Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses
Abstract
:1. Introduction
2. Structural Features and Classification of the WRKY Transcription Factors
3. Biological Functions of WRKY Transcription Factors in Plants
3.1. Regulatory Roles in Plant Biotic Stress Responses
3.2. Regulatory Roles in Plant Abiotic Stress Responses
3.2.1. Temperature Stress
3.2.2. Drought Stress and Salt Stress
3.2.3. Nutrient Stress
Type of Stress | Species | Gene | References |
---|---|---|---|
High temperature | Pepper (Capsicum annuum) | CaWRKY40 | [64] |
Arabidopsis (Arabidopsis thaliana) | AtWRKY25, AtWRKY26, AtWRKY33 | [65] | |
Wheat (Triticum aestivum) | TaWRKY70 | [66] | |
Lily (Lilium browniivar) | LlWRKY22 | [67] | |
Low temperature | Cultivated tomato (Solanum lycopersicum) | SlWRKY33 | [69] |
Rice (Oryza sativa) | OsWRKY76 | [70] | |
Arabidopsis (Arabidopsis thaliana) | AtWRKY34 | [71] | |
Drought | German iris (Iris germanica) | IgWRKY50, IgWRKY32 | [75] |
Wild soybean (Glycine soja) | GsWRKY20 | [76] | |
Soybean (Glycine max) | GmWRKY12 | [77] | |
Upland cotton (Gossypium hirsutum) | GhWRKY1 | [80] | |
Pinus massoniana (Pinus massoniana) | PmWRKY31 | [81] | |
Salt | Soybean (Glycine max) | GmWRKY6 | [77] |
Cotton (Gossypium hirsutum) | GhWRKY34, GhWRKY41 | [78,79] | |
Arabidopsis (Arabidopsis thaliana) | AtWRKY33 | [82] | |
Chrysanthemum (Dendranthema grandiflorum) | DgWRKY1 | [85] | |
Diversiform-leaved poplar (Populus euphratica) | PeWRKY1 | [86] | |
Phosphorus | Arabidopsis (Arabidopsis thaliana) | AtWRKY75 | [87] |
Gossypium barbadense (Gossypium barbadense) | GbWRKY1 | [88] | |
Aluminum | Arabidopsis (Arabidopsis thaliana) | AtWRKY46 | [93] |
Soybean (Glycine max) | GmWRKY21 | [94] | |
Cadmium | Poplar (Populus yunnanensis) | PyWRKY75 | [95] |
Iron | Rice (Oryza sativa) | OsWRKY74 | [96] |
3.2.4. Oxidative Stress
4. Resistance-Related Regulatory Effects of WRKY Transcription Factors on Plant
Secondary Metabolism
5. WRKY Transcription Factor Regulatory Network
5.1. Self-Regulation and Cross-Regulation by WRKY Transcription Factors
5.2. WRKY Transcription Factors Interact with the Downstream Target Genes
5.3. WRKY Transcription Factors Involved in Plant Hormone Signal Transduction
5.4. Other Regulatory Networks
6. Summary and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.S.; Hou, N.; Fang, N.; He, J.Q.; Ma, Z.Q.; Guan, Q.M.; Li, X.W. Cold shock protein 3 plays a negative role in apple drought tolerance by regulating oxidative stress response. J. Plant Physiol. Biochem. 2021, 168, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, Y.; Zhang, D.; Tang, X.; Li, Z.; Shen, C.; Han, X.; Deng, W.; Yin, W.; Xia, X. PtrWRKY75 overexpression reduces the stomatal aperture and improves drought tolerance by salicylic acid-induced reactive oxygen species accumulation in poplar. Environ. Exp. Bot. 2020, 176, 104117. [Google Scholar] [CrossRef]
- Cocucci, S.; Morgutti, S.; Cocucci, M.; Scienza, A. A possible relationship between stalk necrosis and membrane transport in grapevine cultivars. J. Sci. Hortic. 1988, 34, 67–74. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Y.; Sun, W.M.; Han, K.M.; Yang, M.; Si, Z.Z.; Li, G.L.; Qiao, Y.K. Effects of exogenous salicylic acid on the resistance response of wild soybean plants (Glycine soja) infected with Soybean mosaic virus. J. Can. J. Plant Pathol. 2020, 42, 84–93. [Google Scholar] [CrossRef]
- Zhu, H.; Zhou, Y.; Zhai, H.; He, S.; Zhao, N.; Liu, Q. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules 2020, 10, 506. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.; Wu, Q.; Wang, A.; Li, Q.; Dong, Q.; Yang, J.; Zhao, H.; Wang, X.; Chen, H.; Li, C. A WRKY transcription factor, FtWRKY46, from Tartary buckwheat improves salt tolerance in transgenic Arabidopsis thaliana. Plant Physiol. Biochem. 2020, 147, 43–53. [Google Scholar] [CrossRef]
- Gullì, M.; De, P.M.; Perrotta, C.; Rampion, P. A stress-related transcription factor belonging to the YL-1 family is differently regulated in durum wheat cultivars differing in drought sensitivity. J. Plant Physiol. Biochem. 2022, 170, 307–315. [Google Scholar] [CrossRef]
- Chen, M.; Na, S. Overexpression of maize MYB-IF35 increases chilling tolerance in Arabidopsis. J. Plant Physiol. Biochem. 2019, 135, 167–173. [Google Scholar]
- Xuan, C.N.; Sun, H.K.; Hussain, J.A.; Yeji, Y.; Hay, J.H.; Ju, S.Y.; Chae, O.L.; Yun, D.J.; Woo, S.C. A positive transcription factor in osmotic stress tolerance, ZAT10, is regulated by MAP kinases in Arabidopsis. J. Plant Biol. 2016, 59, 55–61. [Google Scholar]
- Rushton, P.J.; Somssich, I.E.; Ringler, P.; Shen, Q.J. WRKY transcription factors. Trends Plant Sci. 2010, 15, 247–258. [Google Scholar] [CrossRef]
- Shabir, H.; Wani, S.A.; Balwant, S.; Abhishek, B.; Rohit, J. WRKY transcription factors and plant defense responses: Latest discoveries and future prospects. J. Plant Cell Rep. 2021, 40, 1–15. [Google Scholar]
- Ishiguro, S.; Nakamura, K. Characterization of a cDNA encoding a novel DNA-binding protein, Spf1, that recognizes Sp8 sequences in the 5 upstream regions of genes coding for sporamin and beta-amylase from sweet potato. J. Mol. Gen. Genet. 1994, 244, 563–571. [Google Scholar] [CrossRef] [PubMed]
