature, UV and gamma radiation induces tolerance against phosphine toxicity. PLoS ONE. 2018, 13, e0195349. [Google Scholar] [CrossRef] [Green Version]
- Aldryhim, Y.N.; Adam, E.E. Efficacy of gamma irradiation against Sitophilus granarius (L.)(Coleoptera: Curculionidae). J. Stored Prod. Res. 1999, 35, 225–232. [Google Scholar] [CrossRef]
- Arthur, V. Use of gamma irradiation to control three lepidopteran pests in Brazil. In Proceedings of the Irradiation as a Phytosanitary Treatment of Food and Agricultural Commodities, Vienna, Austria, 2–4 November 2002; FAO/IAEA Division of Nuclear Techniques in Food and Agriculture: Vienna, Austria, 2004; pp. 45–50. [Google Scholar]
- Aye, T.T.; Shim, J.-K.; Ha, D.-M.; Kwon, Y.-J.; Kwon, J.-H.; Lee, K.-Y. Effects of gamma irradiation on the development and reproduction of Plodia interpunctella (Hübner)(Lepidoptera: Pyralidae). J. Stored Prod. Res. 2008, 44, 77–81. [Google Scholar] [CrossRef]
- Ayvaz, A.; Tunçbilek, A.Ş. Effects of gamma radiation on life stages of the Mediterranean flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). J. Pest Sci. 2006, 79, 215–222. [Google Scholar] [CrossRef]
- Ayvaz, A.; Ozturk, F.; Yaray, K.; Karahacio, E. Effect of the gamma radiations and malathion on confused flour beetle, Tribolium confusum. J. du Val. Pak. J. Biol. Sci. 2002, 5, 560–562. [Google Scholar] [CrossRef] [Green Version]
- Follett, P.A.; Snook, K.; Janson, A.; Antonio, B.; Haruki, A.; Okamura, M.; Bisel, J. Irradiation quarantine treatment for control of Sitophilus oryzae (Coleoptera: Curculionidae) in rice. J. Stored Prod. Res. 2013, 52, 63–67. [Google Scholar] [CrossRef]
- Ignatowicz, S. Irradiation as an alternative to methyl bromide fumigation of agricultural commodities infested with quarantine stored product pests. In Proceedings of the Irradiation as a Phytosanitary Treatment of Food and Agricultural Commodities, Vienna, Austria, 2–4 November 2002; FAO/IAEA Division of Nuclear Techniques in Food and Agriculture: Vienna, Austria, 2004; pp. 51–66. [Google Scholar]
- Kirkpatrick, R.L.; Brower, J.H.; Tilton, E.W. Gamma, infra-red and microwave radiation combinations for control of Rhyzopertha dominica in wheat. J. Stored Prod. Res. 1973, 9, 19–23. [Google Scholar] [CrossRef]
- Zolfagharieh, H. Irradiation to control Plodia interpunctella and Oryzaphilus surinamensis in pistacios and dates. In Proceedings of the Irradiation as a Phytosanitary Treatment of Food and Agricultural Commodities, Vienna, Austria, 2–4 November 2002; FAO/IAEA Division of Nuclear Techniques in Food and Agriculture: Vienna, Austria, 2004; pp. 101–109. [Google Scholar]
- Follett, P.A. Generic radiation quarantine treatments: The next steps. J. Econ. Entomol. 2009, 102, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Hallman, G.J. Control of stored product pests by ionizing radiation. J. Stored Prod. Res. 2013, 52, 36–41. [Google Scholar] [CrossRef]
- Saxena, J.D.; Bhatia, S.K. Radiosensitivity of a phosphine-resistant strain of Tribolium castaneum (Herbst) and interaction of gamma radiation and fumigation on susceptible strain. J. Nucl. Agric. Biol. 1981, 10, 13–14. [Google Scholar]
- Hasan, M.M.; Todoriki, S.; Miyanoshita, A.; Imamura, T.; Hayashi, T. Soft-electron beam and gamma-radiation sensitivity and DNA damage in phosphine-resistant and-susceptible strains of Rhyzopertha dominica. J. Econ. Entomol. 2006, 99, 1912–1919. [Google Scholar] [CrossRef]
- Bruce, W.A.; Lum, P.T.M. The effects of UV radiation on stored-product insects. In Proceedings of the Second International Working Conference on Stored-Product Entomology, Savannah, GA, USA; 1978; pp. 271–277. [Google Scholar]
- Collins, D.A.; Kitchingman, L. The effect of ultraviolet C radiation on stored-product pests. Julius-Kühn-Archiv 2010, 425, 632–636. [Google Scholar]
- Faruki, S.I.; Das, D.R.; Khatun, S. Effects of UV-radiation on the larvae of the lesser mealworm, Alphitobius diaperinus (Panzer)(Coleoptera: Tenebrionidae) and their progeny. Pak. J. Biol. Sci. 2005, 5, 444–448. [Google Scholar]
- Ghanem, I.; Shamma, M. Effect of non-ionizing radiation (UVC) on the development of Trogoderma granarium Everts. J. Stored Prod. Res. 2007, 43, 362–366. [Google Scholar] [CrossRef]
- Riley, P.A. Free radicals in biology: Oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 1994, 65, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.; Gomes, N.C.; Henriques, I.; Almeida, A.; Correia, A.; Cunha, Â. Contribution of reactive oxygen species to UV-B-induced damage in bacteria. J. Photochem. Photobiol. B Biol. 2012, 117, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Ji, C.-B.; Lu, X.-W.; Ni, Y.-H.; Gao, C.-L.; Chen, X.-H.; Zhao, Y.-P.; Gu, G.-X.; Guo, X.-R. Resveratrol attenuates radiation damage in Caenorhabditis elegans by preventing oxidative stress. J. Radiat. Res. 2010, 51, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Diehn, M.; Cho, R.W.; Lobo, N.A.; Kalisky, T.; Dorie, M.J.; Kulp, A.N.; Qian, D.; Lam, J.S.; Ailles, L.E.; Wong, M.; et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009, 458, 780–783. [Google Scholar] [CrossRef] [Green Version]
- Alzahrani, S.M.; Ebert, P.R. Attenuation of radiation toxicity by the phosphine resistance factor dihydrolipoamide dehydrogenase (DLD). Sci. Rep. 2019, 9, 6455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, S.M.; Ebert, P.R. Pesticidal Toxicity of Phosphine and Its Interaction with Other Pest Control Treatments. Curr. Issues Mol. Biol. 2023, 45, 2461-2473. https://doi.org/10.3390/cimb45030161
Alzahrani SM, Ebert PR. Pesticidal Toxicity of Phosphine and Its Interaction with Other Pest Control Treatments. Current Issues in Molecular Biology. 2023; 45(3):2461-2473. https://doi.org/10.3390/cimb45030161
Chicago/Turabian StyleAlzahrani, Saad M., and Paul R. Ebert. 2023. "Pesticidal Toxicity of Phosphine and Its Interaction with Other Pest Control Treatments" Current Issues in Molecular Biology 45, no. 3: 2461-2473. https://doi.org/10.3390/cimb45030161
APA StyleAlzahrani, S. M., & Ebert, P. R. (2023). Pesticidal Toxicity of Phosphine and Its Interaction with Other Pest Control Treatments. Current Issues in Molecular Biology, 45(3), 2461-2473. https://doi.org/10.3390/cimb45030161