The In Vitro and In Vivo Anticancer Effect of Photomed for Photodynamic Therapy: Comparison with Photofrin and Radachlorin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Photomed
2.3. Singlet Oxygen Photogeneration Analysis
2.4. In Vitro Cytotoxicity Test
2.5. In Vivo Anticancer Efficacy Study
2.6. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Photomed
3.2. Singlet Oxygen Photogeneration Analysis
3.3. In Vitro Cytotoxicity Test
3.4. In Vivo Anticancer Efficacy Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.C.; Chang, W.W.; Yu, H.H.; Lu, C.Y.; Chang, C.L.; Chow, J.M.; Chen, S.U.; Cheng, Y.; Wu, S.Y. Adjuvant radiotherapy and chemotherapy improve survival in patients with pancreatic adenocarcinoma receiving surgery: Adjuvant chemotherapy alone is insufficient in the era of intensity modulation radiation therapy. Cancer Med. 2018, 7, 2328–2338. [Google Scholar] [CrossRef] [PubMed]
- Demaria, S.; Golden, E.B.; Formenti, S.C. Role of Local Radiation Therapy in Cancer Immunotherapy. JAMA Oncol. 2015, 1, 1325–1332. [Google Scholar] [CrossRef] [PubMed]
- Stubbe, C.E.; Valero, M. Complementary strategies for the management of radiation therapy side effects. J. Adv. Pract. Oncol. 2013, 4, 219–231. [Google Scholar] [CrossRef]
- Behranvand, N.; Nasri, F.; Emmameh, Z.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2021, 71, 507–526. [Google Scholar] [CrossRef]
- Dalgaty, F.J.; Year, F.; Tayside, N.H.S. Principles Underpinning the Treatment of Cancer with Drugs. Scott. Univ. Med. J. 2013, 2, 47–52. [Google Scholar]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalt. Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef]
- Xu, J.; Gao, J.; Wei, Q. Combination of Photodynamic Therapy with Radiotherapy for Cancer Treatment. J. Nanomater. 2016, 2016, 8507924. [Google Scholar] [CrossRef] [Green Version]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387. [Google Scholar] [CrossRef]
- Callaghan, S.; Senge, M.O. The good, the bad, and the ugly-controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem. Photobiol. Sci. 2018, 17, 1490–1514. [Google Scholar] [CrossRef]
- Lismont, M.; Dreesen, L.; Wuttke, S. Metal-Organic Framework Nanoparticles in Photodynamic Therapy: Current Status and Perspectives. Adv. Funct. Mater. 2017, 27, 1606314. [Google Scholar] [CrossRef]
- Ji, W.; Yoo, J.-W.; Bae, E.K.; Lee, J.H.; Choi, C.M. The effect of Radachlorin® PDT in advanced NSCLC: A pilot study. Photodiagnosis Photodyn. Ther. 2013, 10, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Kustov, A.V.; Berezin, D.B.; Zorin, V.P.; Morshnev, P.K.; Kukushkina, N.V.; Krestyaninov, M.A.; Kustova, T.V.; Strelnikov, A.I.; Lyalyakina, E.V.; Zorina, T.E.; et al. Monocationic Chlorin as a Promising Photosensitizer for Antitumor and Antimicrobial Photodynamic Therapy. Pharmaceutics 2023, 15, 61. [Google Scholar] [CrossRef]
- Kustov, A.V.; Morshnev, P.K.; Kukushkina, N.V.; Smirnova, N.L.; Berezin, D.B.; Karimov, D.R.; Shukhto, O.V.; Kustova, T.V.; Belykh, D.V.; Mal, M.V.; et al. Solvation, Cancer Cell Photoinactivation and the Interaction of Chlorin Photosensitizers with a Potential Passive Carrier Non-Ionic Surfactant Tween 80. Int. J. Mol. Sci. 2022, 23, 5294. [Google Scholar] [CrossRef] [PubMed]
- Pylina, Y.I.; Shadrin, D.M.; Shevchenko, O.G.; Startseva, O.M.; Velegzhaninov, I.O.; Belykh, D.V.; Velegzhaninov, I.O. Dark and Photoinduced Cytotoxic Activity of the New Chlorophyll-a Derivatives with Oligoethylene Glycol Substituents on the Periphery of Their Macrocycles. Int. J. Mol. Sci. 2017, 18, 103. [Google Scholar] [CrossRef] [Green Version]
- Ponomarev, G.V.; Pavlov, V.Y.; Konstantinov, I.O.; Timofeev, V.P.; Kimel, B.G. Synthesis of Pyrazoleporphyrins and Pyrazolechlorins by Cyclization of Peripheral β-Diketone Groups of Porphyrins and Chlorins with Phenylhydrazines. Russ. J. Org. Chem. 2003, 39, 1683–1684. [Google Scholar] [CrossRef]
- Bennani, F.E.; Doudach, L.; Cherrah, Y.; Ramli, Y.; Karrouchi, K.; Ansar, M.; Faouzi, M.E.A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem. 2020, 97, 1–62. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Paliwal, S.; Chauhan, R. Synthesis of pyrazole derivatives possessing anticancer activity: Current status. Synth. Commun. 2014, 44, 1521–1578. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, H.J.; Lee, B.R.; Lee, S.B.; Lee, D.S.; Han, Y.R.; Kim, K.S.; Song, Y.K.; Shim, Y.K.; Park, S.J.; et al. Synthesis and photodynamic effect of 3-substituted methyl pyropheophorbide-a derivatives as novel photodynamic therapeutic agents for cancer treatment. J. Ind. Eng. Chem. 2022, 105, 513–519. [Google Scholar] [CrossRef]