- Rushton, P.J.; Macdonald, H.; Huttly, A.K.; Lazarus, C.M.; Hooley, R. Members of a new family of DNA-binding proteins bind to a conserved Cis-element in the promoters of A-Amy2 genes. J. Plant Mole Biol. 1995, 29, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Madhunita, B.; Ralf, O. WRKY transcription factors: Jack of many trades in plant. J. Plant Signal. Behav. 2014, 9, e27700. [Google Scholar]
- Rushton, D.L.; Tripathi, P.; Rabara, R.C.; Lin, J.; Ringler, P.; Boken, A.K.; Langum, T.J.; Smidt, L.; Boomsma, D.D.; Emme, N.J.; et al. WRKY transcription factors: Key components in abscisic acid signaling. J. Plant Biotechnol. 2012, 10, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Bao, W.Q.; Wang, X.W.; Chen, M.; Chai, T.Y.; Wang, H. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana. Plant Cell Rep. 2018, 37, 1033–1048. [Google Scholar] [CrossRef]
- Wang, Y.J.; Jiang, L.; Chen, J.Q.; Tao, L.; An, Y.M.; Cai, H.S.; Guo, C.H. Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS ONE 2018, 13, e0192382. [Google Scholar] [CrossRef]
- Li, W.X.; Pang, S.Y.; Lu, Z.G.; Jin, B. Function and mechanism of WRKY transcription factors in abiotic stress responses of plants. Plants 2020, 9, 1515. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, P.; Xiong, F.; Zhang, X.J.; Song, H. WRKY Genes Improve Drought Tolerance in Arachis duranensis. J. Front. Plant Sci. 2022, 13, 910408. [Google Scholar] [CrossRef]
- Eulgem, T.; Rushton, P.J.; Robatzak, S.; Somssich, I.E. The WRKY superfamily of plant transcription factors. J. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef]
- Chen, L.G.; Song, Y.; Li, S.J.; Zhang, L.P.; Zou, C.S.; Yu, D.Q. The role of WRKY transcription factors in plant abiotic stresses. J. BBA-Gene Regul. Mech. 2012, 1819, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Goyal, P.; Devi, R.; Verma, B.; Hussain, S.; Arora, P.; Tabassum, R.; Gupta, S. WRKY transcription factors: Evolution, regulation, and functional diversity in plants. J. Protoplasma 2023, 260, 331–348. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.G.; Shi, J.L.; Cao, J.L.; He, M.Y.; Wang, Y.J. VpWRKY3 abiotic and abiotic stress-related transcription factor from the Chinese wild Vitis pseudoreticulata. J. Plant Cell Rep. 2012, 31, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, W.; Song, Q.; Xuan, Y.; Li, K.; Cheng, L.; Qiao, H.; Wang, G.; Zhou, C. A WRKY transcription factor, TaWRKY40-D, promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat. J. Plant Biol. 2020, 22, 1072–1085. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.T.; Liu, J.; Lin, G.F.; Wang, A.; Wang, Z.H.; Lu, G.D. Overexpression of AtWRKY28 and AtWRKY75 in Arabidopsis enhances resistance to oxalic acid and Sclerotinia sclerotiorum. J. Plant Cell Rep. 2013, 32, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.R.; Dong, Q.Y.; Yu, D.Q. Arabidopsis WRKY46 coordinates with WRKY70 and WRKY53 in basal resistance against the pathogen Pseudomonas syringae. J. Plant Sci. 2012, 185–186, 288–297. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. J. Nat. 2006, 444, 323–329. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Vance, R.E.; Dangl, J.L. Intracellular innate immune surveillance devices in plants and animals. J. Sci. 2016, 354, 6395. [Google Scholar] [CrossRef]
- Gust, A.A.; Pruitt, R.; Nürnberger, T. Sensing danger: Key to activating plant immunity. J. Trends Plant Sci. 2017, 22, 779–791. [Google Scholar] [CrossRef]
- Saijo, Y.; Loo, E.P.-I.; Yasuda, S. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 2018, 93, 592–613. [Google Scholar] [CrossRef]
- Shinde, B.A.; Dholakia, B.B.; Hussain, K.; Aharoni, A.; Giri, A.P.; Kamble, A.C. WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant Biotechnol. J. 2018, 16, 1502–1513. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.L.; Qiu, B.L.; Su, L.L.; Wang, H.L.; Cui, X.M.; Ge, F.; Liu, D.Q. Panax notoginseng WRKY Transcription Factor 9 Is a Positive Regulator in Responding to Root Rot Pathogen Fusarium solani. J. Front. Plant Sci. 2022, 13, 930644. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, A.; Fukushima, S.; Goto, S.; Matsushita, A.; Shimono, M.; Sugano, S.; Jiang, C.J.; Akagi, A.; Yamazaki, M.; Inoue, H.; et al. Genome-wide identification of WRKY45-regulated genes that mediate benzothiadiazole-induced defense responses in rice. J. BMC Plant Biol. 2013, 13, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.Y.; Li, J.; Wu, H.; Jiang, S.J.; Zhu, Y.Y.; Liu, C.Y.; Xu, W.J.; Li, Q.; Yang, L.P. Analyses of Botrytis cinerea-responsive LrWRKY genes from Lilium regale reveal distinct roles of two LrWRKY transcription factors in mediating responses to B. cinerea. J. Plant Cell Rep. 2022, 41, 995–1012. [Google Scholar] [CrossRef]
- Wei, W.; Cui, M.Y.; Hu, Y.; Gao, K.; Xie, Y.G.; Jiang, Y.; Feng, J.Y. Ectopic expression of FvWRKY42 a WRKY transcription factor from the diploid woodland strawberry (Fragaria vesca), enhances resistance to powdery mildew, improves osmotic stress resistance, and increases abscisic acid sensitivity in Arabidopsis. J. Plant Sci. 2018, 275, 60–74. [Google Scholar] [CrossRef]
- Chen, C.H.; Chen, Z.X. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. J. Plant Physiol. 2002, 129, 706–716. [Google Scholar] [CrossRef]
- Zhu, J.; Zhong, S.F.; Guan, J.; Chen, W.; Yang, H.; Yang, H.; Chen, C.; Tan, F.Q.; Ren, T.H.; Li, Z.; et al. Genome-Wide Identification and Expression Analysis of WRKY Transcription Factors in Akebia trifoliata: A Bioinformatics Study. J. Genes 2022, 13, 1540. [Google Scholar] [CrossRef]
- Dong, J.X.; Chen, C.H.; Chen, Z.X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. J. Plant Mol. Biol. 2003, 51, 21–37. [Google Scholar] [CrossRef]
- Yang, B.; Jiang, Y.Q.; Rahman, M.; Deyholos, M.; Kav, N. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments. J. BMC Plant Biol. 2009, 9, 68. [Google Scholar] [CrossRef]
- Kalde, M.; Barth, M.; Somssich, I.E.; Lippok, B. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Mol. Plant-Microbe Interact. 2003, 16, 295–305. [Google Scholar] [CrossRef]
- Eulgem, T. Regulation of the Arabidopsis defense transcriptome. J. Trends Plant Sci. 2005, 10, 71–78. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, N.; Guo, X.Q.; Gao, Z. Ghwrky44, a WRKY transcription factor of cotton, mediates defense responses to pathogen infection in transgenic Nicotiana benthamiana. J. Plant Cell Tissue Organ Cult. 2015, 121, 127–140. [Google Scholar] [CrossRef]
- Liu, F.; Li, X.X.; Wang, M.R.; Wen, J.; Yi, B.; Shen, J.X.; Ma, C.Z.; Fu, T.D.; Tu, J.X. Interactions of Wrky15 and Wrky33 transcription factors and their roles in the resistance of Oilseed rape to Sclerotinia infection. Plant Biotechnol. J. 2018, 16, 911–925. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tao, F.; Tian, W.; Guo, Z.F.; Chen, X.M.; Xu, X.M.; Shang, H.S.; Hu, X.P. The wheat WRKY transcription factors Tawrky49 and Tawrky62 confer differential high-temperature seedling-plant resistance to Puccinia striiformis F. sp. tritici. PLoS ONE 2017, 12, e0181963. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xu, P.; Meng, J.; Li, J.B.; Jiang, N.; Luan, Y.S. Transcriptome signatures of tomato leaf induced by phytophthora infestans and functional identification of transcription factor Spwrky3. J. Theor. Appl. Genet. 2018, 131, 787–800. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Li, X.; Yan, S.; Yu, T.; Yang, J.Y.; Dong, J.F.; Zhang, S.H.; Zhao, J.L.; Yang, T.F.; Mao, X.X.; et al. Oswrky67 Positively regulates blast and bacteria blight resistance by direct activation of Pr genes in rice. J. BMC Plant Biol. 2018, 18, 257. [Google Scholar] [CrossRef]
- Luan, Q.; Chen, C.; Liu, M.Y.; Li, Q.; Wang, L.; Ren, Z.H. Cswrky50 mediates defense responses to pseudoperonospora cubensis infection in cucumis sativus. J. Plant Sci. 2019, 279, 59–69. [Google Scholar] [CrossRef]
- Shan, W.; Chen, J.Y.; Kuang, J.F.; Lu, W.J. Banana fruit nac transcription factor manac5 cooperates with mawrkys to enhance the expression of pathogenesis-related genes against Colletotrichum musae. J. Mol. Plant Pathol. 2016, 17, 330–338. [Google Scholar] [CrossRef]
- Hu, L.; Ye, M.; Li, R.; Lou, Y.G. Oswrky53, a versatile switch in regulating herbivore-induced defense responses in rice. J. Plant Signal. 2016, 11, e1169357. [Google Scholar] [CrossRef]
- Ma, Y.; Xue, H.; Zhang, L.; Zhang, F.; Ou, C.; Wang, F.; Zhang, Z. Involvement of auxin and brassinosteroid in dwarfism of autotetraploid apple (Malus × domestica). J. Sci. Rep. 2016, 6, 26719. [Google Scholar] [CrossRef]
- Rishmawi, L.; Juengst, C.; Schauss, A.C.; Schrader, A.; Hülskamp, M. Non-cell-autonomous regulation of root hair patterning genes by WRKY75 in Arabidopsis. J. Plant Physiol. 2014, 165, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, Q.Y.; Chen, W.W.; Liu, X.Y.; Xia, Y.; Guo, Q.G.; Jing, D.L.; Liang, G.L. A WRKY Transcription Factor, EjWRKY17, from Eriobotrya japonica Enhances Drought Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2021, 22, 5593. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.Z.; Guo, L.; Liu, R.; Jiao, B.; Zhao, X.; Ling, Z.Y.; Luo, K.M. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling. PLoS ONE 2016, 11, e0149137. [Google Scholar] [CrossRef]
- Hui, E.S.; Wang, P.F.; Lin, J.Y.; Zhao, C.Z.; Bi, Y.P.; Wang, X.J. Genome-wide identification and characterization of WRKY gene family in peanut. J. Front. Plant Sci. 2016, 7, 534. [Google Scholar]
- Rohit, J.; Shabir, H.W.; Balwant, S.; Abhishek, B.; Zahoor, A.D.; Ajaz, A.L.; Ashwani, P.; Sneh Lata, S.P. Transcription factors and plants response to drought stress: Current understanding and future directions. J. Front. Plant Sci. 2016, 7, 1029. [Google Scholar]