- Chang, J.E.; Liu, Y.; Lee, T.H.; Lee, W.K.; Yoon, I.; Kim, K. Tumor size-dependent anticancer efficacy of chlorin derivatives for photodynamic therapy. Int. J. Mol. Sci. 2018, 19, 1596. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.E.; Cho, H.J.; Yi, E.; Kim, D.D.; Jheon, S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J. Photochem. Photobiol. B Biol. 2016, 158, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Ormond, A.B.; Freeman, H.S. Dye sensitizers for photodynamic therapy. Materials 2013, 6, 817–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neginskaya, M.A.; Berezhnaya, E.V.; Rudkovskii, M.V.; Uzdensky, A.B. Radachlorin as a photosensitizer. In Proceedings of the Saratov Fall Meeting 2014: Optical Technologies in Biophysics and Medicine XVI, Laser Physics and Photonics XVI and Computational Biophysics, Saratov, Russian, 23–26 September 2015; Volume 9448. [Google Scholar] [CrossRef]
- Al Moustafa, A.E. Photodynamic Diagnosis and Therapy for Oral Potentially Malignant Disorders and Cancers; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9783319480541. [Google Scholar]
- Usuda, J.; Kato, H.; Okunaka, T.; Furukawa, K.; Tsutsui, H.; Yamada, K.; Suga, Y.; Honda, H.; Nagatsuka, Y.; Ohira, T.; et al. Photodynamic Therapy (PDT) for Lung Cancers. J. Thorac. Oncol. 2006, 1, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Filonenko, E.V.; Sokolov, V.V.; Chissov, V.I.; Lukyanets, E.A.; Vorozhtsov, G.N. Photodynamic therapy of early esophageal cancer. Photodiagnosis Photodyn. Ther. 2008, 5, 187–190. [Google Scholar] [CrossRef]
- Usuda, J.; Ichinose, S.; Ishizumi, T.; Hayashi, H.; Ohtani, K.; Maehara, S.; Ono, S.; Honda, H.; Kajiwara, N.; Uchida, O.; et al. Outcome of photodynamic therapy using NPe6 for bronchogenic carcinomas in central airways >1.0 cm in diameter. Clin. Cancer Res. 2010, 16, 2198–2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furukawa, K.; Kato, H.; Konaka, C.; Okunaka, T.; Usuda, J.; Ebihara, Y. Locally Recurrent Central-Type Early Stage Lung Cancer <1.0 cm in Diameter After Complete Remission by Photodynamic Therapy. Chest 2005, 128, 3269–3275. [Google Scholar] [CrossRef] [Green Version]
- Seçil, M.; Çullu, N.; Aslan, G.; Mungan, U.; Uysal, F.; Tuna, B.; Yörükoğlu, K. The effect of tumor volume on survival in patients with renal cell carcinoma. Diagn. Interv. Radiol. 2012, 18, 480–487. [Google Scholar] [CrossRef]
- Zhang, J.; Gold, K.A.; Lin, H.Y.; Swisher, S.G.; Xing, Y.; Lee, J.J.; Kim, E.S.; William, W.N.J. Relationship between tumor size and survival in non-small-cell lung cancer (NSCLC): An analysis of the surveillance, epidemiology, and end results (SEER) registry. J. Thorac. Oncol. 2015, 10, 682–690. [Google Scholar] [CrossRef] [Green Version]
Photosensitizer | Class | Molecular Formula | Excitation Wavelength (nm) | Molar Extinction Coefficient (M−1 cm−1) | Relative Tumor Volume (at Day 21) |
---|---|---|---|---|---|
Photofrin | Porphyrin | C34H38N4NaO5 | 630 | 3000 | 6.76 |
Radachlorin | Chlorin | C34H36N4O6 C33H34N4O5 C33H34N4O6 | 662 | 34200 | 6.77 |
Photomed | Chlorin | C38H42N6O3 | 656 | 42463 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, J.; Yoon, H.; Chae, Y.-J.; Rhew, K.; Chang, J.-E. The In Vitro and In Vivo Anticancer Effect of Photomed for Photodynamic Therapy: Comparison with Photofrin and Radachlorin. Curr. Issues Mol. Biol. 2023, 45, 2474-2490. https://doi.org/10.3390/cimb45030162
Kim J, Kim J, Yoon H, Chae Y-J, Rhew K, Chang J-E. The In Vitro and In Vivo Anticancer Effect of Photomed for Photodynamic Therapy: Comparison with Photofrin and Radachlorin. Current Issues in Molecular Biology. 2023; 45(3):2474-2490. https://doi.org/10.3390/cimb45030162
Chicago/Turabian StyleKim, Jieun, Johyun Kim, Heewon Yoon, Yoon-Jee Chae, Kiyon Rhew, and Ji-Eun Chang. 2023. "The In Vitro and In Vivo Anticancer Effect of Photomed for Photodynamic Therapy: Comparison with Photofrin and Radachlorin" Current Issues in Molecular Biology 45, no. 3: 2474-2490. https://doi.org/10.3390/cimb45030162
APA StyleKim, J., Kim, J., Yoon, H., Chae, Y. -J., Rhew, K., & Chang, J. -E. (2023). The In Vitro and In Vivo Anticancer Effect of Photomed for Photodynamic Therapy: Comparison with Photofrin and Radachlorin. Current Issues in Molecular Biology, 45(3), 2474-2490. https://doi.org/10.3390/cimb45030162