- Khoso, M.A.; Hussain, A.; Ritonga, F.N.; Ali, Q.; Channa, M.M.; Alshegaihi, R.M.; Meng, Q.L.; Ali, M.; Zaman, W.; Brohi, R.D.; et al. WRKY transcription factors (TFs): Molecular switches to regulate drought, temperature, and salinity stresses in plants. J. Front. Plant Sci. 2022, 13, 1039329. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.C.; Yeap, W.C.; Appleton, D.R.; Ho, C.L.; Kulaveerasingam, H. Identification of drought-responsive Elaeis guineensis WRKY transcription factors with sensitivity to other abiotic stresses and hormone treatments. J. BMC Genom. 2022, 23, 164. [Google Scholar] [CrossRef]
- Grover, A.; Mittal, D.; Negi, M.; Dhruv, L. Generating high temperature tolerant transgenic plants: Achievements and challenges. J. Plant Sci. 2013, 205, 38–47. [Google Scholar] [CrossRef]
- Naohiko, O.; Hikaru, S.; Kazuo, S.; Kazuko, Y.S. Transcriptional regulatory network of plant heat stress response. J. Trends Plant Sci. 2017, 22, 53–65. [Google Scholar]
- Meher, J.; Lenka, S.; Sarkar, A.; Sarma, B.K. Transcriptional regulation of OsWRKY genes in response to individual and overlapped challenges of Magnaporthe oryzae and drought in indica genotypes of rice. J. Environ. Exp. Bot. 2023, 207, 105221. [Google Scholar] [CrossRef]
- Rizhsky, L.; Liang, H.R. The combined effect of drought stress and heat shock on gene expression in tobacco. J. Plant Physiol. 2002, 130, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xue, H.d.; Zhu, L.p.; Wang, H.Q.; Long, H.; Zhao, J.; Meng, F.N.; Liu, Y.F.; Ye, Y.; Luo, X.M.; et al. ERF49 mediates brassinosteroid regulation of heat stress tolerance in Arabidopsis thaliana. J. BMC Biol. 2022, 20, 254. [Google Scholar] [CrossRef] [PubMed]
- Jacob, P.; Hirt, H.; Bendahmane, A. The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol. J. 2017, 15, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Dang, F.F.; Wang, Y.N.; Yu, L.; Eulgem, T.; Lai, Y.; Liu, Z.Q.; Wang, X.; Qiu, A.L.; Zhang, T.X.; Lin, J.; et al. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. J. Plant Cell Environ. 2013, 36, 757–774. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Fu, Q.T.; Chen, L.G.; Huang, W.D.; Yu, D.Q. Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. J. Planta 2011, 233, 1237–1252. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tao, F.; An, F.; Zou, Y.P.; Tian, W.; Chen, X.M.; Xu, X.M.; Hu, X.P. Wheat transcription factor TaWRKY70 is positively involved in high-temperature seedling plant resistance to Puccinia striiformis f.sp.tritici. J. Mol. Plant Pathol. 2016, 18, 649–661. [Google Scholar] [CrossRef]
- Wu, Z.; Li, T.; Cao, X.; Zhang, D.; Teng, N.J. Lily WRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B. J. Hortic. Res. 2022, 9, uhac186. [Google Scholar] [CrossRef]
- Dou, L.L.; Guo, Y.N.; Ondati, E.; Pang, C.Y.; Wei, H.L.; Song, M.Z.; Fan, S.L.; Yu, S.X. Identification and expression analysis of group III WRKY transcription factors in cotton. J. Integr. Agric. 2016, 15, 2469–2480. [Google Scholar] [CrossRef]
- Guo, M.Y.; Yang, F.J.; Liu, C.X.; Zou, J.P.; Qi, Y.; Fotopoulos, V.; Lu, G.; Yu, J.Q.; Zhou, J. A single nucleotide polymorphism in the WRKY33 promoter is associated with the cold sensitivity in cultivated tomato. J. New Phytol. 2022, 236, 989–1005. [Google Scholar] [CrossRef]
- Yokotani, N.; Sato, Y.k.; Tanabe, S.; Chujo, T.; Shimizu, T.; Okada, K.; Yamane, H.; Shimono, M.; Sugano, S.; Takatsuji, H.; et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J. Exp. Bot. 2013, 64, 5085–5097. [Google Scholar] [CrossRef]
- Jiang, Y.Q.; Deyholos, M.K. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. J. BMC Plant Biol. 2006, 6, 25. [Google Scholar]
- Ma, Y.; Szostkiewicz, I.; Korte, A.; Moes, D.; Yang, Y.; Christmann, A.; Grill, E. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 2009, 324, 1064–1068. [Google Scholar] [CrossRef] [PubMed]
- Cutler, S.R.; Rodriguez, P.L.; Finkelstein, R.R.; Abrams, S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant Biol. 2010, 61, 651–679. [Google Scholar] [CrossRef]
- Yan, H.R.; Jia, H.H.; Chen, X.B.; Hao, L.L.; An, H.L.; Guo, X.Q. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. J. Plant Cell Physiol. 2014, 55, 2060–2076. [Google Scholar] [CrossRef]
- Zhang, J.W.; Huang, D.Z.; Zhao, X.J.; Zhang, M.; Wang, Q.; Hou, X.Y.; Di, D.L.; Su, B.B.; Wang, S.K.; Sun, P. Drought-responsive WRKY transcription factor genes IgWRKY50 and IgWRKY32 from Iris germanica enhance drought resistance in transgenic Arabidopsis. J. Front. Plant Sci. 2022, 13, 983600. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Bai, X.; Sun, X.L.; Zhu, D.; Liu, B.h.; Ji, W.; Cai, H.; Cao, L.; Wu, J.; Hu, M.R.; et al. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signaling. J. Exp. Bot. 2013, 8, 2155–2169. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.Y.; Du, Y.T.; Ma, J.; Min, D.H.; Jin, L.G.; Chen, J.; Chen, M.; Zhou, Y.B.; Ma, Y.Z.; Xu, Z.S.; et al. The WRKY transcription factor GmWRKY12 confers drought and salt tolerance in soybean. Int. J. Mol. Sci. 2018, 19, 4087. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.N.; Gong, S.Y.; Lu, R.; Li, Y.; Li, X.B. Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. J. Plant Physiol. Biochem. 2015, 96, 311–320. [Google Scholar]
- Chu, X.Q.; Wang, C.; Chen, X.B.; Lu, W.J.; Li, H.; Wang, X.L.; Hao, L.L.; Guo, X.Q. Correction: The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana. PLoS ONE 2016, 10, e0143022. [Google Scholar] [CrossRef]
- Hu, Q.; Ao, C.W.; Wang, X.R.; Wu, Y.F.; Du, X.Z. GhWRKY1-like, a WRKY transcription factor, mediates drought tolerance in Arabidopsis via modulating ABA biosynthesis. J. BMC Plant Biol. 2021, 21, 458. [Google Scholar] [CrossRef]
- Sun, S.; Chen, H.; Yang, Z.Q.; Lu, J.Y.; Wu, D.S.; Luo, Q.F.; Jia, J.; Tan, J.H. Identification of WRKY transcription factor family genes in Pinus massoniana Lamb. and their expression patterns and functions in response to drought stress. J. BMC Plant Biol. 2022, 22, 424. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.T.; Yu, D.Q. Expression profiles of AtWRKY25, AtWRKY26, and AtWRKY33 under abiotic stresses. J. Hered. 2010, 32, 848–856. [Google Scholar]
- Zhao, K.X.; Chu, S.S.; Zhang, X.D.; Wang, L.P.; Rono, J.K.; Yang, Z.M. AtWRKY21 negatively regulates tolerance to osmotic stress in Arabidopsis. J. Environ. Exp. Bot. 2020, 169, 103920. [Google Scholar] [CrossRef]
- Chen, S.Y.; Ding, Y.L.; Tian, H.N.; Wang, S.C.; Zhang, Y.L. WRKY54 and WRKY70 positively regulate SARD1 and CBP60g expression in plant immunity. J. Plant Signal. Behav. 2021, 16, 1932142. [Google Scholar] [CrossRef]
- Liu, Q.L.; Xu, K.D.; Pan, Y.Z.; Jiang, B.B.; Liu, G.L.; Yin, J.; Zhang, H.Q. Functional Analysis of a Novel Chrysanthemum WRKY Transcription Factor Gene Involved in Salt Tolerance. J. Plant Mol. Biol. Rep. 2014, 32, 282–289. [Google Scholar] [CrossRef]
- Yao, J.; Shen, Z.D.; Zhang, Y.L.; Wu, X.; Wang, J.H.; Sa, G.; Zhang, Y.H.; Zhang, H.L.; Deng, C.; Liu, J.; et al. Populus euphratica WRKY1 binds the promoter of H+-ATPase gene to enhance gene expression and salt tolerance. J. Exp. Bot. 2020, 71, 1527–1539. [Google Scholar] [CrossRef]
- Devaiah, B.N.; Karthikeyan, A.S.; Raghothama, K.G. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. J. Plant Physiol. 2007, 143, 1789–1801. [Google Scholar] [CrossRef]
- Xu, L.; Jin, L.; Long, L.; Liu, L.L.; He, X.; Gao, W.; Zhu, L.F.; Zhang, X.L. Overexpression of GbWRKY1 positively regulates the Pi starvation response by alteration of auxin sensitivity in Arabidopsis. J. Plant Cell Rep. 2012, 31, 2177–2188. [Google Scholar] [CrossRef]
- Shen, N.; Hou, S.F.; Tu, G.Q.; Lan, W.Z.; Jing, Y.P. Transcription Factor WRKY33 Mediates the Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating Iron Homeostasis in Arabidopsis Roots. Int. J. Mol. Sci. 2021, 22, 9275. [Google Scholar] [CrossRef]
- Zhao, M.H.; Zhang, W.Z.; Ma, D.R.; Xu, Z.J.; Wang, J.Y.; Zhang, L.; Chen, W.F. Altered expression of transcription factor genes in rice flag leaf under low nitrogen stress. Rice Sci. 2012, 19, 100–107. [Google Scholar] [CrossRef]
- Li, J.; Xin, W.; Wang, W.P.; Zhao, S.J.; Xu, L.; Jiang, X.D.; Duan, Y.X.; Zheng, H.L.; Yang, L.M.; Liu, H.L.; et al. Mapping of Candidate Genes in Response to Low Nitrogen in Rice Seedlings. J. Rice 2022, 15, 51. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.Y.; Li, C.X.; Sun, L.; Ren, J.Y.; Li, X.; Ding, Z.J.; Zheng, S.J. A WRKY transcription factor regulates Fe translocation under Fe deficiency. Plant Physiol. 2016, 171, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Ichiro, K.; Yoko, I.; Masami, Y.H.; Toru, F. WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol. Plant 2010, 139, 80–92. [Google Scholar]
- Ding, Z.J.; Yan, J.Y.; Xu, X.Y.; Li, G.X.; Zheng, S.J. WRKY46 functions as a transcriptional repressor of ALMT1, regulating aluminum-induced malate secretion in Arabidopsis. Plant J. Cell Mol. Biol. 2013, 76, 825–835. [Google Scholar] [CrossRef]
- Wu, X.L.; Chen, Q.; Chen, L.L.; Tian, F.F.; Chen, X.X.; Han, C.Y.; Mi, J.X.; Lin, X.Y.; Wan, X.Q.; Jiang, B.B.; et al. A WRKY transcription factor, PyWRKY75, enhanced cadmium accumulation and tolerance in poplar. J. Ecotoxicol. Environ. Saf. 2022, 239, 113630. [Google Scholar] [CrossRef]
- Dai, X.; Wang, Y.; Zhang, W.H. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J. Exp. Bot. 2015, 67, 947–960. [Google Scholar] [CrossRef]
- Muhammad, Z.H.; Sabir, H.; Pia Muhammad, A.R.; Mutahar, I.; Muhammad, I.; Tanvir, S.; Maryam, F.; Shahbaz, A.K.; Imran, K.; Muhammad, S.; et al. Bentonite and Biochar Mitigate Pb Toxicity in Pisum sativum by Reducing Plant Oxidative Stress and Pb Translocation. J. Plants 2019, 8, 571. [Google Scholar]
- Tang, H.; Bi, H.; Liu, B.; Lou, S.L.; Song, Y.; Tong, S.F.; Chen, N.N.; Jiang, Y.Z.; Liu, J.Q.; Liu, H.H. WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence-induced hypoxia response in Arabidopsis thaliana. New Phytol. 2020, 229, 106–125. [Google Scholar] [CrossRef]
- Miao, Y.; Laun, T.M.; Smykowski, A.; Zentgraf, U. Arabidopsis MEKKI can take a shortcut: It can directly interact with senescence-related WRKY53 transcription factor on the protein level and can bind to its promoter. J. Plant Mol. Biol. 2007, 65, 63–76. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, D. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement. J. Plant Cell Rep. 2015, 34, 1295–1306. [Google Scholar] [CrossRef]
- Jia, H.; Wang, C.; Wang, F.; Liu, S.C.; Li, G.L.; Guo, X.Q. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE 2017, 10. [Google Scholar] [CrossRef]
- Liu, W.; Liang, X.Q.; Cai, W.J.; Wang, H.; Liu, X.; Cheng, L.F.; Song, P.H.; Luo, G.J.; Han, D.G. Isolation and Functional Analysis of VvWRKY28 a Vitis vinifera WRKY Transcription Factor Gene, with Functions in Tolerance to Cold and Salt Stress in Transgenic Arabidopsis thaliana. Int. J. Mol. Sci. 2022, 23, 13418. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, R.Y.; Shi, M.; Huang, Q.K.; Zhang, S.W.; Kai, G.Y.; Guo, S.L. Genome-Wide Identification and Comparative Analysis of WRKY Transcription Factors Related to Momilactone Biosynthesis in Calohypnum plumiforme. J. Front. Ecol. Evol. 2022, 9, 809729. [Google Scholar] [CrossRef]
- Xiao, Y.; Feng, J.X.; Li, Q.; Zhou, Y.Y.; Bu, Q.T.; Zhou, J.H.; Tan, H.X.; Yang, Y.B.; Zhang, L.; Chen, W.S. IiWRKY34 positively regulates yield, lignan biosynthesis, and stress tolerance in Isatis indigotica. J. Acta Pharm. Sin. B 2019, 10, 2417–2432. [Google Scholar] [CrossRef]
- Fu, J.Y.; Liu, Q.; Wang, C.; Liang, J.; Liu, L.J.; Wang, Q. ZmWRKY79 positively regulates maize phytoalexin biosynthetic gene expression and is involved in stress response. J. Exp. Bot. 2018, 69, 497–510. [Google Scholar] [CrossRef]
- Kato, N.; Dubouzet, E.; Kokabu, Y.; Yoshida, S.; Taniguchi, Y.; Dubouzet, J.G.; Yazaki, K.; Sato, F. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. J. Plant Cell Physiol. 2007, 48, 8–18. [Google Scholar] [CrossRef]
- Suttipanta, N.; Pattanaik, S.; Kulshrestha, M.; Patra, B.; Singh Sanjay, K.; Yuan, L. The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J. Plant Physiol. 2011, 157, 2081–2093. [Google Scholar] [CrossRef]
- Wang, C.; Hao, X.L.; Wang, Y.; Itay, M.; Zhou, W.; Zhou, W.; Zhou, Z.G.; Kai, G.Y. Identification of WRKY transcription factors involved in regulating the biosynthesis of the anticancer drug camptothecin in Ophiorrhiza pumila. Hortic. Res. 2022, 9, uhac099. [Google Scholar] [CrossRef]
- Spyropoulou, E.A.; Haring, M.A.; Schuurink, R.C. RNA sequencing on Solanum Lycopersicum trichomes identifies transcription factors that activate terpene synthase promoters. J. BMC Genom. 2014, 15, 402. [Google Scholar] [CrossRef]
- Ma, D.M.; Pu, G.B.; Lei, C.Y.; Ma, L.Q.; Wang, H.H.; Guo, Y.W.; Chen, J.L.; Du, Z.G.; Wang, H.; Li, G.F.; et al. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis. J. Plant Cell Physiol. 2009, 50, 2146–2161. [Google Scholar] [CrossRef]
- Xu, Y.H.; Wang, J.W.; Wang, S.; Wang, J.Y.; Chen, X.Y. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. J. Plant Physiol. 2004, 135, 507–515. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.W.; Wang, J.J.; Gao, C.H.; Jin, C.Y.; Li, D.; Peng, D.S.; Du, G.M.; Li, Y.Q.; Chen, M.X. Functional characterization of a heterologously expressed Brassica napus WRKY41-1 transcription factor in regulating anthocyanin biosynthesis in Arabidopsis thaliana. J. Plant Sci. 2018, 268, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.Y.; Xiao, J.; Xie, W.B.; Cheng, H.T.; Li, X.H.; Wang, S.P. Exploring transcriptional signaling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. J. BMC Plant Biol. 2009, 9, 74. [Google Scholar]
- Wang, L.J.; Guo, D.H.; Zhao, G.D.; Wang, J.Y.; Zhang, S.X.; Wang, C.; Guo, X.Q. Group ΙΙc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. New Phytol. 2022, 236, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Zentgraf, U.; Laun, T.; Miao, Y. The complex regulation of WRKY53 during leaf senescence of Arabidopsis thaliana. Eur. J. Cell Biol. 2010, 89, 133–137. [Google Scholar] [CrossRef]
- Turck, F.; Zhou, A.; Somssich, I.E. Stimulus-dependent promoter-specific binding of transcription factor WRKY1 to Its native promoter and the defense-related gene PcPR1-1 in Parsley. J. Plant Cell 2004, 16, 2573–2585. [Google Scholar] [CrossRef]
- Xu, L.; Chen, X.; Zhu, D.Z.; Zong, X.J.; Wei, H.R.; Wang, J.W.; Tan, Y.; Liu, Q.Z. Cloning of PcWRKY3 gene and its expression in response to abiotic stress factors in cherry rootstocks. J. Acta Hortic. 2019, 93–98. [Google Scholar] [CrossRef]
- Jia, C.H.; Wang, Z.; Wang, J.Y.; Miao, H.X.; Zhang, J.B.; Xu, B.Y.; Liu, J.H.; Jin, Z.Q.; Liu, J.H. Genome-Wide Analysis of the Banana WRKY Transcription Factor Gene Family Closely Related to Fruit Ripening and Stress. J. Plants 2022, 11, 662. [Google Scholar] [CrossRef]
- Grzechowiak, M.; Ruszkowska, A.; Sliwiak, J.; Urbanowicz, A.; Jaskolski, M.; Ruszkowski, M. New aspects of DNA recognition by group II WRKY transcription factor revealed by structural and functional study of AtWRKY18 DNA binding domain. Int. J. Biol. Macromol. 2022, 213, 589–601. [Google Scholar] [CrossRef]
- Maeo, K.S.; Kojima-Suzuki, H.A.; Nakamura, K. Role of conserved residues of the WRKY domain in the DNA-binding of tobacco WRKY family proteins. J. Biosci. Biotechnol. Biochem. 2001, 65, 2428–2436. [Google Scholar] [CrossRef]
- Peizhen, Y.; Chen, C.H.; Wang, Z.P.; Fan, B.F.; Chen, Z.X. A pathogen-and salicylic acid-induced WRKY DNA-binding activity recognizes the elicitor response element of the tobacco class I chitinase gene promoter. Plant J. 1999, 18, 141–149. [Google Scholar]
- Zhang, H.; Li, D.; Wang, M.; Liu, W.; Teng, W.J.; Cheng, B.P.; Huang, Q.; Wang, M.; Song, W.W.; Dong, S.M.; et al. The Nicotiana benthamiana mitogen-activated protein kinase cascade and WRKY transcription factor participate in Nep1(Mo)-triggered plant responses. Mol. Plant-Microbe Interact. 2012, 25, 1639. [Google Scholar] [CrossRef]
- Li, L.Q.; Huang, L.P.; Pan, G.; Liu, L.; Wang, X.Y.; Lu, L.M.; He, Y.K.; Wang, X.C.; Dai, S.J. Identifying the Genes Regulated by AtWRKY6 Using Comparative Transcript and Proteomic Analysis under Phosphorus Deficiency. Int. J. Mol. Sci. 2017, 18, 1046. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Xu, Q.; Zhang, F.C.; Chen, Y.; Li, L.Q.; Wu, W.H.; Chen, Y.F. WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis. J. Plant Physiol. 2015, 167, 1579–1591. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.R.; Chen, L.G.; Wang, H.P.; Zhang, L.P.; Wang, F.; Yu, D.Q. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J. 2013, 74, 730–745. [Google Scholar] [CrossRef] [PubMed]
- GarcýaLaynes, S.; HerreraValencia, V.A.; TamayoTorres, L.G.; LimonesBriones, V.; BarredoPool, F.A.; BaasEspinola, F.M.; AlpucheSolís, A.G.; PuchHau, C.; PerazaEcheverria, S. The Banana MaWRKY18, MaWRKY45, MaWRKY60, and MaWRKY70 Genes Encode Functional Transcription Factors and Display Differential Expression in Response to Defense Phytohormones. Genes 2022, 13, 1891. [Google Scholar] [CrossRef]
- He, Y.G.; Zhu, M.H.; Li, Z.H.; Jiang, S.; He, Z.J.; Xu, S.; Chen, X.S.; Hu, Z.L.; Zhang, Z.H. IPA1 Negatively Regulates Early Rice Seedling Development by Interfering with Starch Metabolism via the GA and WRKY Pathways. Int. J. Mol. Sci. 2021, 22, 6605. [Google Scholar] [CrossRef]
- Liu, X.T.; Zhou, X.F.; Li, D.D.; Hong, B.; Gao, J.P.; Zhang, Z. Rose WRKY13 promotes disease protection to Botrytis by enhancing cytokinin content and reducing abscisic acid signaling. J. Plant Physiol. 2022, 191, 679–693. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Yu, D.Q. The WRKY57 Transcription Factor Affects the Expression of Jasmonate ZIM-Domain Genes Transcriptionally to Compromise Botrytis cinerea Resistance. J. Plant Physiol. 2016, 171, 2771–2782. [Google Scholar] [CrossRef]
- Wang, T.J.; Huang, S.Z.; Zhang, A.; Guo, P.; Liu, Y.T.; Xu, C.M.; Cong, W.X.; Liu, B.; Xu, Z.Y. JMJ17–WRKY40 and HY5–ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. J. New Phytol. 2021, 230, 567–584. [Google Scholar] [CrossRef]
- Yu, F.F.; Huaxia, Y.F.; Lu, W.J.; Wu, C.G.; Cao, X.C.; Guo, X.Q. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. J. BMC Plant Biol. 2012, 12, 144. [Google Scholar]
- Ay, N.; Irmler, K.; Fischer, A.; Uhlemann, R.; Reuter, G.; Humbeck, K. Epigenetic programming via histone methylation at WRKY53 controls leaf senescence in Arabidopsis thaliana: Epigenetic control of leaf senescence. Plant J. 2009, 58, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, H.; Yang, X.; Li, Q.; Ling, J.; Wang, H.; Gu, X.F.; Huang, S.W.; Jiang, W.J. CsWRKY46 a WRKY transcription factor from cucumber, confers cold resistance in transgenic plants by regulating a set of cold-stress responsive genes in an ABA-dependent manner. J. Plant Physiol. Biochem. 2016, 108, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Liu, B.; Song, Y.; Chen, Y.; Fu, J.; Liu, J.Q.; Ma, T.; Xi, Z.X.; Liu, H.H. Genome-wide (ChIP-seq) identification of target genes regulated by WRKY33 during submergence stress in Arabidopsis. J. BMC Genom. Data 2021, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, X.J.; Zhang, S.; Chen, G.; Li, S.J.; Shangguan, T.W.; Zheng, Y.T.; Xu, F.; Chen, Z.H.; Xu, S.C. Evolutionary and Regulatory Pattern Analysis of Soybean Ca2+ ATPases for Abiotic Stress Tolerance. J. Front. Plant Sci. 2022, 13, 898256. [Google Scholar] [CrossRef] [PubMed]
- Köster, P.; DeFalco, T.A.; Zipfel, C. Ca2+ signals in plant immunity. EMBO J. 2022, 41, e110741. [Google Scholar] [CrossRef]
Plant Species | Gene | Species of Pathogenic Bacteria/Fungi | Way of Participation | References |
---|---|---|---|---|
Wild tomato (Solanum arcanum Peralta) | SaWRKY1 | Alternaria solani | Interaction pathway between plant pathogens: ETI | [31] |
Panax notoginseng | PnWRKY9 | Fusarium solani | Methyl jasmonate (MeJA) signal transduction pathway | [32] |
Rice (Oryza sativa) | OsWRKY45 | Magnaporthe oryzae | Interaction pathway between plant pathogens: ETI | [33] |
Lilium regale (Lilium browniivar) | LrWRKY39 | Botrytis cinerea | Interaction pathway between plant pathogens: ETI | [34] |
LrWRKY41a | Interaction pathway between plant pathogens: ETI | |||
Diploid woodland Strawberry (Fragaria vesca) | FvWRKY42 | Sphaerotheca aphanis | Interaction pathway between plant pathogens: ETI | [35] |
Arabidopsis (Arabidopsis thaliana) | AtWRKY18 | Pseudomonas syringae | Interaction pathway between plant pathogens: ETI | [36] |
Three-leaf akebia (Akebia trifoliata) | AkWRKY24 | Interaction pathway between plant pathogens: ETI | [37] | |
Arabidopsis (Arabidopsis thaliana) | AtWRKY | Interaction pathway between plant pathogens: ETI; salicylic acid (SA) signal transduction pathway | [38,39,40,41] | |
Cotton (Gossypium hirsutum) | GhWRKY44 | Ralstonia solanacerum | Interaction pathway between plant pathogens: PTI, ETI; salicylic acid (SA) signal transduction pathway | [42] |
Cotton (Gossypium hirsutum) | GhWRKY44 | Rhizoctonia solani | Interaction pathway between plant pathogens: PTI, ETI; salicylic acid (SA) signal transduction pathway | [42] |
Oilseed rape (Brassica napus) | BnWRKY15, BnWRKY33 | Sclerotinia sclerotiorum | Interaction pathway between plant pathogens: ETI; salicylic acid (SA) and jasmonic acid (JA) signal transduction pathways | [43] |
Wheat (Triticum aestivum) | TaWRKY49, TaWRKY62 | Puccinia striiformis | Interaction pathway between plant pathogens: PTI; salicylic acid (SA), jasmonic acid (JA), ethylene (ET) signal transduction pathway | [44] |
Tomato (Solanum pimpinellifolium) | SpWRKY3 | Phytophthora infestans | Interaction pathway between plant pathogens: ETI | [45] |
Rice (Oryza sativa) | OsWRKY67 | Bacteria blight | Interaction pathway between plant pathogens: ETI; salicylic acid (SA) signal transduction pathway | [46] |
Cucumber (Cumis sativus) | CsWRKY50 | Pseudoperonospora ubensis | Interaction pathway between plant pathogens: PTI, ETI; salicylic acid (SA) and jasmonic acid (JA) signal transduction pathways | [47] |
Banana (Musa acuminata) | MaNAC5/MaWRKY1/MaWRKY2 | Colletotrchum musae | Interaction pathway between plant pathogens: ETI | [48] |
Rice (Oryza sativa) | OsWRKY53 | Chilo suppressalis | Interaction pathway between plant pathogens: PTI; ethylene (ET) signal transduction pathway | [49] |
Arabidopsis (Arabidopsis thaliana) | WRKY75 | Interaction pathway between plant pathogens: PTI; ethylene (ET) signal transduction pathway | [50,51] | |
Loquat (Eriobotrya japonica) | EjWRKY17 | Interaction pathway between plant pathogens: ETI; abscisic-acid (ABA) signal transduction pathway | [52] | |
Poplar (Populus trichocarpa) | PtrWRY89 | Interaction pathway between plant pathogens: ETI; salicylic acid (SA) signal transduction pathway | [53] | |
Peanut (Arachis hypogaea) | AhWRY1 | Salicylic acid (SA), and jasmonic acid (JA) signal transduction pathway | [54] | |
AhWRY7 | ||||
AhWRY8 | ||||
AhWRY12 | ||||
AhWRY13 |
Type of Stress | Species | Gene | Signal Transduction Pathway | References |
---|---|---|---|---|
Apx1 | Arabidopsis (Arabidopsis thaliana) | WRKY25 | Zinc-finger protein Zat12 | [97] |
Flooding | Arabidopsis (Arabidopsis thaliana) | WRKY33, WRKY12 | Ethylene response factor VII gene RAP2.2 | [98] |
Arabidopsis (Arabidopsis thaliana) | WRKY53 | MEKK1 | [99] | |
starch degradation | [100] | |||
AtWRKY8 | MAPKKα-MEK2-WIPK signaling cascade downstream gene interaction | [101] | ||
Drought and salt | Cotton (Gossypium hirsutum) | GhWRKY68 | Accumulate more H2O2 and O2- | [101] |
GhWRKY17 | Increased reactive oxygen species (ROS) levels | [74] | ||
Low temperature and salt | Grape (Vitis vinifera) | VvWRKY28 | Superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) synthesis pathways | [102] |
Species | Gene | Secondary Metabolites | Regulation Mode | References |
---|---|---|---|---|
Isatis indigotica (Isatis tinctoria) | IiWRKY34 | Lignin | Positive regulation | [104] |
Maize (Zea mays) | ZmWRKY79 | Phytohormone | Positive regulation | [105] |
Coptis japonica | CjWRKY1 | Alkaloid | Positive regulation | [106] |
Catharanthus roseus | CrWRKY1 | Terpenoid indole alkaloids | Positive regulation | [107] |
Dwarf lilyturf root (Ophiorhiz pumila) | OpWRKY6 | Camptothecin | Negative regulation | [108] |
Tomato (Solanum lycopersicum) | SlWRKY71 | Terpenoids | Positive regulation | [109] |
Artemisia annua | AaWRKY1 | Artemisinin | Positive regulation | [110] |
Cotton (Gossypium hirsutum) | GaWRKY1 | Sesquiterpene aldehyde | Positive regulation | [111] |
Oilseed rape (Brassica napus) | BnWRKY41-1 | Cyanidin | Negative regulation | [112] |
Rice (Oryza sativa) | OsWRKY13 | Flavonoids | Positive regulation | [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Cheng, X.; Yin, D.; Chen, D.; Luo, C.; Liu, H.; Huang, C. Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Curr. Issues Mol. Biol. 2023, 45, 2861-2880. https://doi.org/10.3390/cimb45040187
Wang H, Cheng X, Yin D, Chen D, Luo C, Liu H, Huang C. Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Current Issues in Molecular Biology. 2023; 45(4):2861-2880. https://doi.org/10.3390/cimb45040187
Chicago/Turabian StyleWang, Hongli, Xi Cheng, Dongmei Yin, Dongliang Chen, Chang Luo, Hua Liu, and Conglin Huang. 2023. "Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses" Current Issues in Molecular Biology 45, no. 4: 2861-2880. https://doi.org/10.3390/cimb45040187
APA StyleWang, H., Cheng, X., Yin, D., Chen, D., Luo, C., Liu, H., & Huang, C. (2023). Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Current Issues in Molecular Biology, 45(4), 2861-2880. https://doi.org/10.3390/cimb45040187